A new pQCD based parton shower for jets in the quark-gluon plasma

P. Caucal, E. lancu, A.H. Mueller and G. Soyez

Institut de Physique Théorique, CEA, France

April 17, 2019 - ICTS
The Myriad Colorful Ways of Understanding
Extreme QCD Matter

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

A new pQCD based parton shower for jets in the quark-gluon plasma

ntroduct

Construction of the parton shower

Results and liscussion

Short introduction

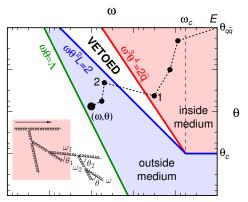
A new pQCD based parton shower for jets in the quark-gluon plasma

Jets are important probes of the quark-gluon plasma produced in heavy-ions collisions at LHC or at RHIC.

Introduction

Construction of the parton shower

Results and discussion


onclusion

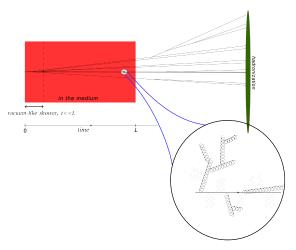
▶ For high p_T jets such as those measured at LHC, pQCD provides a solid framework to compute jet observables within well-controlled approximations.

Introduction (reminder)

Edmond's lectures in a nutshell / Phys.Rev.Lett. 120 (2018) 232001

- ► The evolution of a jet **factorizes** into three steps:
 - one angular ordered vacuum-like shower inside the medium ,
 - followed by medium-induced mini-jets from by previous sources;
 - finally, a vacuum-like shower outside the medium.

A new pQCD based parton shower for jets in the quark-gluon plasma


Introduction

Construction of the parton shower

discussion

Introduction (reminder)

Edmond's lectures in a nutshell / Phys.Rev.Lett. 120 (2018) 232001

Because of decoherence induced by the medium, the first emission outside the medium has no angular constraint. A new pQCD based parton shower for jets in the quark-gluon plasma

Introduction

Construction of the parton shower

discussion

MC implementation of a branching process 1/3

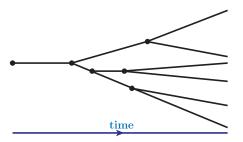
A new pQCD based parton shower for jets in the quark-gluon plasma

Introduction

Construction of the parton shower

.....

onclusion


 Because of quantum color coherence, the jet evolution can be seen as a Markovian branching process.

▶ How to simulate such a branching process on a computer ?

MC implementation of a branching process 2/3

One defines the evolution variable of the branching process, that we call "time".

At a given time, the branching process is a tree graph, with vertices labeled by the formation time of the vertex and edges labeled by the properties of the partons.

▶ A final parton is further evolved if its kinematic is still in the phase space available.

A new pQCD based parton shower for jets in the quark-gluon plasma

Introduction

Construction of the parton shower

Results and discussion

► In practice, we proceed recursively.

Construction of the parton shower

▶ Initial tree graph: one parton at "time" t = 0 which physically represents the leading particle.

discussion

Lonciusion

▶ By recurrence, we only need to understand how to evolve one final parton.

Angular ordered vacuum parton shower

- The angle plays the role of the "time" parameter of the branching process: $t = \log(\theta_{max}/\theta)$.
- ► The probability to have **no** branching between the angle θ_i and the angle θ_{i+1} is given by the Sudakov form factor:

$$\begin{split} \Delta_{i}(\theta_{i}^{2},\theta_{i+1}^{2}) &= e^{-\int_{\theta_{i+1}^{2}}^{\theta_{i}^{2}} \frac{d\theta^{2}}{\theta^{2}} \int_{0}^{1} dz \frac{\alpha_{s}(zE\theta)}{2\pi} P_{ji}(z)\Theta(k_{\perp} > k_{\perp}^{cut})} \\ &\simeq e^{-\frac{\alpha_{s}}{2\pi} \int_{0}^{1} dz P(z) \times \Delta t} \end{split}$$

 \Longrightarrow similar to the radioactive decay formula.

- ▶ To generate the time of the next branching, one picks an angle according to the probability distribution to have a **first** branching at angle θ_{i+1} .
- ► The representation and the energy fraction of the emitted parton is chosen according to the DGLAP splitting probability.

based parton shower for jets in the quark-gluon plasma

A new pQCD

Introduction

Construction of the parton shower

onclusion

Medium-induced parton shower 1/2

► The evolution parameter is x⁺ in light-cone coordinates with the longitudinal axis defined by the direction of motion of the leading particle.

▶ The probability to have **no** branching between time \bar{t} and time t_0 is given by the Sudakov factor:

$$\Delta_{\mathrm{med}}(ar{t},t_0)=e^{-\int_{ar{t}}^{t_0}dt\int_{z_c/x}^{1-z_c/x}dzrac{d\mathcal{P}_{br}}{dzdt}}$$

with the BDMPS-Z branching rate

$$\frac{d\mathcal{P}_{br}}{dzdt} = \frac{1}{4\pi} \frac{\bar{P}_{gg}(z)}{\tau_{br}(z,x)} , \tau_{br}(z) = \frac{1}{\alpha_s} \sqrt{\frac{z(1-z)xE}{\hat{q}_{\text{eff}}(z)}}$$

► Here again, one choose the next branching time according to the probability distribution given by this Sudakov.

A new pQCD based parton shower for jets in the quark-gluon plasma

ntroduction

Construction of the parton shower

discussion

Medium-induced parton shower 2/2

Momentum broadening

At this stage, every splitting is assumed to be collinear with the leading particle. The angle of a parton is then determined by the transverse momentum broadening acquired between two successive branchings.

In our MC, this is mimicked by ascribing to each parton an average transverse momentum $\langle k_{\perp}^2 \rangle = \hat{q} \Delta t$ with a Gaussian distribution.

A new pQCD based parton shower for jets in the quark-gluon plasma

Introduction

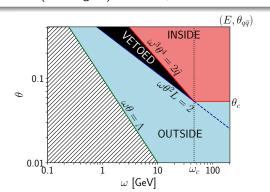
Construction of the parton shower

liscussion

Full parton shower

Succession of three showers

Vacuum parton shower in the medium (red region) with full splitting


function, running coupling and color representations

Medium-induced parton shower with fixed coupling

Vacuum parton shower outside the medium (blue region) after reopening the phase space

A new pQCD based parton shower for jets in the quark-gluon plasma

ntroduction

Construction of the parton shower

discussion

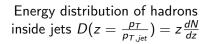
Important results

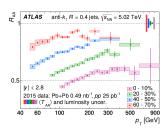
I will focus mainly on two observables:

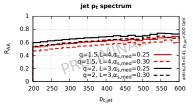
• the nuclear modification factor for jets R_{AA}^{jets} ,

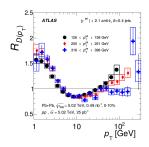
• the jet fragmentation function $z \frac{dN}{dz}$,

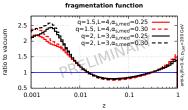
A new pQCD based parton shower for jets in the quark-gluon plasma

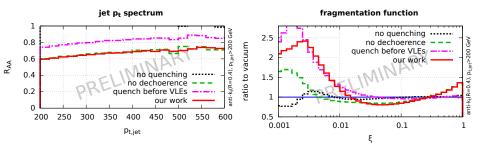

Introduction


Construction of the parton shower


Results and discussion


Comparison with experimental data from LHC


Jet cross section $\frac{d^2 N_{jet}}{dp_T dy}|_{AA}$


A new pQCD based parton shower for jets in the quark-gluon plasma

Introduction

Construction of the parton shower

Results and discussion

(Short) physical discussion

Comments

- Saturation of R_{AA} due to vacuum-like fragmentation inside the medium.
- Enhancement at small z of the fragmentation function due to decoherence of the last emission inside the medium.

Conclusion

A new pQCD based parton shower for jets in the quark-gluon plasma

Summary

Sketch of the MC implementation of our pQCD based picture of jet evolution in a dense QCD medium.

▶ Results in good qualitative agreement with LHC data.

Introduction

Construction of the parton shower

liscussion

Conclusion

In perspective

- Application to other intrajet observables such that the z_g distribution.
- ► A more realistic description of the medium, hadronization effects, etc...

A new pQCD based parton shower for jets in the quark-gluon plasma

ntroduction

Construction of the parton shower

discussion

Conclusion

THANK YOU!