QUANTUM DISCORD-A TOOL FOR COMPARING POSSIBLE SOLUTIONS TO QUANTUM MEASUREMENT PROBLEM

Shreya Banerjee

Tata Institute of Fundamental Research (TIFR),
India
Talk presented at FPQP, ICTS Bangalore,
2016

Talk Outline

- Quantum Discord-Mathematical and Conceptual Overview
- Collapse/Decoherence models studied
- 3 Experimental Set-Up-Brief Description
- 4 Quantum Discord in the presence of CSL, GID and ED
- Results/Inferences
- 6 Summary

Quantum Discord-Mathematical and Conceptual

Overview- [Concept by H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 8, 2001]

Basic Concept:

- Two **classically identical** expressions for **mutual information**/correlations **differ** when the systems involved are **quantum**.
- ullet This difference defines the quantum discord \to measure of the quantumness of correlations.

Mathematical Description: For two subsystems X, Y

• First Measure: provided by the von Neumann entropy,

$$\mathcal{I}(X:Y) = \underbrace{S(\hat{\rho}_X) + S(\hat{\rho}_Y)}_{\text{von-Neumann entropies for X and Y}} - \underbrace{S(\hat{\rho})}_{\text{joint quantum entropy}}$$
(1)

$$\mathcal{J}(X:Y) = S(\hat{\rho}_X) - \sum_{j}^{\text{conditional quantum entropy}} p_j S(\hat{\Pi}_j \hat{\rho}_X \hat{\Pi}_j) \quad \text{where } \hat{\Pi}_j \hat{\rho}_X \hat{\Pi}_j = \text{Tr}_Y \left(\frac{\hat{\Pi}_j \hat{\rho} \hat{\Pi}_j}{p_j} \right)$$
(2)

- $p_j(\operatorname{Tr}(\hat{\Pi}_j\hat{\rho}\hat{\Pi}_j)) \to \operatorname{Probability}$ of getting a state of X given j^{th} state of Y.
- $\hat{\Pi}_j(|j\rangle\langle j|)$ \rightarrow projection operator.
- General definition of entropy:

$$S(\hat{\rho}) = -\text{Tr}\hat{\rho}\ln\hat{\rho} = -\sum_{i}\sigma_{i}\ln\sigma_{i}$$
(3)

Defining Discord:

$$\delta(X:Y) = \mathcal{I}(X:Y) - \mathcal{J}(X:Y)$$
(4)

$$\delta(X:Y)$$
(for classical systems) = 0; $\delta(X:Y)$ (for quantum systems) > 0

(5)

Collapse/Decoherence models studied-Master Eqs

Continuous Spontaneous Localization (CSL) [P. Pearle, Phys. Rev. A 39, 1989, G.

C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A 42, 1990.]:

1)Basic properties: non-linear, non-unitary, stochastic, amplifies.

$$\frac{d\hat{\rho}(t)}{dt} = -\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)] - \frac{\lambda_{\text{CSL}}}{2r_C^3 \pi^{3/2} m_0^2} \int d\mathbf{x} [\hat{M}(\mathbf{x}), [\hat{M}(\mathbf{x}), \hat{\rho}(t)]]$$
 (6)

2) Standard Values¹:

$$\lambda_{\text{GRW}} = 10^{-17} \text{s}^{-1}, \ r_C = 10^{-7} \text{m}^{-1}; \ \lambda_{\text{Adler}} = 10^{-8} \text{s}^{-1}, \ r_C = 10^{-7} \text{m}^{-1}$$

¹[A. Bassi and G. C. Ghirardi, 2003; A. Bassi, E. Ippoliti and S.L. Adler, 2005]

• Gravity Induced Decoherence (GID)-The Diósi model: Difference in self-gravitational energy of an object in two possible mass configurations→ decoherence between possible states.

$$\frac{\partial \rho(x,y,t)}{\partial t} = \frac{i\hbar}{2m} (\nabla_x^2 - \nabla_y^2) \rho(x,y,t) - \frac{1}{\hbar} (U(x-y) - U(0)) \rho(x,y,t) \tag{7}$$

Shreya Banerjee (TIFR)

where

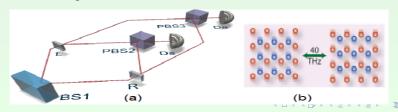
$$U(x,y) = -\frac{Gm^2}{R'} \left(\frac{6}{5} - \frac{1}{2} \frac{|x-y|^2}{R'^2} \right) \quad \text{for} \quad |x-y| \ll R'$$
 (8)

[L. Diósi, P.L.A. **120** (1987)]

- Environmental Decoherence (ED) [E. Joos and H.D. Zeh, Z. Phys. B 59 (1985) 223.]:
- 1) Effect of **environment** (dust, photons, etc.) surrounding the system on measurement. 2) **Destroys interference** among alternatives \rightarrow converting **pure quantum states into statistical mixture**.

$$\frac{\partial \rho(x, y, t)}{\partial t} = \frac{i\hbar}{2m} (\nabla_x^2 - \nabla_y^2) \rho(x, y, t) - \Gamma(x - y)^2 \rho(x, y, t)$$
(9)

- 3) $\Gamma \rightarrow$ a parameter \rightarrow includes the effects due to scattering, emission, absorption of ambient photons and collision with gas molecules.
- 4) Explicit forms of Γ [O. Romero-Isart, Phys. Rev. A 84 (2011) 052121]:


$$\Gamma_{sc} = \frac{8!8\zeta(9)cR'^{6}}{9\pi} \left(\frac{k_{B}T}{\hbar c}\right)^{9} \left[\text{Re} \left(\frac{\epsilon - 1}{\epsilon + 2}\right) \right]^{2}; \quad \Gamma_{coll} = \frac{8\sqrt{2\pi}\zeta(3)}{3\zeta(3/2)} \sqrt{m_{gas}} \frac{R'^{2}P}{\hbar^{2}} (k_{B}T)^{1/2}... \quad (10)$$

◆□ ト ◆□ ト ◆ 豊 ト ◆ 豊 ・ 夕 ♀ ○

[K. C. Lee, et al., Science **334** (2011) 1253]

preserved within experimental time scale

Step 1. Generate motional entanglement—two separate macroscopic diamond crystals pumped simultaneously (ultra short pulses)—producing $|\Psi\rangle = |\Psi_L\rangle |\Psi_R\rangle$ — creating phonon, hence Stokes photon via spontaneous Raman scattering. Step 2. Study excitations of optical phonon mode—Detecting Stokes and anti-Stokes photons at the two detectors— macroscopic entanglement created and

Use discord as a means to ask: To what extent duration of entanglement be enhanced, ED be reduced \rightarrow can probe an interesting domain of λ_{CSL} , $GID_{Diási}$?

Basic Methodology

set-up in presence of **mechanisms responsible for collapse/decoherence**.

Study discord between two diamond crystals (left(L), right(R)) for above

- $|0_{L/R}\rangle$, $|1_{L/R}\rangle \to \mathbf{ground}$ (rest) and $\mathbf{excited}$ (oscillating) phonon (crystal) states.
- **Basis**: $|0_L, 0_R\rangle$, $|1_L, 0_R\rangle$, $|0_L, 1_R\rangle$, $|1_L, 1_R\rangle$.
- Initial condition/wavefunction [S. Belli, et al., Phys. Rev. A 94, 2016.]:

$$\Psi_0(t) = \frac{1}{\sqrt{2}} |1_{\rm L}, 0_{\rm R}\rangle + \frac{1}{\sqrt{2}} |0_{\rm L}, 1_{\rm R}\rangle \tag{11}$$

- Study the effect of CSL, GID, ED on each crystal/subsystem→through evolution of ρ .
- Obtain expressions for entropies (von-Neumann, joint, conditional) expression for discord as a function of time.
- Use experimental values for different parameters → compare discord for CSL and GID models graphically—find experimental time where detection of either CSL or GID becomes possible.

[Shreya Banerjee, Sayantani Bera and Tejinder P. Singh, Phys. Lett. A 380 (2016)]

Quantum Discord in the presence of CSL

What CSL does?

- Tries to prevent superposition of two different matter distributions (rest/oscillating)
 Make each crystal collapse into either of these states.
- Rewriting master eq for present set-up:

$$\frac{d}{dt}\hat{\rho}(t) = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}(t) \right] - 2\eta [\hat{q}^L, [\hat{q}^L, \hat{\rho}_t]] - 2\eta [\hat{q}^R, [\hat{q}^R, \hat{\rho}(t)]]$$
 (12)

where,
$$\eta = \lambda_{\text{CSL}} \frac{N^2}{d^2} \Gamma_{\perp} \left(\frac{R}{\sqrt{2} r_C} \right) \left[1 - e^{-\frac{d^2}{4 r_C^2}} \right]$$
 (13)

ullet \hat{q} oposition operators ullet η othe function of the **mass distribution** for the two sublattices (same) ullet each sublattice o cylinder of radius

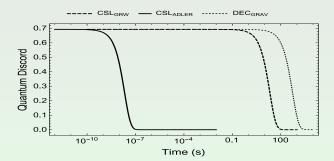
R, width d.

$$\delta(L:R) = S(\hat{\rho}_R) - S(\hat{\rho}) + \sum_j p_j S(\hat{\Pi}_j \hat{\rho}_L \hat{\Pi}_j)$$

$$= -\ln\left(\frac{1}{2}\right) + \sum_i \sigma_i \ln \sigma_i - \frac{1}{4}\left(1 + e^{-2\Lambda t}\right) \ln\left|\frac{(1 + e^{-2\Lambda t})}{2}\right|$$

$$-\frac{1}{4}\left(1 - e^{-2\Lambda t}\right) \ln\left|\frac{(1 - e^{-2\Lambda t})}{2}\right|$$
(14)

- where **the decay/ collapse rate** is $\Lambda_{CSL} = \frac{2\eta\hbar}{3\omega m_0}$
- Quantum discord in the presence of GID/ED: Expression for δ \to same as in CSL with Λ substituted by $\Lambda_{Diosi}/\Lambda_{env}$ where


$$\Lambda_{Diosi} = rac{Gm^2}{6\omega R'^3 m_0}; \; \Lambda_{env} = rac{\Gamma\hbar}{3m_0\omega}$$

[Shreya Banerjee, Sayantani Bera and Tejinder P. Singh, Phys. Lett. A 380 (2016)]

Decay rate constants for different models

Parameters	CSL_{GRW}	$\mathrm{CSL}_{\mathrm{Adler}}$	Gravity induced
			decoherence
$\omega(s^{-1})$	10 ¹³	10 ¹³	10 ¹³
m(kg)	10^{-11}	10^{-11}	10^{-11}
N	5×10^{14}	5×10^{14}	5×10^{14}
$R(\mu m)$	1.3427	1.3427	-
d(mm)	0.25	0.25	_
$R'(\mu m)$	_	_	6.97
$\lambda_{CSL}(s^{-1})$	10^{-17}	10^{-8}	-
$r_C(m)$	10^{-7}	10^{-7}	_
$\Lambda_{CSL/Diosi}(s^{-1})$	0.0050103	0.50103×10^{7}	0.00019659

INFERENCES

• Discord for pure Schrödinger evolution $(\Lambda=0) \rightarrow$ system in pure state with $\delta=\ln 2 \rightarrow$ cannot reduce quantum discord. • CSL, GID \rightarrow effective in reducing quantum discord to zero • Detection of CSL_{Adler}, CSL_{GRW} and GID_{Diósi} is possible

Bound on CSL parameter using quantum discord

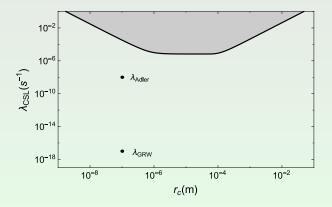
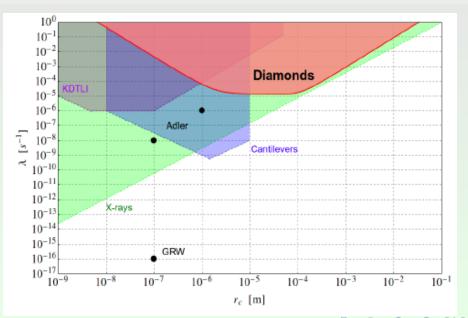



Figure: Figure shows the allowed $\lambda_{CSL} - r_C$ parameter space. We get an upper bound on $\Lambda_{CSL} < 10^{12} s^{-1}$; for $r_C = 10^{-5}$ cm, upper bound on $\lambda_{CSL} \approx 10^{-3} s^{-1}$. Result matches with S. Belli, et al., Phys. Rev. A **94**, 2016.

Summary

- Propose quantum discord as a tool to compare and contrast collapse model (CSL) and fundamental decoherence for an experimentally demonstrated macroscopic entanglement.
- Need to increase experimental time significantly in order to detect any of these effects \rightarrow In particular, detection of CSL_{GRW} and GID seems to be very challenging.
- Get an upper bound on $\Lambda_{CSL} < 10^{12} s^{-1}$; for $r_C = 10^{-5}$ cm, $\lambda_{CSL} < 10^{-3} \text{s}^{-1}$.
- Future Work:1) apply to experiments where EID is important. 2) employ a discord analysis to the **inflationary universe** [J. Martin, V.

Vennin, Phys. Rev. D 93, 2016.].

