Extracting chemical freeze out parameters in Heavy Ion Collision

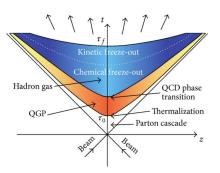
Deeptak Biswas

CAPSS,Bose Institute

THE MYRIAD COLORFUL WAYS OF UNDERSTANDING EXTREME QCD MATTER

<u>Collaborators</u>: Rajarshi Ray, Sumana Bhattacharyya, Sanjay K. Ghosh, Pracheta Singha

April 2, 2019



- Why this is interesting
- 2 Modelling The Equilibrium
- 3 Fitting Experimental Data
- 4 Equation Used For Fitting
- Results
- **6** Summary

Studying a new state of matter

- RHIC experiments→free quarks, gluons
- ullet Frequent collision o Thermalization
- Rapid expansion and T decreases
- For $T < T_c \rightarrow \mathsf{Hadronization}$
- Energetic hadrons—Inelastic collision
- Further expansion→No inelastic collision
- Chemical composition becomes fixed
- Chemical Freezeout (CFO)

- We can extract information about this last scattering surface (CFO) from experimentally detected hadron yield.
- A strongly interacting system in equilibrium can be described by thermodynamic parameters T, μ_O, μ_B, μ_S .
- ullet Extracted T vs μ_B for various experiments is expected to carry information about the phase diagram.

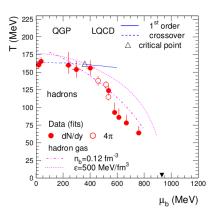


Figure : T vs $\mu_B[1]$

Parameters and model for equilibrium

- ullet One can model HRG like picture with T and μ 's to understand CFO surface.
- Thermal density of i'th Hadron can be given as,

$$\mathsf{n}_i = rac{\mathsf{g}_i}{(2\pi)^3} \int rac{\mathsf{d}^3 p}{\mathsf{exp}[(E_i - \mu_i)/T] \pm 1}.$$

• $\mu_i = B_i \mu_B + S_i \mu_S + Q_i \mu_Q$ is total chemical potential, g_i is the degeneracy factor.

Connection with observable

- We observe dN/dy in experiments.
- One can write dN = ndV
- Detected i'th primary hadron's rapidity density,

$$\frac{dN_i}{dy} = \frac{dV}{dy} n_i(T, \mu_Q, \mu_B, \mu_S)$$

• Information of the volume can be avoided by constructing ratios out of yields i.e

$$\frac{dN_i/dy}{dN_j/dy} = \frac{n_i}{n_j}$$

Extracting Parameter From Data

- We need four independent equations to extract these four thermal parameters.
- μ_Q and μ_S can be determined by imposing the constraints relations,

$$\frac{\sum_{i} n_{i}(T, \mu_{B}, \mu_{S}, \mu_{Q})Q_{i}}{\sum_{i} n_{i}(T, \mu_{B}, \mu_{S}, \mu_{Q})B_{i}} = r$$

$$\sum_{i} n_i(T, \mu_B, \mu_S, \mu_Q) S_i = 0$$

Extracting Parameter From Data

- To fit temperature T and the baryon chemical potential μ_B one can perform contemporary χ^2 minimization method with multiple ratios.
- We tried to fit constructed ratios numerically.
- We observed that extracted parameters were highly dependent on the ratios we choose.
- Is there an alternate way to extract model parameters?

An Alternate Approach

• For μ_B we have constructed a ratio of net baryon yield to total baryons.

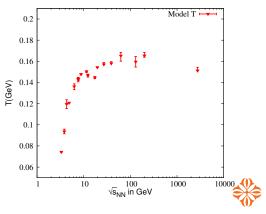
$$\frac{\sum_{i} B_{i} n_{i}}{\sum_{i} |B_{i}| n_{i}} = \frac{\sum_{i} B_{i} \frac{dN_{i}}{dY}}{\sum_{i} |B_{i}| \frac{dN_{i}}{dY}}$$

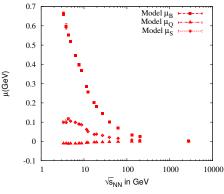
ullet To extract T, we look at the antiparticles to particles ratio.

$$\frac{\sum_{i} B_{i} \frac{dN_{i}}{dY}}{\sum_{i} \frac{dN_{i}}{dY}} = \frac{\sum_{i} B_{i} n_{i}^{Tot}}{\sum_{i} n_{i}^{Tot}}$$

• These two equations have been constructed only out of detected hadrons.

Dataset Used


- We numerically solve these equations to extract all four equilibrium parameters.
- AGS, SPS, RHIC and LHC (2.76 TeV) data have been used.
- Study has been performed for mid-rapidity data of most central collision of these \sqrt{s} .
- We have used yield of all available mesons and baryons (π^{\pm}, k^{\pm}) and $p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi^{\pm})$ for fitting.
- We have not used Ω^{\pm} yield as it is not available for most of the \sqrt{s} .


Variation of T with \sqrt{s}

- There is a trend of saturation after $\sqrt{s} = 19.6 A GeV$.
- It approaches the flat region of the proposed phase diagram of hadron to QGP transition near $\mu_B=0$.

Variation of μ with \sqrt{s}

- μ_B increases due to higher rate of baryon stopping in lower collision energy.
- The difference between μ 's decrease with increaseing \sqrt{s} and converges to zero at very high \sqrt{s} .
- At low \sqrt{s} , μ_Q becomes negative though both μ_B and μ_S remain positive for all the values of \sqrt{s} .

Pion, kaon to pion ratio and proton to pion

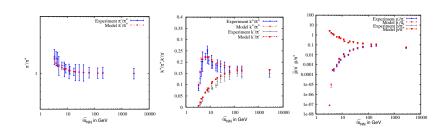


Figure : π^-/π^+ , k^{\pm}/π^{\pm} and p/π

Strange baryon to non-strange baryon ratio

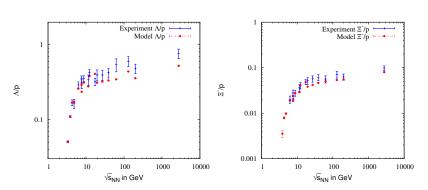


Figure : Variation of Λ/p and Ξ^-/p with \sqrt{s}

Predicted ratios

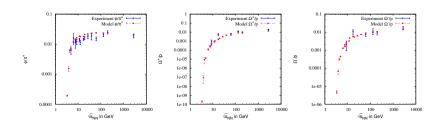


Figure : Variation of ϕ/π^+ , Ω/p and Ω^+/p



Summary

- A new mechanism for freeze out parameter extraction has been proposed rather than the standard χ^2 method.
- The extracted parameters have suitably reproduced various ratios.
- Parameters value are in good agreement with that of standard literature
- It is quite independent prediction as it does not involve any individual particle ratios like one needs in case of χ^2 .

