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General Introduction

One series of lectures ... but two distinct problems of physics:

QCD scattering at high energy (or “small x”)

jet quenching in ultrarelativistic nucleus-nucleus collisions

... which are however related at a profound level:

they both explore the physics of high parton densities

Weak coupling (by asymptotic freedom) but ultimately non-perturbative
physics (strong non-linear phenomena)

Profound differences in terms of kinematics, physics scenarios, observables

... but some common microscopic ingredients:

multiple scattering, quantum evolution in strong background fields

... and also common theoretical concepts and approximation schemes:

gluon saturation, momentum broadening, eikonal approximation ...
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General Introduction: Parton evolution

Parton evolution (especially with increasing energy) is a key ingredient of
both problems

space-like (initial-state) evolution: e.g. parton distributions in DIS

time-like (final-state) evolution: e.g. jets in e−e+ annihilation

For dilute systems, the 2 evolutions are “the same” (crossing symmetry)

e.g. they both involve the same DGLAP splitting functions
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General Introduction: Parton evolution

Parton evolution (especially with increasing energy) is a key ingredient of
both problems

space-like (initial-state) evolution: e.g. parton distributions in DIS

time-like (final-state) evolution: e.g. jets in e−e+ annihilation

k  = x Pz z

In the presence of partonic matter, this symmetry can be broken

different quantum evolutions for parton distributions and jet quenching
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High energy QCD & the Color Glass Condensate

Edmond Iancu
Institut de Physique Théorique de Saclay
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Outline

Introduction to high-energy evolution in pQCD

kinematics, lifetimes, parton distributions, double-logarithmic
approximation
gluon saturation: the general idea

Building up the formalism

dipole frame, rapidities, light-cone variables
eikonal approximation, Wilson lines
dipole factorization at high energy: DIS, proton-nucleus collisions

The Color Glass Condensate effective theory

McLerran-Venugopalan model as a pedagogical example
classical field solution (different gauges)
dipole scattering, saturation momentum
the Weiszäcker-Williams gluon distribution
transverse momentum broadening
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Outline (cont.)

High-energy evolution: Balitsky-Kovchegov equation

some details on the derivation
general structure and properties
solution (qualitatively): saturation exponent, geometric scaling
adding a running coupling

Applications to DIS and to particle production in pA collisions

fits to the DIS structure functions at HERA
pA collisions: the nuclear modification factor
correlations in two-particle production

Beyond the BK evolution

JIMWLK evolution & its Langevin reformulation
next-to-leading order corrections to BK: the instability
... and its solution (as recently given)
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Instead of references ...

For a general and rather elementary introduction and for more references
(albeit a bit outdated), you may have a look at this review paper:

Part of the material already introduced in the previous lectures:
Michael Spira, Raju Venugopalan
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More specific references for high-energy QCD

A book: Quantum chromodynamics at high energy, by Yuri V. Kovchegov
and Eugene Levin, 2012, 349 pp. (Cambridge Univ Press)

A few review papers or lecture notes (not exhaustive):

The Colour Glass Condensate: An Introduction, by E. Iancu, A.
Leonidov, and L. McLerran, arXiv:hep-ph/0202270

The Color Glass Condensate and High Energy Scattering in QCD,
by E. Iancu and R. Venugopalan, arXiv:hep-ph/0303204

High energy scattering in Quantum Chromodynamics, by F. Gelis, T.
Lappi, and R. Venugopalan, arXiv:0708.0047

The Color Glass Condensate, by F. Gelis, E. Iancu, J. Jalilian-Marian,
and R. Venugopalan, arXiv:1002.0333

Gluon saturation and initial conditions for relativistic heavy ion
collisions, J. L. Albacete and C. Marquet, arXiv:1401.4866

Whenever I remember, I will refer to the arXiv number
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Dilute-dense scattering

Deep inelastic scattering (DIS)

! "

k
k’

electron

P
proton

p
p+q

q=k-k’

X

High-energy, or small Bjorken x

x ≡ Q2

2P · q '
Q2

s
� 1

Proton-nucleus collisions (pA)

p

x

Forward rapidity η > 0

x =
p⊥√
s

e−η � 1

x: energy fraction of the “parton” (quark or gluon) from the “target” (proton
in DIS, nucleus in pA) which participates in the collision

High energy (s� Q2, p2
⊥), forward rapidity (η > 0) =⇒ small-x (x� 1)
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Dilute-dense scattering

Deep inelastic scattering (DIS)

! "

k
k’

electron

P
proton

p
p+q

q=k-k’

X

High-energy, or small Bjorken x

x ≡ Q2

2P · q '
Q2

s
� 1

Proton-nucleus collisions (pA)

p

x

Forward rapidity η > 0

x =
p⊥√
s

e−η � 1

For sufficiently small x, a hadron wavefunction is a dense gluonic system

This is most conveniently probed via scattering with a dilute projectile
(virtual photon in DIS, proton in pA)
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Parton evolution in QCD

! "
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k’

electron

P
proton
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p+q

q=k-k’

X

q

P

The virtual photon γ∗ couples to the (anti)quarks inside the proton

Gluons are measured indirectly, via their effect on quark distribution

Quantum evolution : change in the partonic content when changing
the resolution scales x and Q2, due to additional radiation
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The small–x partons are mostly gluons
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For x ≤ 0.01 the hadron wavefunction contains mostly gluons !

The gluon distribution is rapidly amplified by the quantum evolution with
decreasing x (or increasing energy s at fixed Q2)
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Bremsstrahlung
A quark — say, a valence quark from a proton — emits a gluon with
longitudinal momentum fraction x ≤ 1, and transverse momentum k⊥

dP ' αs
2π

dk2
⊥

k2
⊥
Pg←q(x)dx

Pg←q(x) ≡ CF
1 + (1−x)2

x

Logarithmic enhancement for large-k⊥ emissions (Λ2
QCD < k2

⊥ < Q2):

∫ Q2

Λ2

dk2
⊥

k2
⊥

= ln
Q2

Λ2

... and also for soft/low-energy (x→ 0) gluons: Pg←q(x) ' 2CF /x

∫ 1

x0

dx

x
= ln

1

x0
≡ Y0
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Bremsstrahlung
A quark — say, a valence quark from a proton — emits a gluon with
longitudinal momentum fraction x ≤ 1, and transverse momentum k⊥

dP ' αs
2π

dk2
⊥

k2
⊥
Pg←q(x)dx

Pg←q(x) ≡ CF
1 + (1−x)2

x

Logarithmic enhancement for large-k⊥ emissions (Λ2
QCD < k2

⊥ < Q2):

∫ Q2

Λ2

dk2
⊥

k2
⊥

= ln
Q2

Λ2

Emissions of soft quarks are not enhanced: ξ ≡ 1− x� 1

Pq←q(ξ) = Pg←q(x = 1− ξ) = CF
1 + ξ2

1− ξ → CF
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Gluon splitting

Gluon splitting into two gluons:

dP ' αs
2π

dk2
⊥

k2
⊥
Pg←g(x)dx

Pg←g(x) ≡ 2Nc
[1− x(1−x)]2

x(1− x)

Soft gluon emission: x� 1 (or 1− x� 1, but this is treated by symmetry)

dP ' αsNc
π

dk2
⊥

k2
⊥

dx

x

Soft gluons can act as sources for even softer ones: high-energy evolution
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The lifetime of a fluctuation

An on-shell parton cannot decay into a pair of on-shell partons

the gluon is eventually reabsorbed: “virtual fluctuation”

The maximal transverse separation ∼ gluon transverse wavelength

if ∆x⊥ > λ⊥, the quark and the gluon lose their quantum coherence
and the gluon can be emitted

∆x⊥ ∼
k⊥
kz

∆t . λ⊥ ∼
2

k⊥

∆t ' 2kz
k2
⊥

=
2xpz
k2
⊥

The same estimate for ∆t follows from the uncertainty principle

1

∆t
= ∆E ≡

√
(xpz)2 + k2

⊥ +
√

((1− x)pz)2 + k2
⊥ − pz '

k2
⊥

2x(1− x)pz
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Transverse resolution in DIS

Very hard fluctuations (large k2
⊥) have a very short lifetime

In DIS, the virtual photon “sees” only those fluctuations which live long
enough: longer than the collision time

∆t ' 2xpz
k2
⊥

∆tcoll '
1

q0

x ' Q2

s
' Q2

2pzq0

∆t & ∆tcoll =⇒ k2
⊥ . Q2

Parton distributions: number of partons with k2
⊥ . Q2 per unit of x

by the uncertainty principle, such partons are localized within a
transverse area (∆x⊥)2 ∼ 1/Q2
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Gluon distribution at small x

The gluon distribution xG(x,Q2) : # of gluons with a given energy fraction
x and any transverse momentum k⊥ . Q

xG(x,Q2) =

∫ Q

d2k x
dNgluon

dxd2k⊥

To leading order in αs: single (soft) gluon emission by the quark

dNgluon

dxd2k⊥
=

αsCF
π

1

x

1

k2
⊥

“unintegrated gluon distribution”

logarithmic sensitivity to the hard resolution scale Q2

logarithmic sensitivity to the confinement scale Λ2

no dependence upon energy (x)
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Gluon distribution at small x

The gluon distribution xG(x,Q2) : # of gluons with a given energy fraction
x and any transverse momentum k⊥ . Q

xG(0)(x,Q2) =
αsCF
π

∫ Q2

Λ2

dk2
⊥

k2
⊥

=
αsCF
π

ln
Q2

Λ2

To leading order in αs: single (soft) gluon emission by the quark

dNgluon

dxd2k⊥
=

αsCF
π

1

x

1

k2
⊥

“unintegrated gluon distribution”

logarithmic sensitivity to the hard resolution scale Q2

logarithmic sensitivity to the confinement scale Λ2

no dependence upon energy (x)
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Next-to-leading order: two gluons

The intermediate gluon (x1, k1⊥) is not measured, but acts as a source for
the measured one (x, k⊥)

x� 1, Λ2 � k2
⊥ � Q2

x� x1 � 1

Λ2 � k2
1⊥ � k2

⊥

The 2-gluon contribution to the gluon distribution measured at x and Q2

xG(1)(x,Q2)=
αsCF
π

∫ Q2

Λ2

dk2
⊥

k2
⊥

αsNc
π

∫ 1

x

dx1

x1

∫ k2
⊥

Λ2

dk2
1⊥

k2
1⊥

= xG(0)(x,Q2)
αsNc
π

1

2
ln
Q2

Λ2
ln

1

x

Suppressed by αs but enhanced by a double-logarithm (energy × collinear)
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The double logarithmic approximation

When ᾱY ρ & 1 =⇒ need for all-order resummation

ᾱ ≡ αsNc
π

, Y ≡ ln
1

x
, ρ ≡ ln

Q2

Λ2

Strong ordering in both x (decreasing):

x� xn � xn−1 · · · � x1 � 1

... and k⊥ (increasing):

Q2 � k2
⊥ � k2

n⊥ · · · � k2
1⊥ � Λ2

The lifetimes of the successive fluctuations are strongly decreasing:

coherent cascade: ∆ti ' 2xipz/k
2
i⊥

∫ 1

x

dxn
xn

∫ 1

xn

dxn−1

xn−1
· · ·
∫ 1

x2

dxn
xn

=
1

n!
Y n

(
and similarly

1

n!
ρn
)
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The double logarithmic approximation

When ᾱY ρ & 1 =⇒ need for all-order resummation

ᾱ ≡ αsNc
π

, Y ≡ ln
1

x
, ρ ≡ ln

Q2

Λ2

Strong ordering in both x (decreasing):

x� xn � xn−1 · · · � x1 � 1

... and k⊥ (increasing):

Q2 � k2
⊥ � k2

n⊥ · · · � k2
1⊥ � Λ2

After summing over cascades with any number n ≥ 0 of intermediate gluons:

xG(x,Q2) = xG(0)(x,Q2)
∑

n≥0

(ᾱY ρ)n

(n!)2
= xG(0)(x,Q2) I0(2

√
ᾱY ρ)

I0(x) : modified Bessel function of rank zero
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The double logarithmic approximation

When ᾱY ρ & 1 =⇒ need for all-order resummation

ᾱ ≡ αsNc
π

, Y ≡ ln
1

x
, ρ ≡ ln

Q2

Λ2

Strong ordering in both x (decreasing):

x� xn � xn−1 · · · � x1 � 1

... and k⊥ (increasing):

Q2 � k2
⊥ � k2

n⊥ · · · � k2
1⊥ � Λ2

Asymptotic behavior at small-x and large-Q2 : ᾱY ρ� 1

xG(x,Q2) ∝ e2
√
ᾱY ρ ∝ exp

{
2

√
ᾱ ln

1

x
ln
Q2

Λ2

}

Rapid increase with both 1/x and Q2: DGLAP evolution at small x
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DIS @ small–x

Rapid rise in the hadronic cross-sections with increasing energy
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Gluon distribution measured at HERA rises like a power of 1/x:

xG(x,Q2) ∝ 1

xλ
with λ ' 0.2

Can such a rise go on for ever ? (i.e. down to arbitrarily small x ?)
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Overlapping gluons

So far, we have assumed that the emitted gluons don’t “see each other”

Gluons which overlap with each other can interact with each other

Uncertainty principle: A gluon with (k⊥, kz = xP ) has a longitudinal extent
∆z ∼ 1/xP and occupies a transverse area ∆x2

⊥ ∼ 1/k2
⊥

small-x gluons can easily overlap in the longitudinal direction
to actually overlap, their transverse momenta need to be small enough
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Overlapping gluons

So far, we have assumed that the emitted gluons don’t “see each other”

Gluons which overlap with each other can interact with each other

Uncertainty principle: A gluon with (k⊥, kz = xP ) has a longitudinal extent
∆z ∼ 1/xP and occupies a transverse area ∆x2

⊥ ∼ 1/k2
⊥

DLA (generally, DGLAP) evolution maintains a dilute system of partons

rapid decrease in their transverse sizes =⇒ no possible overlap
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Overlapping gluons

So far, we have assumed that the emitted gluons don’t “see each other”

Gluons which overlap with each other can interact with each other

Uncertainty principle: A gluon with (k⊥, kz = xP ) has a longitudinal extent
∆z ∼ 1/xP and occupies a transverse area ∆x2

⊥ ∼ 1/k2
⊥

BFKL evolution (Balitsky, Fadin, Kuraev, Lipatov, 1974-78)

decrease x at roughly fixed k⊥:
∑
n [ᾱ ln(1/x)]

n
=⇒ increasing density

leading logarithmic approximation (LLA) at small x
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Gluon occupancy

BFKL evolution leads to a rapid rise in the gluon occupation number

n(x,k⊥,x⊥) ≡ (2π)3

2(N2
c −1)

x
dNgluon

dxd2k⊥d2x⊥

a simple estimate

n(x,Q2) ' 1

Q2
× xG(x,Q2)

πR2

HERA data suggest

n(x,Q2) ∼ 1

xλ
with λ ' 0.2

When n & 1, gluons overlap, but their interactions are still suppressed by αs

When n ∼ 1/αs, gluons self interactions become of O(1): what happens?
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Gluon saturation

The original idea (L. Gribov, Levin, Ryskin, 1982; Mueller, Qiu, 1987)

when n ∼ 1/αs, gluon recombination (gg → g) becomes important and
equilibrates gluon splitting (g → gg)

The modern version of this idea: the non-linear BK and JIMWLK equations

(Balitsky, 96; Kovchegov, 99; Jalilian-Marian, Iancu, McLerran, Weigert,
Leonidov, and Kovner, 97–00)
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The saturation momentum

Remember: in order to overlap, gluons must have large enough transverse
sizes/small enough transverse momenta: k2

⊥ . Q2
s(x)

Q2
s(x): the value of k2

⊥ at which the occupation number is of O(1/αs)

n(x,Q2) ' xG(x,Q2)

R2Q2
∼ 1

αs
when Q2 . Q2

s(x)

Parametrically (Ng ≡ N2
c −1)

Q2
s(x)' ᾱ

xG(x,Q2
s)

NgR2
∼ 1

xλs

Q2
s(x) rises with 1/x: λs ' 0.2

ln !

Y = ln 1/x

2
QCD

Saturation
= " Y

ln Q2

Dilute system

DGLAP

JIMWLK

sln Q  (Y)2
s

For sufficiently small x, Q2
s(x)� Λ2

QCD =⇒ αs
(
Q2
s(x)

)
� 1 =⇒ pQCD
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The dipole frame

Physical picture & calculation details depend upon Lorentz frame & gauge

Parton picture manifest in the target infinite momentum frame (pz →∞)
and in the light-cone gauge (gluons have transverse polarizations)

Bjorken frame: qµ = (q0, q⊥, 0), q0 = p·q
p0
→ 0, Q2 ' q2

⊥

the virtual photon is a good analyser of the proton transverse structure

scattering counts the # of quarks with transverse size ∆x⊥ ∼ 1/Q
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The dipole frame

Physical picture & calculation details depend upon Lorentz frame & gauge

High energy/small x: boost to a frame where γ∗ is energetic (q0 ' qz � Q):

the qq̄ pair can now be seen as a part of the photon wavefunction

γ∗ first fluctuates into a qq̄ color dipole, which then scatters off the
gluons from the proton wavefunction: factorization

x ≡ Q2

2p · q � 1 ⇐⇒ ∆t ' 2qz
Q2

� 1

pz
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Dipole vs. proton evolution

So far, most of the total energy is still carried by the proton (pz � qz)

the high-energy evolution (gluon emissions) associated with the proton

By further boosting γ∗, one can transfer this evolution to the dipole

the virtual photon first fluctuates into a qq̄ color dipole

the color dipole evolves via soft (x = kz
qz
� 1) gluon emissions

the dressed dipole scatters off the valence quarks from the proton

dipole formation & evolution can be factorized from the collision
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Dipole vs. proton evolution

So far, most of the total energy is still carried by the proton (pz � qz)

the high-energy evolution (gluon emissions) associated with the proton

The boost has particularly interesting consequences for the non-linear effects

proton IMF: non-linear effects in the evolution (gluon saturation)

dipole frame: linear evolution of the dipole + multiple scattering

recombination (gg → g) gets mapped onto splitting (g → gg)

gluon saturation gets mapped onto fluctuations in the BFKL evolution
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Light-cone variables

Four-momentum: pµ =
(
p0, p1, p2, p3

)
≡
(
p0,p⊥, pz

)
=
(
p+, p−,p⊥

)

p± =
1√
2

(
p0 ± pz

)

x± =
1√
2

(
t± z

)

p · x = p+x− + p−x+ − p⊥ · x⊥

dtdz = dx+dx−

Ultrarelativistic right mover: classical trajectory z = t

x+ =
√

2t (LC time) & x− = 0 (LC longitudinal coordinate)

“the particle sits at x− = 0” (the “rest frame” of the UR particle)

Left mover: the roles of x+ and x− (or p+ and p−) get interchanged
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Light-cone variables

Four-momentum: pµ =
(
p0, p1, p2, p3

)
≡
(
p0,p⊥, pz

)
=
(
p+, p−,p⊥

)

p± =
1√
2

(
p0 ± pz

)

x± =
1√
2

(
t± z

)

p · x = p+x− + p−x+ − p⊥ · x⊥

dtdz = dx+dx−

On-shell particle (RM): p2 ≡ 2p+p− − p2
⊥ = m2 & pz ' p0 � p⊥, m

p− =
p2
⊥ +m2

2p+
� m⊥ ≡

√
p2
⊥ +m2 � p+

p+ '
√

2pz (LC longitudinal momentum) & p− ' 0 (LC energy)

Boost-invariant def. for the longitudinal momentum fraction: x ≡ k+/p+
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Rapidities

Consider an on-shell particle: pµ = (E,p⊥, pz) with E =
√
m2 + p2

⊥ + p2
z

y ≡ 1

2
ln
E + pz
E − pz

=
1

2
ln
p+

p−

Positive for a ‘right-mover’ (pz > 0) & negative for a ‘left-mover’ (pz < 0)

E = m⊥ cosh y, pz = m⊥ sinh y, p± =
m⊥√

2
e±η

y transforms via a shift under a Lorentz boost along the collision axis

E → γ(E + βpz), pz → γ(pz + βE) =⇒ y → y +
1

2
ln

1 + β

1− β

β: boost velocity; γ ≡ 1/
√

1− β2: Lorentz boost factor

rapidity differences ∆yij = yi − yj are boost invariant
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Rapidities

Consider an on-shell particle: pµ = (E,p⊥, pz) with E =
√
m2 + p2

⊥ + p2
z

y ≡ 1

2
ln
E + pz
E − pz

=
1

2
ln
p+

p−

Positive for a ‘right-mover’ (pz > 0) & negative for a ‘left-mover’ (pz < 0)

E = m⊥ cosh y, pz = m⊥ sinh y, p± =
m⊥√

2
e±η

In the experiments, it is easier to measure angles =⇒ “pseudo-rapidities”

η ≡ 1

2
ln
p+ pz
p− pz

= − ln tan
θ

2
, cos θ =

pz
p
, sin θ =

p⊥
p

p ≡ |~p| =
√
p2
⊥ + p2

z =⇒ y = η for massless particles

In what follows, all particles will be massless !
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Particle production in pA collisions: Kinematics
A quark initially collinear with the proton acquires a transverse momentum
p⊥ ∼ Qs via multiple scattering off the gluons inside the nucleus

Formally, a 2→ 1 process: qg → q (in general: qg . . . g → q)

p

x

incoming quark: qµ = xpQ
µ = (xpQ

+, 0,0⊥)

participating gluon: kµ = (0, XgP
−,p⊥)

produced quark: pµ = qµ + kµ = (xpQ
+, XgP

−,p⊥)
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pA collisions: Forward production

View the process in the COM frame of the proton-nucleon pair

s = (Q+ P )2 = 2Q+P−, Q+ = P− =
√
s/2

p± =
p⊥√

2
e±η

xp ≡
p+

Q+
=
p⊥√
s

eη

Xg ≡
p−

P−
=
p⊥√
s

e−η

Xg � xp when η > 0

η = − ln tan(θ/2) : rapidity of the produced quark in COM frame

Forward production probes gluon evolution towards small x (in the target)
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Particle production in pA collisions: Kinematics
A quark initially collinear with the proton acquires a transverse momentum
p⊥ ∼ Qs via multiple scattering off the gluons inside the nucleus

How to include multiple scattering to all orders ?

p

x

A priori encoded in the formal definition of the S-matrix operator in QCD ...

Ŝ = T ei
∫

d4xLint(x) with Lint(x) = jµa (x)Aaµ(x)

... but how to compute things in practice ?
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Eikonal approximation

A priori, these are quantum operators encoding evolution, fluctuations ....

jµa (x): color current for partons in the projectile; e.g. jµa = gψ̄γµtaψ

Aaµ(x) : color field representing the gluons from the target

At high energy the structure of the interactions gets drastically simplified

Right-mover projectile: jµa ∝ vµ = δµ+ =⇒ Lint(x) = j+
a (x)A−a (x)

Transverse coordinates are not changed by the scattering off the shockwave

let L = R/γ denote the target width in a generic frame

transverse deviation is irrelevant if smaller than the wavelength λ⊥
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Eikonal approximation

A priori, these are quantum operators encoding evolution, fluctuations ....

jµa (x): color current for partons in the projectile; e.g. jµa = gψ̄γµtaψ

Aaµ(x) : color field representing the gluons from the target

At high energy the structure of the interactions gets drastically simplified

Right-mover projectile: jµa ∝ vµ = δµ+ =⇒ Lint(x) = j+
a (x)A−a (x)

Transverse coordinates are not changed by the scattering off the shockwave

∆x⊥ '
p⊥
E
L � λ⊥ ∼

1

p⊥
=⇒ γE ∼ 106 GeV � Q2

sR ∼ 30÷ 100 GeV
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Wilson lines

S-matrix operator: Ŝ = T ei
∫

d4xLint(x) with Lint(x) = jµa (x)Aaµ(x)

The color current density of a quark in the eikonal approximation:

jµa (x) ' gvµtaδ(z−t)δ(2)(x⊥−x0
⊥)' δµ+gtaδ(x−)δ(2)(x⊥−x0

⊥)

Ŝ ' V (x0
⊥) with V (x⊥) ≡ T exp

{
ig

∫
dx+A−a (x+,x⊥)ta

}

An exponential : multiple scattering is resummed to all orders

A color matrix (here, in the fundamental representation)

A unitary matrix: V (x⊥)V †(x⊥) = 1 =⇒ a rotation of the quark color state

Ψi(x⊥) −→ Vji(x⊥) Ψi(x⊥)
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Wilson lines

S-matrix operator: Ŝ = T ei
∫

d4xLint(x) with Lint(x) = jµa (x)Aaµ(x)

The color current density of a quark in the eikonal approximation:

jµa (x) ' gvµtaδ(z−t)δ(2)(x⊥−x0
⊥)' δµ+gtaδ(x−)δ(2)(x⊥−x0

⊥)

VN (x⊥) = eigεA−N eigεA−N−1 · · · eigεA−1 eigεA−0
(
A−n ≡ A−a (x+

n ,x⊥)ta
)

A time-ordered exponential: color matrices do not commute with each other

Best understood with a discretization of time: x+
n = nε, n = 0, 1, · · ·N

A unitary matrix: V (x⊥)V †(x⊥) = 1 =⇒ a rotation of the quark color state

Ψi(x⊥) −→ Vji(x⊥) Ψi(x⊥)
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Dipole factorization for DIS (1)

Recall: the dipole frame =⇒ factorization in time

x ≡ Q2

2p · q � 1 ⇐⇒ ∆t ' 2q+

Q2
� 1

p−

σγ∗p = [probability for γ∗ → qq̄] (QED) × [σqq̄p] (QCD)

The qq̄ pair is in a color singlet state: 1√
3

(
|RR̄〉+ |BB̄〉+ |GḠ〉

)
= |dipole〉
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Dipole factorization for DIS (2)

Optical theorem: total cross-section = imaginary part of the forward
scattering amplitude

σγ∗p(Q
2, x) =

∫
d2r

∫ 1

0

dz
∣∣Ψγ∗→qq̄(r, z;Q

2)
∣∣2 σdipole(r, x)

γ∗ wavefunction Ψγ∗→qq̄(r, z;Q2): computed in QED perturbation theory

r2 ∼ 1/Q2: dipole transverse size (dipole resolution in the transverse plane)

The dipole cross-section σdipole: encodes the QCD scattering and evolution
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The dipole S-matrix

σdipole(r, x) = 2

∫
d2b T (r, b, x)

r = x⊥ − y⊥: dipole size

b = (x⊥ + y⊥)/2: impact parameter

T (r, b, x) = 1− 〈Ŝ〉: dipole amplitude

T ≤ 1 : unitarity bound

2 Wilson lines: V (x⊥) for the quark (q) and V †(y⊥) for the antiquark (q̄)

an antiquark has charge (−g) and propagates backwards in time

Color singlet: the same color states for q and q̄ before & after the scattering

sum over final color states & and average over the initial ones
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The dipole S-matrix

σdipole(r, x) = 2

∫
d2b T (r, b, x)

r = x⊥ − y⊥: dipole size

b = (x⊥ + y⊥)/2: impact parameter

T (r, b, x) = 1− 〈Ŝ〉: dipole amplitude

T ≤ 1 : unitarity bound

Ŝdipole(x⊥,y⊥) =
1

Nc
V †ij(y⊥)Vji(x⊥) =

1

Nc
tr
(
V (x⊥)V †(y⊥)

)

〈Ŝ〉 : average over the color fields A−a in the target: CGC effective theory

〈Sxy〉 =

∫
[DA−] W [A−]

1

Nc
tr
(
VxV

†
y

)
[A−]

W [A−]: functional probability distribution (gauge-invariant)
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The single scattering approximation (1)

Expanding the exponential in the Wilson lines: multiple scattering series

V (x⊥)= 1 + ig

∫
dx+A−a (x+,x⊥)ta

−g
2

2

∫
dx+

∫
dy+

[
θ(x+−y+)tatb + θ(y+−x+)tbta

]
A−a (x+)A−a (y+) + · · ·

Dipole S-matrix in the 2-gluon exchange approximation: single scattering

Ŝdipole(x⊥,y⊥) = 1− g2

4Nc

[
A−a (x⊥)−A−a (y⊥)

]2
+O(g3)

A−a (x⊥) ≡
∫

dx+A−a (x+,x⊥), tr ta = 0, tr(tatb) =
1

2
δab

N.B. Color non-commutativity becomes important at O(g3) and higher

A−a (x⊥)−A−a (y⊥) ' (xi⊥−yi⊥)
∂

∂bi
A−a (b⊥) = riF i−a (b⊥)

THE MYRIAD, ICTS, April 2019 High energy QCD & the CGC Edmond Iancu 36 / 98



The single scattering approximation (1)

Expanding the exponential in the Wilson lines: multiple scattering series

V (x⊥)= 1 + ig

∫
dx+A−a (x+,x⊥)ta

−g
2

2

∫
dx+

∫
dy+

[
θ(x+−y+)tatb + θ(y+−x+)tbta

]
A−a (x+)A−a (y+) + · · ·

Dipole S-matrix in the 2-gluon exchange approximation: single scattering

Ŝdipole(x⊥,y⊥) = 1− g2

4Nc

[
A−a (x⊥)−A−a (y⊥)

]2
+O(g3)

A−a (x⊥) ≡
∫

dx+A−a (x+,x⊥), tr ta = 0, tr(tatb) =
1

2
δab

N.B. Color non-commutativity becomes important at O(g3) and higher

After averaging over A− =⇒ the gluon distribution in the target
∫

d2b
〈
F i−a (x)F i−a (y)

〉
∝ xG(x,Q2 = 1/r2)
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The single scattering approximation (2)

The dipole is a direct probe of the gluon distribution in the hadronic target

Remember: a QED dipole couples to the electric field ~E: V (r) = griEi

A ultrarelativistic color dipole couples to the chromo-electric field F i−a

σdipole(r, x) ' 2π2αsr
2 CF
Ng

xG(x, 1/r2) ' 2πR2
[
r2Q2

s(x)
]

Single scattering is valid so long as T0(r, x) ' r2Q2
s(x)� 1

The scattering amplitude vanishes like r2: color transparency
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Multiple scattering

A hadronic cross section cannot growth with E “much faster” than the
geometric cross-section

σ(E) ≤ 2πR2 ln2(E/M) : Froissart bound

Single scattering is a good approximation only so long as rQs(x)� 1

When r & 1/Qs(x), the scattering probes a dense gluon distribution

multiple scattering should become important

‘Duality’: gluon saturation in the target ←→ unitarization T ∼ 1
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Color Glass Condensate

Small–x gluons : classical color fields Aµa [ρ] radiated by a frozen distribution
ρa of color charges representing partons with x′ � x

lifetimes are strongly ordered by Lorentz time dilation: ∆t = 2xPz/k
2
⊥

WY [ρ]: CGC weight function, built via renormalization group (“JIMWLK”)

successively integrating out gluons in layers of x′: high-energy evolution

initial condition at x′ ∼ 0.1÷ 0.01: McLerran-Venugopalan model
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The McLerran-Venugopalan model (1994)

A model for the gluon distribution in a large nucleus (A� 1) at not that
small values of x (x ∼ 0.01) ⇒ quantum evolution can be neglected

A large nucleus: a collection of A×Nc ' 600 valence quarks acting as
independent color sources ⇒ A Gaussian CGC weight function

If the nucleus is a ultrarelativistic left mover ⇒ Jµa (x) ' δµ−ρa(x+,x)

independent of x− (LC time for a left-mover) by Lorentz time dilation

color charge density ρa localized near x+ = 0 by Lorentz contraction

W0[ρ] = exp

{
−
∫

dx+d2x
ρa(x+,x)ρa(x+,x)

2λ(x+,x)

}

λ(x+,x): density of color charge squared (for one quark: (gta)2 = g2CF )
∫

dx+d2xλ(x+,x) =
ANc g

2CF
N2
c − 1

≡ πR2
Aµ

2

Small-x observables (e.g. dipole scattering) cannot discriminate the local

structure in x+ ⇒ only sensitive to µ2 ∝ A1/3
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The color field of a shockwave

Solution to the classical Yang-Mills equations:

Dab
ν F

µν
b (x) = δµ−ρa(x+,x)

Dab
ν = ∂νδ

ab − gfabcAcν , Fµνa = ∂µAνa − ∂νAµa − gfabcAµbAνc
The solution is particularly simple due to the special structure of the current:

F ija = 0, A+
a = 0, Aia, A

−
a : independent of x−

Covariant gauge: ∂µAµa = ∂iA
i
a = 0⇒ Aia = 0 ⇒ just a Coulomb field A−a

−∇2
⊥A
−
a (x) = ρa(x+,x) : linear equation, local in x+

A−a (x+,x) =

∫
d2k

(2π)2
eik·x

ρa(x+,k)

k2
⊥

=

∫
d2y

4π
ln

1

(x− y)2Λ2
ρa(x+,y)

Λ: “infrared cutoff” introduced by confinement

The only non-zero field strength components: F i−a (x+,x) = ∂iA−a
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Gluons & the light-cone gauge

Valence quarks and their Coulomb fields, localized in the longitudinal
direction (x+) ... but where are the gluons ?!

They only “live” in the nucleus light-cone gauge A−a = 0: the would-be large

component is forced to vanish =⇒ transverse components Aia

Dab
i F

i−
b (x) = −Dab

i

∂Aib
∂x+

= ρa(x+,x)

two non-zero components A1
a and A2

a, which however obey F ija = 0

non-locality in x+ =⇒ delocalization

The weak field (“QED”) case first: linear equation, Fourier transform

Aia(x+,x) =

∫
dk−d2k

(2π)3
e−ik

−x++ik·x −ki
k− + iε

ρa(k−,k)

k2
⊥

∂− ≡ ∂/∂x+ → 1/k− =⇒ axial pole at k− = 0

“retarded”/“advanced” prescription ±iε : physically irrelevant
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Gluons & the light-cone gauge

Valence quarks and their Coulomb fields, localized in the longitudinal
direction (x+) ... but where are the gluons ?!

They only “live” in the nucleus light-cone gauge A−a = 0: the would-be large

component is forced to vanish =⇒ transverse components Aia

Dab
i F

i−
b (x) = −Dab

i

∂Aib
∂x+

= ρa(x+,x)

two non-zero components A1
a and A2

a, which however obey F ija = 0

non-locality in x+ =⇒ delocalization

The weak field (“QED”) case first: linear equation, Fourier transform

Aia(x+,x) =

∫
dk−d2k

(2π)3
e−ik

−x++ik·x −ki
k− + iε

ρa(k−,k)

k2
⊥

Aia(x+,x) =

∫
dy+Θ(x+ − y+)

∫
d2y

2π

xi − yi

(x− y)2
ρa(y+,y)
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Gluons & the light-cone gauge

Valence quarks and their Coulomb fields, localized in the longitudinal
direction (x+) ... but where are the gluons ?!

They only “live” in the nucleus light-cone gauge A−a = 0: the would-be large

component is forced to vanish =⇒ transverse components Aia

Dab
i F

i−
b (x) = −Dab

i

∂Aib
∂x+

= ρa(x+,x)

two non-zero components A1
a and A2

a, which however obey F ija = 0

non-locality in x+ =⇒ delocalization

The weak field (“QED”) case first: linear equation, Fourier transform

Color charge (valence quarks) localized near y+ =0: ρa(y+,y)'δ(y+)ρa(y)

Aia(x+,x) ' Θ(x+)

∫
d2y

2π

xi − yi

(x− y)2
ρa(y)

Weiszäcker-Williams field: quasi-real gluons =⇒ “partons”

modes with a given momentum k− are delocalized over ∆x+ ∼ 1/k−
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Gluons & the light-cone gauge

Valence quarks and their Coulomb fields, localized in the longitudinal
direction (x+) ... but where are the gluons ?!

They only “live” in the nucleus light-cone gauge A−a = 0: the would-be large

component is forced to vanish =⇒ transverse components Aia

Dab
i F

i−
b (x) = −Dab

i

∂Aib
∂x+

= ρa(x+,x)

two non-zero components A1
a and A2

a, which however obey F ija = 0

non-locality in x+ =⇒ delocalization

The non-linear Yang-Mills equation can be analytically solved too

via a gauge rotation from the COV gauge, where Aµa = δµ−A−a

Aia(x+,x)ta ' Θ(x+)
i

g
V †(x)∂iV (x), V (x) ≡ Teig

∫
dx+A−a (x+,x⊥)ta

N.B.: LC-gauge field Ai related to the color charge ρ in the COV gauge
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COV vs. LC gauges ... pictorially

Covariant gauge: instantaneous Coulomb exchanges between the projectile
and the target; eikonal coupling j+A−; no saturation.

LC gauge A− = 0: delocalized gluons which overlap in z (or x+); non-linear
effects (gluon saturation); non-eikonal coupling to the projectile: jiAi.
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The Weiszäcker-Williams fields
The only non-trivial field strength component: F i−a (in any gauge)

Non-zero transverse components for the electric and the magnetic fields

F i+a = 0 ⇒ F i0 = −F i3, F+− = 0 ⇒ E3 = B3 = 0

F i± =
1√
2

(
F i0 ± F i3

)
=⇒

{
E1 ≡ −F 10 = F 13 ≡ B2

E2 ≡ −F 20 = F 23 ≡ −B1

Ea ⊥ Ba ⊥ z

E⊥ ·B⊥ = 0 , |E⊥| = |B⊥| ∼
1

g

transverse polarizations

chromo-electromagnetic waves

Lorentz contraction: ∝ δ(x+)
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The Weiszäcker-Williams fields
The only non-trivial field strength component: F i−a (in any gauge)

Non-zero transverse components for the electric and the magnetic fields

Similar to plane waves describing free photons/gluons: “equivalent photons”

Fields vary over a distance ∼ 1/Qs =⇒ gluons typically have k⊥ ∼ Qs
Fields have strength ∼ 1/g =⇒ gluons have occupation numbers ∼ 1/αs

Ea ⊥ Ba ⊥ z

E⊥ ·B⊥ = 0 , |E⊥| = |B⊥| ∼
1

g

transverse polarizations

chromo-electromagnetic waves

Lorentz contraction: ∝ δ(x+)
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The gluon distribution

Gluon distribution xG(x,Q2): # of gluons with a given longitudinal
momentum fraction x and transverse momenta k⊥ ≤ Q ... in the LC gauge

xG(x,Q2) =

∫
d2k⊥Θ(Q2 − k2

⊥)

∫
d2b⊥ k

− d2Ngluon
dk−d2k⊥d2b⊥

∣∣∣
k−=xP−

Occupation number in phase-space (r = x⊥ − y⊥, b = (x⊥ + y⊥)/2):

n(x,k⊥, b⊥) =
1

N2
c −1

∫

x+,y+

∫

r⊥

e−ik⊥·r⊥〈F i−a (x+,x⊥)F i−a (y+,y⊥)〉
∣∣∣
A−=0
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The gluon distribution

Gluon distribution xG(x,Q2): # of gluons with a given longitudinal
momentum fraction x and transverse momenta k⊥ ≤ Q ... in the LC gauge

xG(x,Q2) =

∫
d2k⊥Θ(Q2 − k2

⊥)

∫
d2b⊥ k

− d2Ngluon
dk−d2k⊥d2b⊥

∣∣∣
k−=xP−

Occupation number in phase-space (r = x⊥ − y⊥, b = (x⊥ + y⊥)/2):

n(x,k⊥, b⊥) =
1

N2
c −1

∫

x+,y+

∫

r⊥

e−ik⊥·r⊥〈F i−a (x+,x⊥)W ab
γ (x, y)F i−b (y+,y⊥)〉
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Exploring multiple scattering in the CGC

A relatively simple observable: a quark-antiquark “color dipole”

S(x,y) =
1

Nc

〈
tr
[
V (x)V †(y)

]〉

A Gaussian Ansatz for the gluon distribution: MV model for a large nucleus

〈ρa(x+,x)ρb(y
+,y)〉 = δabδ(x+ − y+)δ(2)(x− y)λ(x+)

Classical Yang-Mills solution covariant gauge: −∇2
⊥A
−
a (x) = ρa(x+,x)

Explicit analytic results, which allow for a transparent physical picture
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Dipole scattering in the MV model

Independent scatterings =⇒ the multiple scattering series exponentiates

S(r) = e−T0(r)

T0(r) =
g2

4Nc

〈[
A−a (x⊥)−A−a (y⊥)

]2〉

A−a (x) ≡
∫

dx+A−a (x+,x)

〈A−a (x)A−b (y)〉 = δabµ2

∫
d2k

(2π)2

eik·(x−y)

k4
⊥

, µ2 ≡
∫

dx+λ(x+) =
g2A

2πR2
A

A factor 1/k2
⊥ for each gluon exchange (Coulomb scattering)

T0(r) = g2CF

∫
d2k

(2π)2

µ2

k4
⊥

[
1− eik·r

]
' αsCF

4
r2µ2 ln

1

r2Λ2
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Dipole scattering in the MV model

Independent scatterings =⇒ the multiple scattering series exponentiates

S(r) = e−T0(r)

S(r) = exp

{
−r

2Q2
0A

4
ln

1

r2Λ2

}

Q2
0A ≡ αsCFµ2 =

2α2
sCFA

1/3

R2

The dipole scatters off all the quarks within an area ∼ r2 around its impact
parameter b⊥ =⇒ a tube with length L = RA/γ, with RA = RA1/3

T0(r) ∝ r2: color transparency (cancellation between qq̄ and qq, or q̄q̄)

ln(1/r2Λ2): gluon exchanges within the range r < ∆x⊥ < 1/Λ
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Dipole scattering in the MV model (cont.)

S(r) = e−T0(r) = exp

{
−r

2Q2
0A

4
ln

1

r2Λ2

}
≡ 1− T (r)

S(r) : Probability for the qq̄ pair to survive in a color singlet (“dipole”) state

S(r)→ 1 (i.e. T (r)→ 0) when r → 0 : color transparency

Small enough dipole =⇒ weak scattering: T (r) ' T0(r)� 1

Scattering becomes strong, i.e. T (r) ∼ O(1), when T0(r) ∼ O(1)

Saturation momentum Qs: conventionally defined as T0(r) = 1 for r = 2
Qs

Q2
s(A) = Q2

0A ln
Q2
s(A)

4Λ2
∝ A1/3 lnA1/3

Gluon saturation in the nucleus manifests as multiple scattering for the probe

typical scale for the onset of non-linear physics
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The saturation front (MV model)

Left: the dipole S-matrix as a function of r2Q2
0
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-5  0  5  10

T (ρ)

ρ = ln 1
r2Q2

0

Right: the dipole amplitude T ≡ 1− S as a function of ρ ≡ ln(1/r2Q2
0)

small dipole r � 1/Qs =⇒ large values for ρ : T ' T0 ∼ e−ρ

large dipole r & 1/Qs =⇒ negative ρ : T = 1
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Transverse momentum broadening

A quark initially collinear with the proton acquires a transverse momentum
k⊥ ∼ Qs via multiple scattering off the gluons inside the nucleus

a random process leading to a distribution in the final momentum k⊥

p

x

Transverse momentum broadening can be studied in the eikonal approx.

fixed transverse coordinate, but the transverse momentum can vary

a quark Wilson line V (x⊥) built with the target field A−a
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Dipole picture for pA collisions

Amplitude: Mij(k⊥) ≡
∫

d2x⊥ e−ix⊥·k⊥ Vij(x⊥)

Cross-section:
dσ

dηd2k⊥
' xpq(xp, Q

2)
1

Nc

〈∑

ij

|Mij(k⊥)|2
〉

Xg

xpq(xp, Q
2) : quark distribution in the proton for Q2 ∼ k2

⊥ and xp = k⊥√
s

eη

Average over the target: unintegrated gluon distribution at Xg = k⊥√
s

e−η
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Dipole picture for pA collisions

Two Wilson lines at different transverse coordinates, traced over color

Equivalently: elastic S-matrix for a qq̄ color dipole (here, a fictitious dipole)

S(x⊥,y⊥;Xg) ≡
1

Nc

〈
tr
[
V (x⊥)V †(y⊥)

]〉
Xg

dσ

dηd2k
' xpq(xp)

∫
d2xd2y

(2π)2
e−i(x−y)·k S(x,y;Xg)

Fourier transform S(k, Xg) of the dipole S-matrix
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Momentum broadening in the MV model (1)

Consider an incoming quark for simplicity and use MV model for S(r)

dN

d2k
=

∫
d2r

(2π)2
e−ik·r e−

1
4 r

2Q2
0A ln 1

r2Λ2

Two interesting situations which allow for simple results:

Typical values k⊥ ∼ Qs, as transferred by multiple scattering

integral cut off at r ∼ 1/Qs by the S-matrix S(r)

one can replace 4/r2 → Q2
s within the argument of the log

dN

d2k
' 1

πQ2
s(A)

e−k
2
⊥/Q

2
s(A)

a Gaussian distribution: random walk in k

〈k2
⊥〉 ≡

∫
d2k k2

⊥
dN

d2k
= Q2

s(A) ∝ L = RA1/3
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Momentum broadening in the MV model (1)

Consider an incoming quark for simplicity and use MV model for S(r)

dN

d2k
=

∫
d2r

(2π)2
e−ik·r e−

1
4 r

2Q2
0A ln 1

r2Λ2

Two interesting situations which allow for simple results:

Large values k⊥ � Qs, as given by a single hard scattering

integral cut off at r ∼ 1/k⊥ by the exponential

rQs � 1 =⇒ one can expand S ' 1− T0 (one scattering)

dN

d2k
' Q2

0A

πk4
⊥

power-law tail at high k⊥: Rutherford scattering
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The “dipole” gluon distribution

Left: the Fourier transform k⊥S(k⊥)

the probability distribution for k⊥

“the dipole unintegrated gluon distribution”

 0
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kS̃(k)

k2/Q2
0  0
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kS̃(k)

k2/Q2
0

Right: the same function, but in logarithmic units

peaked at k ' Qs, power-law tail at k � Qs
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The Weiszäcker-Williams gluon distribution

Left: the gluon occupation number n(k⊥) = W (k⊥)/αsNc

“the Weiszäcker-Williams unintegrated gluon distribution”

W (k⊥) ' ln
Q2
s

k2
⊥

when k . Qs, W (k⊥) ' Q2
0

k2
⊥

at high k⊥

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

W (k)

k2/Q2
0  0

 0.05

 0.1

 0.01  0.1  1  10  100

kS̃(k)

k2/Q2
0

Different structure at saturation, but same physical picture

the bulk of the gluon distribution has k⊥ ∼ Qs
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High-energy factorization for pA (“hybrid”)

After scattering, the quark must “fragment into hadrons” : Dh/q(z, µ
2)

dσh
dηd2p

=

∫
dz

z2
xpq(xp, µ

2)

[∫

x,y

e−i(x−y)·k S(x,y;Xg)

]
Dh/q(z, µ

2)

There is also a gluon-initiated channel, albeit less important when xp ∼ O(1)

Collinear factorization for the incoming proton/outgoing hadron

DGLAP evolution for quark distribution/ fragmentation

High-energy (CGC) factorization for the quark-nucleus scattering

JIMWLK (BK) for target gluon distribution (dipole S-matrix)

Natural, but non-trivial already at leading order: currently proven at NLO

(Kovchegov and Tuchin, 2002; Dumitru, Hayashigaki, and Jalilian-Marian, 2005)
(Mueller and Munier, 2012; Chirilli, Xiao, and Yuan, 2012)
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High-energy evolution: from the target ...

S(x,y;Xg) ≡ 〈Ŝxy〉Xg =

∫ [
DA−]WXg [A−]

1

Nc
tr
(
VxV

†
y

)

JIMWLK: functional equation for the CGC weight function WXg [A−]

gluon emissions with smaller and smaller X = p−/P−, down to Xg

non-linear effects in both the evolution (gluon saturation) and the
collision (multiple scattering)
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... to the projectile

Balitsky-Kovchegov equation for the dipole S-matrix S(x,y;Xg)

gluon emissions with smaller and smaller x = p+/q+, down to Xg

non-linear effects in the collision but not also in the evolution

important fluctuations in the evolution of the dipole: dilute system

Physical picture & calculation in the LC gauge of the RM dipole: A+
a = 0
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Dipole evolution

Probability ∼ αs ln(1/x) for emitting a soft (x� 1) gluon

x ≡ k+/q+ : longitudinal momentum fraction for a right mover

Gluons must be emitted and reabsorbed within the dipole (color neutrality)

x2 =
k+

q+
� x1 =

p+

q+
� 1 , Q2

0A � p2
⊥, k

2
⊥ � Q2

Strong ordering in x, no ordering in k⊥ ⇒ decreasing lifetimes: ∆x+ ∼ 2xq+

k2
⊥

Leading logarithmic approx: resum (ᾱY )n with Y = ln(1/xmin)
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One step in the BK evolution (1)

To construct the evolution equation, it is enough to look at the first emission

The gluon can be exchanged between the quark and the antiquark

... or be emitted and reabsorbed by a same fermion (“self-energy graph”)

In both cases, the gluon may cross the shockwave (“real contributions”)

... or not ! “Virtual corrections”, or “evolution in the initial/final state”
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One step in the BK evolution (2)

And of course there are several possible permutations of the gluon vertices

‘Real contributions’: the soft gluon can interact with the shockwave

the system which scatters: a 3-parton system (qq̄g)

y

x

0 8

z

8ï

t1

2t

0

z

0

z

0

z

‘Virtual contributions’: only the original qq̄ dipole interacts

0

z

0

z

0

z

0

z
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“Exchange” graphs in more detail

Small step in rapidity: αsdY � 1

d1SY (x,y) =− αs
π2

dY

∫
d2z

(x− z)i

(x− z)2

(y − z)i

(y − z)2

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)
− CF
Nc

tr
(
VxV

†
y

)〉

Y

‘Real’ term: the gluon emitted at x hits the shockwave a z

g
(x− z)i

(x− z)2
: amplitude for gluon emission and propagation from x to z

A “gluon” in the LC gauge: the Weiszäcker-Williams field of the quark
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“Exchange” graphs in more detail

Small step in rapidity: αsdY � 1

d1SY (x,y) =− αs
π2

dY

∫
d2z

(x− z)i

(x− z)2

(y − z)i

(y − z)2

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)
− CF
Nc

tr
(
VxV

†
y

)〉

Y

‘Real’ term: the gluon emitted at x hits the shockwave a z

Aia(z) = gta
∫ q+

xq+

dk+

2π

1

k+

∫
d2k

(2π)2
eik·(z−x) k

i

k2
⊥

= gtadY
(x− z)i

(x− z)2

Integral over k+ generates the log enhancement: ln 1
x = dY
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“Exchange” graphs in more detail

Small step in rapidity: αsdY � 1

d1SY (x,y) =− αs
π2

dY

∫
d2z

(x− z)i

(x− z)2

(y − z)i

(y − z)2

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)
− CF
Nc

tr
(
VxV

†
y

)〉

Y

‘Real’ term: the gluon emitted at x hits the shockwave a z

Wilson line for the gluon at z in adjoint representation: (T a)bc = ifabc

Ṽ (z) = T exp

{
ig

∫
dx+A−a (x+,x⊥)T a

}
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“Exchange” graphs in more detail

Small step in rapidity: αsdY � 1

d1SY (x,y) =− αs
π2

dY

∫
d2z

(x− z)i

(x− z)2

(y − z)i

(y − z)2

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)
− CF
Nc

tr
(
VxV

†
y

)〉

Y

‘Virtual’ term: the gluon is emitted at x and reabsorbed at y, either before,
or after, the scattering:

1

Nc
tr
(
tataVxV

†
y

)
=
CF
Nc

tr
(
VxV

†
y

)
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“Exchange” graphs in more detail

Small step in rapidity: αsdY � 1

d1SY (x,y) =− αs
π2

dY

∫
d2z

(x− z)i

(x− z)2

(y − z)i

(y − z)2

〈
Ṽab(z)

1

Nc
tr
(
V (x)tb V †(y)ta

)
− CF
Nc

tr
(
VxV

†
y

)〉

Y

Not a closed equation: evolution couples Sqq̄(x,y) to Sqq̄g(x,y, z)

not a surprise: one additional gluon that is measured by the scattering

A closed evolution equation is obtained in the multi-color limit Nc →∞
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BK evolution at large Nc

At large Nc, a gluon can be replaced by a quark-antiquark pair

gluon emission by a dipole ≈ dipole splitting into 2 dipoles

d1SY (x,y) ' −αsNc
2π2

dY

∫

z

(x−z)i

(x−z)2

(y−z)i

(y−z)2

{
SY (x, z)SY (z,y)−SY (x,y)

}

At large Nc, expectation values of colorless operators factorize

〈
tr
(
VxV

†
z

)

Nc

tr
(
VzV

†
y

)

Nc

〉

Y

' SY (x, z)SY (z,y)

Finite-Nc corrections are suppressed as 1/N2
c . 10% for Nc = 3
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Self-energy graphs

Similar manipulations for the self-energy graphs

emission and reabsorption by the same quark

opposite (positive) sign, since the same charge at both vertices

replace y → x in the emission kernel

d2SY (x,y) ' αsNc
2π2

dY

∫

z

1

(x−z)2

{
SY (x, z)SY (z,y)−SY (x,y)

}
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The BK equation (Balitsky, ’96; Kovchegov, ’99)

∂SY (x,y)

∂Y
=

ᾱ

2π

∫
d2zMxyz

[
SY (x, z)SY (z,y)− SY (x,y)

]

Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =
(x− y)2

(x− z)2(y − z)2
=

[
zi − xi

(z − x)2
− zi − yi

(z − y)2

]2

Cancellations between large-distance contributions from “exchange” (qq̄) and
“self-energy” (qq or q̄q̄) graphs, by color neutrality
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The BK equation (Balitsky, ’96; Kovchegov, ’99)

∂SY (x,y)

∂Y
=

ᾱ

2π

∫
d2zMxyz

[
SY (x, z)SY (z,y)− SY (x,y)

]

Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =
(x− y)2

(x− z)2(y − z)2
=

[
zi − xi

(z − x)2
− zi − yi

(z − y)2

]2

Cancellations between large-distance contributions from “exchange” (qq̄) and
“self-energy” (qq or q̄q̄) graphs, by color neutrality

rapid decrease of the emission probability at large z⊥:

Mxyz '
r2

(z − x)4
when |z − x| ' |z − y| � r

color transparency: Mxyz ∝ (x− y)2 = r2

a zero-size “dipole” cannot emit, as it has zero charge
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The BK equation (Balitsky, ’96; Kovchegov, ’99)

∂SY (x,y)

∂Y
=

ᾱ

2π

∫
d2zMxyz

[
SY (x, z)SY (z,y)− SY (x,y)

]

Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =
(x− y)2

(x− z)2(y − z)2
=

[
zi − xi

(z − x)2
− zi − yi

(z − y)2

]2

Short-distance poles (z = x or z = y) cancel between ‘real’ and ‘virtual’

z → x =⇒ SY (x, z)SY (z,y) → I× SY (x,y)
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BFKL & Unitarity

Non-linear generalization of the BFKL equation for Txy ≡ 1− Sxy

∂Txy
∂Y

=
ᾱ

2π

∫
d2z

(x− y)2

(x− z)2(y − z)2

[
Txz + Tzy − Txy −TxzTzy

]

Non-linear term T 2: the simultaneous scattering of both daughter dipoles
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BFKL & Unitarity

Non-linear generalization of the BFKL equation for Txy ≡ 1− Sxy

∂Txy
∂Y

=
ᾱ

2π

∫
d2z

(x− y)2

(x− z)2(y − z)2

[
Txz + Tzy − Txy

]

When scattering is weak, T � 1, one recovers the linear BFKL equation

conformal symmetry: x→ ax V
∫

d2zMxyz = invariant

pure powers r2γ are eigenfunctions of the BFKL kernel:

KBFKL ⊗ r2γ = ᾱχ(γ)r2γ for any 0 < γ < 1

χ(γ) ≡ 2ψ(1)− ψ(γ)− ψ(1− γ), ψ(γ) = d ln Γ(γ)/dγ

a basis of exact solutions: Tγ(r, Y ) ∝ r2γ eᾱχ(γ)Y

general solution: superposition in γ (Mellin transform)

exponential increase with Y leading to unitarity violation
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BFKL & Unitarity

Non-linear generalization of the BFKL equation for Txy ≡ 1− Sxy

∂Txy
∂Y

=
ᾱ

2π

∫
d2z

(x− y)2

(x− z)2(y − z)2

[
Txz + Tzy − Txy −TxzTzy

]

The non-linear term in BK restores unitarity: T (r, Y ) ≤ 1 for any r and Y

T = 0 (no scattering) and T = 1 (total absorption) are fixed points

Saturation momentum Qs(Y ): T (r, Y ) = 0.5 when r = 1/Qs(Y )

Qs(Y ) increases rapidly with Y due to the BFKL dynamics

T
BFKL

(
r =

1

Qs
, Y
)
∼
(
Q2

0

Q2
s

)γ
eᾱχ(γ)Y = 0.5 =⇒ Q2

s(Y ) ' Q2
0 eᾱ

χ(γ)
γ Y

Mellin superposition selects γs ' 0.63 =⇒ λs = ᾱχ(γs)
γs
' 4.88ᾱ
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The saturation front

Numerical solutions to BK with initial condition from the MV model

Logarithmic variable ρ ≡ ln(1/r2Q2
0) =⇒ large ρ ↔ small r
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ρ=log(1/r
2
)

LO, α- s=0.25

Y=0

Y=4

Y=8

Y=12

Y=16

T (r, Y = 0) = 1− e−
r2Q2

0
4 ln 1

r2Λ2

T (ρs(Y ), Y ) = 0.5 for ρs(Y ) = λsY

T (ρ, Y ) '





e−γs(ρ−ρs) e−
(ρ−ρs)2

2βsᾱY (ρ > ρs)

1 (ρ . ρs)

Geometric scaling: T (r, Y ) '
(
r2Q2

s(Y )
)γs when ρ− ρs �

√
2βsᾱY

THE MYRIAD, ICTS, April 2019 High energy QCD & the CGC Edmond Iancu 67 / 98



The saturation front

Numerical solutions to BK with initial condition from the MV model

Logarithmic variable ρ ≡ ln(1/r2Q2
0) =⇒ large ρ ↔ small r
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Saturation exponent λs ≡ dρs
dY ' 4.88ᾱ: the speed of the saturation front
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Saturation models for HERA

Already before BK equation: fits to small-x DIS using the idea of saturation

dipole factorization + saturation models for the dipole cross-section

σγ∗p(Q
2, x) =

∫

r,z

∣∣Ψγ∗(r, z;Q
2)
∣∣2σdip(r, x)

GBW model (Golec-Biernat, Wüsthoff, ’99)

σdip(r, x) = σ0

[
1− e−r

2Q2
s(x)
]
, Q2

s(x) ∝ 1

xλ

“MV model with ad-hoc evolution in Qs”
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Saturation models for HERA

Already before BK equation: fits to small-x DIS using the idea of saturation

dipole factorization + saturation models for the dipole cross-section

σdip(r, x) = σ0

[
1− e−r

2Q2
s(x)
]
, Q2

s(x) ∝ 1

xλ

built-in geometric scaling

good fit at x ≤ 0.01 despite simplicity

data clearly prefer a small value for the
saturation exponent: λ ' 0.3

inspired the search for geometric scaling
(Staśto, Golec-Biernat, Kwieciński, 2000)

σ(x,Q2) vs. τ ≡ Q2/Q2
s(x)
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Adding running coupling: rcBK

BK naturally explains geometric scaling, but λs ' 4.88ᾱ ∼ 1 is way too large

Using a running coupling dramatically slows down the evolution

λs ' 0.3 in good agreement with the data
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Rather successful phenomenology based on rcBK (see below)
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But why should the effect of the running be so important ?!

the running is a next-to-leading order effect and is only logarithmic
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Pulled front
The saturation front is pulled by the BFKL growth in the dilute tail

this is why one can compute λs from BFKL + saturation boundary

deep connexion to “reaction-diffusion problem” in statistical physics
(Munier and Peschanski, 2003; Iancu, Mueller and Munier, 2004)

The scale for the running coupling is Qs and increases exponentially with ᾱY

Y

Y

Y Y

1

T

1

1

1

T

1/2

 

!

1/2

!( ) !

>2 1

αs(Q
2
s) =

1

β0 ln
Q2
s

Λ2

=
1

β0(ρs(Y ) + ρ0)
' 1

β0λsY
: decreasing with Y
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rcBK fit to F2 at HERA (+ prediction for FL)

(Albacete et al, hep-ph/09021112)
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rcBK fit to forward particle production at RHIC

(Albacete, Dumitru, Fujii, Nara, arXiv:1209:2001)

Fit parameters: initial condition for the rcBK equation + K-factors

dNh
dη d2k

∣∣∣
LO

= Kh
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dz
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z
q
(xp
z

)
S
(
k
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,Xg

)
Dh/q(z)
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The nuclear modification factor

RpA ≡
1

A

dσpA/d
2p⊥dη

dσpp/d2p⊥dη
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It would be equal to one if pA = incoherent superposition of pp collisions

any deviation from unity is a signature of nuclear (high density) effects

At RHIC: Rd+Au, hence A→ 2A with A = 197

central rapidity (η ' 0) and p⊥ & 2 GeV: Rd+Au > 1 (“Cronin peak”)

forward rapidity (η > 1) : the peak disappears when η & 1

larger forward rapidities (η & 3): Rd+Au < 1 (“suppresion”)
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Consistent with the CGC

RpA ≡
1

A1/3

dNpA/d
2p⊥dη

dNpp/d2p⊥dη
=

1

A1/3

SA(p⊥, Xg)

Sp(p⊥, Xg)

S(p⊥, Xg) =

∫

r

e−ir·p S(r, Xg)

Xg =
p⊥√
s

e−η

η = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 1, 1.4 and 2 (BK equation: Albacete et al, 2003)

Use BK equation for S(r, Xg) with initial condition from the MV model

Exactly the same features as in the RHIC data !

What is the underlying physical picture ?
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Midrapidity: the Cronin peak
d+Au collisions at RHIC:

√
s = 200 GeV, p⊥ ∼ 2 GeV and η ≈ 0

x1 = x2 ' 0.01 =⇒ little evolution, the proton is still dilute

nucleus: incoherent superposition of valence quarks (MV model)

S(p⊥)

4π
'





1

Q2
s(A)

e
− p2

⊥
Q2
s(A)

,
for the nucleus

Q2
0p

p4
⊥
, for the proton

remember the distinction between the two scales Q2
s(A) and Q2

0A :

Q2
s(A) = Q2

0A ln
Q2
s(A)

Λ2
, Q2

0A = A1/3Q2
0p

RpA =
1

A1/3

SA(p⊥)

Sp(p⊥)
' ln

Q2
s(A)

Λ2
×
[

p2
⊥

Q2
s(A)

]2

e
− p2

⊥
Q2
s(A)

A peak at p2
⊥ = 2Q2

s(A) with height ln [Q2
s(A)/Λ2] > 1
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Forward rapidities: RpA suppression

Why is the Cronin peak washed out when increasing η (decreasing Xg) ?

The gluon distribution in the proton rises faster than that in the nucleus

growth driven by BFKL dynamics in the dilute tail at p⊥ > Qs

the logarithmic phase-space ρ = ln(p2
⊥/Q

2
s) is larger for the proton

than for the nucleus, since Q0p < Q0A

ρp = ln
p⊥
Q2

0p

> ρA = ln
p⊥
Q2

0A

since Q2
0A = A1/3Q2

0p
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Rp+Pb at the LHC for central rapidities
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FIG. 11: The nuclear modification factor Rp+Pb for single inclusive charged hadrons in minimum-bias p+Pb collisions at
5 TeV collision energy at rapidities 0, 2, 4 and 6. The grey bands at y=0 and 2 correspond to the rcBK-MC results using
kt-factorization, Eq. (13). In turn, the yellow bands at η = 2, 4 and 6 have been obtained using the LO hybrid formalism,
Eq. (19), in minimum bias collisions. The blue bands between the dotted lines also correspond to LO hybrid results for
collisions with a centrality cut Npart > 10. Finally the dashed dotted curves at η = 2, 4 and 6 correspond to minimum bias
collisions calculated within the hybrid formalism incl. the inelastic term from Eq. (20) with αs = 0.1.

most forward rapidities.
In Fig. 12 we show Rp+Pb for two different centrality classes selected according to the number of participant

nucleons12. At pt = 1 GeV we observe the expected pattern of stronger suppression (smaller Rp+Pb) for more
central collisions. In the Npart > 10 centrality class suppression now persists up to pt = 2 − 3 GeV.
For the UGD with γ = 1 MV-model initial condition (lower end of the bands in Fig. 12) one observes, generically,

the expected pattern: i) at y = 0 there is suppression at low pt while Rp+Pb → 1 with increasing pt as the rapidity
evolution window shrinks; ii) there is slightly stronger suppression at low pt for Npart > 10 central collisions while
the centrality cut has very little effect at high pt; iii) the suppression increases with rapidity and Rp+Pb < 1 for
all pt <∼ 10 GeV at y = 2.
The behavior of Rp+Pb with AAMQS UGDs (γ = 1.119 initial condition, upper end of the bands in Fig. 12) in

central collisions is more intricate. At pt = 1 GeV we still find the expected decrease of Rp+Pb both with centrality
and rapidity. However, for pt >∼ 4 GeV we find that Rp+Pb is very similar at y = 0 and y = 2. This UGD exhibits
rather non-linear (in the valence charge density) anti-shadowing at high intrinsic kt and so particle production at
high pt in p+Pb collisions is dominated by fluctuations corresponding to a high valence charge density in the Pb
target (high Npart). This can be seen from the fact that at y = 2 and high pt there is little difference between the
minimum bias and Npart > 10 centrality classes.

12 In p+A collisions it is not straightforward experimentally to perform centrality selection via impact parameter cuts. Also, because
of large fluctuations impact parameter bins correspond to rather broad distributions of Npart.

Midrapidity (η ' 0) at the LHC is like η ∼ 2 at RHIC: x1 ∼ x2 ∼ 10−3

Cronin peak and small evolution compensate each other: RpA ' 1
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Rp+Pb at the LHC for central rapidities
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FIG. 11: The nuclear modification factor Rp+Pb for single inclusive charged hadrons in minimum-bias p+Pb collisions at
5 TeV collision energy at rapidities 0, 2, 4 and 6. The grey bands at y=0 and 2 correspond to the rcBK-MC results using
kt-factorization, Eq. (13). In turn, the yellow bands at η = 2, 4 and 6 have been obtained using the LO hybrid formalism,
Eq. (19), in minimum bias collisions. The blue bands between the dotted lines also correspond to LO hybrid results for
collisions with a centrality cut Npart > 10. Finally the dashed dotted curves at η = 2, 4 and 6 correspond to minimum bias
collisions calculated within the hybrid formalism incl. the inelastic term from Eq. (20) with αs = 0.1.

most forward rapidities.
In Fig. 12 we show Rp+Pb for two different centrality classes selected according to the number of participant

nucleons12. At pt = 1 GeV we observe the expected pattern of stronger suppression (smaller Rp+Pb) for more
central collisions. In the Npart > 10 centrality class suppression now persists up to pt = 2 − 3 GeV.
For the UGD with γ = 1 MV-model initial condition (lower end of the bands in Fig. 12) one observes, generically,

the expected pattern: i) at y = 0 there is suppression at low pt while Rp+Pb → 1 with increasing pt as the rapidity
evolution window shrinks; ii) there is slightly stronger suppression at low pt for Npart > 10 central collisions while
the centrality cut has very little effect at high pt; iii) the suppression increases with rapidity and Rp+Pb < 1 for
all pt <∼ 10 GeV at y = 2.
The behavior of Rp+Pb with AAMQS UGDs (γ = 1.119 initial condition, upper end of the bands in Fig. 12) in

central collisions is more intricate. At pt = 1 GeV we still find the expected decrease of Rp+Pb both with centrality
and rapidity. However, for pt >∼ 4 GeV we find that Rp+Pb is very similar at y = 0 and y = 2. This UGD exhibits
rather non-linear (in the valence charge density) anti-shadowing at high intrinsic kt and so particle production at
high pt in p+Pb collisions is dominated by fluctuations corresponding to a high valence charge density in the Pb
target (high Npart). This can be seen from the fact that at y = 2 and high pt there is little difference between the
minimum bias and Npart > 10 centrality classes.

12 In p+A collisions it is not straightforward experimentally to perform centrality selection via impact parameter cuts. Also, because
of large fluctuations impact parameter bins correspond to rather broad distributions of Npart.

Various models could be differentiated by going to forward rapidities

This could be measured e.g. by LHCb (large η & semi-hard p⊥)
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Beyond the BK equation

BK eq.: relatively simple and phenomenologically successful ... but ...

1 large Nc approximation
2 leading order in pQCD + running coupling corrections
3 restricted to a simple projectile: the color dipole

How serious are these limitations in practice ?

large Nc approximation works surprisingly well ,
... but the leading order pQCD approx is surprisingly bad /
the running coupling spectacularly improves the phenomenology ,
... but this cannot be the end of the story: other NLO corrections /
multiparticle production probes Wilson line correlations which are more
complicated than just a dipole /

Upgrading to JIMWLK equation solves problems 1. and 3.

A full NLO calculation is needed to clarify problem 2.
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Two particle production in pA collisions

Forward rapidities: the 2 measured hadrons ∼ partons from the proton

The collinear quark radiates a gluon prior to, or after, the scattering

Up to four Wilson lines in the cross–section

At large Nc, this factorizes into color dipoles and quadrupoles

〈
Qx1x2x3x4

〉
Y

=
1

Nc

〈
tr(V †x1

Vx2
V †x3

Vx4
)
〉
Y

In the absence of scattering, the final particles would propagate back to back
in the transverse plane: k1 + k2 ' 0
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Di–hadron correlations at RHIC: p+p vs. d+Au
k !

k !22

11
k

k
2

2

11

Significant broadening even in pp collisions: recoil in jet fragmentation

The broadening in d+Au is considerably stronger than that in pp
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Di–hadron correlations at RHIC: p+p vs. d+Au
k !

k !22

11
k

k
2

2

11

The scattering transfers an overall momentum |k1 + k2| ' Qs(Xg)

Predicted by the CGC (Marquet, 2007; Albacete and Marquet, 2010)
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JIMWLK evolution
(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and Kovner, 97–00)

Small-x evolution of the gluon distribution in the dense target: saturation

change in classical color charge ρa (color field A−a ) and its correlations

evolution of the CGC weight function(al) WY [ρ] (Y = ln(1/x))

ρa: color charge density of the “fast” partonic sources with x′ > x

valence quarks + soft gluons with 1� x′ � x

frozen in some random configuration by Lorentz time dilation

gauge-invariant, functional, probability distribution WY [ρ]

With decreasing x, new quantum fluctuations are “frozen” and must be
included in ρa (hence, in WY [ρ])

WY [ρ] is built by integrating out soft gluon fluctuations in layers of x

Initial condition at low energy (x0 ∼ 0.01): MV model (valence quarks)
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JIMWLK evolution

One step in the quantum evolution ⇒ JIMWLK “Hamiltonian” (“time” =Y )

x→ bx with b� 1, but such that dY ≡ ᾱ ln 1
b � 1 as well

small additional color charge δρa in the strong background of A−[ρ]

for a fixed background A−: renormalization of the 1-point and
2-point functions of ρ: 〈δρa〉A and 〈δρaδρb〉A

The quantum gluon can scatter of the strong color fields generated in
previous steps =⇒ non-linear evolution
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JIMWLK evolution

One step in the quantum evolution ⇒ JIMWLK “Hamiltonian” (“time” =Y )

x→ bx with b� 1, but such that dY ≡ ᾱ ln 1
b � 1 as well

small additional color charge δρa in the strong background of A−[ρ]

for a fixed background A−: renormalization of the 1-point and
2-point functions of ρ: 〈δρa〉A and 〈δρaδρb〉A

A functional differential equation for the non-linear evolution of WY [ρ]:

∂WY [ρ]

∂Y
= HJIMWLK

[
ρ,

δ

δρ

]
WY [ρ]

A 2nd order functional-derivative operator: Fokker-Planck equation

HJIMWLK

[
ρ,

δ

δρ

]
=

1

2

∫

x,y

δ

δρa(x)
χab(x,y)[ρ]

δ

δρb(y)

The “diffusion” kernel χ[ρ] depends upon ρ via Wilson lines
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JIMWLK evolution

One step in the quantum evolution ⇒ JIMWLK “Hamiltonian” (“time” =Y )

x→ bx with b� 1, but such that dY ≡ ᾱ ln 1
b � 1 as well

small additional color charge δρa in the strong background of A−[ρ]

for a fixed background A−: renormalization of the 1-point and
2-point functions of ρ: 〈δρa〉A and 〈δρaδρb〉A

A functional differential equation for the non-linear evolution of WY [ρ]:

∂WY [ρ]

∂Y
= HJIMWLK

[
ρ,

δ

δρ

]
WY [ρ]

BK (Balitsky) equations are obtained after an integration by parts:

∂

∂Y
〈Ŝ〉Y =

∫
[Dρ]

(
HWY [ρ]

)
Ŝ[ρ] =

∫
[Dρ]WY [ρ]

(
HŜ[ρ]

)
=
〈
HŜ
〉
Y

For finite Nc: an infinite hierarchy of coupled differential equations /
JIMWLK equation can be numerically solved for Nc = 3 ,
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Fokker-Planck vs. Langevin

A Fokker-Planck differential equation for a probability distribution can often
be rewritten as a Langevin (stochastic) equation for the quantity undergoing
the stochastic process

Simplest example: Brownian motion in 1-dim in Langevin form

dx

dt
= ν(t), 〈ν(t)〉 = 0, 〈ν(t)ν(t′)〉 = Dδ(t− t′)

Formal notations, well defined only with a discretization of time: tn = nε

xn − xn−1

ε
= νn, 〈νnνm〉 = D

1

ε
δmn

〈∆xn〉 = 0, 〈(∆xn)2〉 = ε2〈ν2
n〉 = Dε =⇒ d〈x2〉

dt
= D

Not a differentiable process: ∆xn = ενn ∝
√
ε
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Fokker-Planck vs. Langevin

A Fokker-Planck differential equation for a probability distribution can often
be rewritten as a Langevin (stochastic) equation for the quantity undergoing
the stochastic process

Simplest example: Brownian motion in 1-dim in Langevin form

dx

dt
= ν(t), 〈ν(t)〉 = 0, 〈ν(t)ν(t′)〉 = Dδ(t− t′)

Equivalently: FP equation for the probability P (x, t) with P (x, 0) = δ(x)

∂P

∂t
=
D

2

∂2P

∂x2
=⇒ P (x, t) =

1√
2πDt

e−
x2

2Dt

Genuine differential equation, a.k.a. Poisson equation (heat transfer)

JIMWLK equation has the mathematical structure of a (functional) FP
equation and admits an equivalent representation as a Langevin process in
the functional space of Wilson lines.
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JIMWLK evolution in Langevin form (1)
Useful to compare projectile (dipole) and target (nucleus) evolutions

8 0

x

y

8

projectile: gluon emissions closer and closer to the target

target: color charges further and further away from the valence quarks

Uncertainty principle: decreasing x = k−/P− ↔ increasing ∆x+ ∼ 1/k−

JIMWLK evolution builds the color charge distribution in layers of x+

New sources are one-loop quantum fluctuations

random variables with a Gaussian distribution

can equivalently be represented as a Gaussian noise

A Langevin equation: random walk in the space of the Wilson lines
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JIMWLK in Langevin form (Blaizot, E.I., Weigert, ’03)

Discretize the rapidity interval: Y = nε, ε ≡ ln(1/b)

8 0

x

y

8

R L

Vx(nε+ ε) = exp
(
iεαaLxt

a
)
Vx(nε) exp

(
− iεαbRxt

b
)

αaR,L: the change δA−a at larger negative (R) or positive (L) values of x+

αaLx = g

∫

z

xi − zi
(x− z)2

νiaz , αaRx = g

∫

z

xi − zi
(x− z)2

Ṽ abz νibz

Noise νa: random color charge of the newly emitted gluon

〈νiax (mε)νjby (nε)〉 =
1

ε
δmnδ

ijδabδxy

Well suited for numerics: 2D lattice (Weigert and Rummukainen, ’03)
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Solving JIMWLK via Langevin

Several numerical implementations (Weigert and Rummukainen, ’03)

Lappi (2011); Schenke et al (since 2012); Roiesnel (2016)

Here: the lattice calculation of the dipole S-matrix par T. Lappi (2011)

4 8 16 32 64 128
r/a

0
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1

C
(r
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y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

0.25 0.5 1 2 4
Q

s
r

0

0.2

0.4

0.6

0.8

1

C
(r

)

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

C(r) ≡ S(r, Y ) as a function of r and of rQs(Y ) =⇒ geometric scaling
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The mean field approximation

Gaussian Ansatz for WY [ρ]: “MV model with Y -dependent 2-point function”

all Wilson lines correlators (quadrupole etc) can be related to the
dipole S-matrix, as obtained by solving the BK equation

1 2 3 4 5

1.00

1.05

1.10

1.15

d
N
d
A
→
qg
X
/d
N
d
A
→
qg
X

P
ed

es
ta

l

p+p, Q2
s0 = 0.2 GeV2

p+Au, Q2
s0 = 0.72 GeV2

d+Au, Q2
s0 = 0.72 GeV2

ptrigT = 2 GeV, passT = 1 GeV, y1 = y2 = 3.4

−1 0 1 2 3 4 5
∆ϕ [rad]

0.16

0.17

0.18

0.19

0.20

1.1 GeV < ptrigT < 1.6 GeV

1.6 GeV < ptrigT < 2.0 GeV

p + p, 3 < y1, y2 < 3.8, 0.5 GeV < passT < 0.75 GeV

Left: different combinations projectile–target

(Lappi and Mäntysaari, 2012; see also Stasto, Xiao, Yuan, 2011)

Right: comparison with RHIC data (PHENIX, 2012)
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Next-to-leading order

Any effect of O(ᾱ2Y ) =⇒ O(ᾱ) correction to the r.h.s. of BK eq.

The prototype: two successive, soft, emissions, with similar longitudinal
momentum fractions: p+ ∼ k+ � q+

Exact kinematics (full QCD vertices, as opposed to eikonal)

Typically: two transverse momentum convolutions: u⊥, z⊥

New color structures, up to 3 dipoles at large Nc

NLO BFKL: Fadin, Lipatov, Camici, Ciafaloni ... 95-98
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BK equation at NLO Balitsky, Chirilli (arXiv:0710.4330)

∂Sxy

∂Y
=
ᾱ

2π

∫
d

2
z

(x−y)2

(x−z)2(y−z)2

(
SxzSzy − Sxy

){
1 +

+ ᾱ

[
b̄ ln(x−y)

2
µ

2 − b̄
(x−z)2 − (y−z)2

(x−y)2
ln

(x−z)2

(y−z)2

+
67

36
−
π2

12
−

1

2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2

]}

+
ᾱ2

8π2

∫
d2u d2z

(u−z)4

(
SxuSuzSzy − SxuSuy

)
{
−2 +

(x−u)2(y−z)2 + (x−z)2(y−u)2 − 4(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2
ln

(x−u)2(y−z)2

(x−z)2(y−u)2

+
(x−y)2(u−z)2

(x−u)2(y−z)2

[
1 +

(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2

]
ln

(x−u)2(y−z)2

(x−z)2(y−u)2

}

green : leading-order (LO) terms

violet : running coupling corrections (b̄ = (11Nc − 2Nf)/12Nc)

blue : single collinear logarithm (DGLAP)

red : double collinear logarithm : troublesome !
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NLO : unstable numerical solutions
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Left: leading-order BK

Right: LO BK + the double collinear logarithm alone

Similar conclusion from full NLO BK (Lappi, Mäntysaari, arXiv:1502.02400)

The source of instability: the double collinear logarithm
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The double (anti)collinear logarithms

Important in the “hard-to-soft” evolution: relatively large daughter dipoles

−1

2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
' −1

2
ln2 (x−z)2

r2
if |z − x| ' |z − y| � r

Generated by integrating out one gluon (at u) whose size is intermediate:

|z − x| ' |z − y| ' |z − u| � |u− x| ' |u− y| � r
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The double (anti)collinear logarithms

Important in the “hard-to-soft” evolution: relatively large daughter dipoles

−1

2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
' −1

2
ln2 (x−z)2

r2
if |z − x| ' |z − y| � r

Keeping just the double anti-collinear logarithms (notation: |z − x| → z):

∂T (Y, r)

∂Y
= ᾱ

∫ 1/Q2
0

r2

dz2 r
2

z4

{
1− ᾱ

2
ln2 z

2

r2

}
T (Y, z)

The upper limit: z = 1/Q0 with Q0 the target saturation scale at low energy

The r.h.s. becomes negative if r2Q2
0 is small enough

The typical situation for dilute-dense scattering at high-energy

1

r2
∼ Q2

s(Y ) = Q2
0 eλsY � Q2

0
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Time ordering

Successive emissions are ordered in k+, by construction

They should be also ordered in lifetimes ... but this condition is not enforced
in perturbation theory and may be violated

lifetime of a gluon fluctuation:

∆tp '
2p+

p2
⊥
∼ p+u2

⊥

time-ordering condition:

∆tp ∼ p+u2
⊥ > ∆tk ∼ k+z2

⊥

violated when z⊥ is large enough

The correct time-ordering is eventually restored via quantum corrections, but
only order-by-order

The loop corrections restoring TO are enhanced by double collinear logs
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Time ordering

Integrate out the harder gluon (p+, u⊥) to double-log accuracy:

Without time-ordering (usual perturbation theory)

ᾱ

∫ q+

k+

dp+

p+

∫ z2

r2

du2

u2
= ᾱ∆Y ln

z2

r2
, ∆Y ≡ ln

q+

k+

O(ᾱ∆Y ) : one step in the leading-order evolution

After also enforcing time-ordering:

ᾱ

∫ q+

k+

dp+

p+

∫ z2

r2

du2

u2
Θ(p+u2 − k+z2) = ᾱ∆Y ln

z2

r2
− ᾱ

2
ln2 z

2

r2

the additional term does not count for the LO evolution (no ∆Y )

it contributes to the NLO evolution after the integration over (k+, z)

ᾱ

∫ q+

q+
0

dk+

k+

∫ 1/Q2
0

r2

dz2

z2

(
− ᾱ

2
ln2 z

2

r2

)
= ᾱY ρ ×

(
− ᾱ

6
ρ2
)
, ρ ≡ ln

1

r2Q2
0
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Resumming the double collinear logs

Different pieces generated by TO are formally treated in different orders

an infinite series of terms ∝ (αρ2)n, with n ≥ 1 and alternating signs

ill-defined perturbative expansion (non-convergent truncations)

This whole series can be resummed by enforcing TO within LO BK eq.

modified (“collinearly improved”) version of the BK equation

(G. Beuf, 2014; E.I., Madrigal, Mueller, Soyez, and Triantafyllopoulos, 2015)

The evolution becomes stable , ... but it still lacks predictivity /
strong dependence upon the precise choice for a resummation scheme

a remnant of the strong instability of the original perturbative
expansion for the evolution with Y

Recent solution: reformulate the evolution in terms of the “target rapidity” η

η ≡ Y − ρ = ln
q+

q+
0

− ln
Q2

Q2
0
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BK evolution in η

(Ducloué, E.I., Mueller, Soyez, and Triantafyllopoulos, arXiv:1902.06637)

Why is this “simple” change of variables so useful ?

η = ln
q+

q+
0

− ln
Q2

Q2
0

= ln
τq
τ0
, τq =

2q+

Q2
, τ0 =

2q+
0

Q2
0

ordering in η ⇐⇒ ordering in lifetimes

the proper time-ordering is automatically satisfied ,
Why is η the “target rapidity” ?

η = ln
τq
τ0

= ln
q−0
q−

= ln
2q+q−0
Q2

= ln
s

Q2
= ln

1

xBj

ordering w.r.t. longitudinal momentum fraction of the struck parton in
the target: Bjorken x (the right variable for the parton picture)

Why not evolve directly the target (rather than changing variables ?)

NLO corrections available only for the evolution of the dilute projectile
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Collinear resummations in η

The change of variables Y = η + ρ replaces the (infinite series of)
anti-collinear double-logs by collinear ones

The collinear double-logs can be resummed to all orders by enforcing
ordering in k+ (now, k+ ≡ k2

⊥/2k
−)

Resummation not unique, but results only weakly scheme dependent

“soft-to-hard” evolution: atypical for the dilute-dense problem at hand
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BK evolution in η: saturation exponent

λ̄s ≡ d lnQ2
s

dη : the speed of the saturation front in η

Recall: LO result λ̄s ' 4.88ᾱ (way too large)

Collinear resummations at fixed coupling : the ratio λ̄s/ᾱ against ᾱ
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ᾱs

non-local in Y, ∆=max
{
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}
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CollBK in Y
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CollBK in η

Left: resummations in Y : strong scheme dependence, no clear pattern

Right: resummations in η: only weak scheme dependence, significant
reduction (20÷ 30%) w.r.t. LO
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BK evolution in η: running coupling

But a reduction of only 20÷ 30% w.r.t. the LO is clearly insufficient !

Recall: phenomenology requires λ̄s ' 0.20÷ 0.25

The main reduction comes from the use of a running coupling

below: ᾱ(rmin) where rmin = min{|x−y|, |x−z|, |y−z|}
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Left: saturation fronts in η: collBK (full lines) vs. LO BK (dashed)

Right: saturation exponent: λ̄s ' 0.2 at large η ,
THE MYRIAD, ICTS, April 2019 High energy QCD & the CGC Edmond Iancu 98 / 98


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

