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GTRING THEORY GUMMARIZED:

| JUST HAD AN AWESOME |DEA.
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e The fourth paradigm!?

DATA-driven
scientific discovery

Phenomenology

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE




outline:
* cosmic structure as a (complex!) initial-value problem
* Large-scale Structure (LSS) Simulations
- methodologies, classes of problems
- dark matter (DM) evolution: methods+results

Tomorrow:
- DM + baryons: methods, results and challenges
- galaxy formation: the never-ending story

* Cluster physics and phenomenology

* Cosmological studies with clusters of galaxies
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galaxy catalogs from large simulations statistically match reality

Springel, Frenk
& White 2006

synthetic
galaxy catalogs
evolved from
an initial
random
noise state
with initial
power
spectrum
dictated by
CMB




an engineer’s view of galaxy formation
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what are clusters of galaxies?

* terminus of clustering hierarchy => largest, non-linear structures

easily visible we can find all the biggest ones now

* multi-component - DM: hot gas: galaxies+stars :: ~100: 10: |

many observational channels radio/mm - IR/optical - X-ray

* quasi-equilibrium (“frustrated’) dynamical systems

~one-parameter family tight mass-observable scalings




LSS Simulations
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key characteristics of LSS

* galaxies and clusters of galaxies are
structures in the
expanding FRW metric,

v2/c2 << |

=>a description of
the gravitational potential is accurate
to model the dynamics of sub-
horizon LSS formation.

LSS simulations use Newtonian
potential of perturbations in an
expanding FRW metric.

ht

tp://heritage.stsci.edu/galler




large-scale structure simulations: methodologies

* DM evolution using collisionless N-body simulations (single fluid)
— assumes DM is weakly interacting massive particle (VWIMP)

— initial density fluctuations assumed to be Gaussian random field with
power spectrum, P(k), calculable from linear theory

— growing mode from linear perturbation theory sets initial conditions
— particles’ represent coarse-grained phase space kinematics

— ‘softening’ of pair-wise force required to regularize dynamics

— individual timesteps improve performance

— Layzer-Irving equation benchmarks energy conservation (+ p,L cons.)

coupled N-body + gas dynamics simulations (multiple fluids)
— on galactic and larger scales, baryons trace DM at high-z

— baryons are collisional, so intersecting streams generate shocks
— shocks generate thermal energy and entropy

— radiation field can produce cooling or heating in gas

— star formation prescriptions are empirically motivated




large-scale structure simulations: overview of algorithmic evolution

1960’s+70’s - direct (NxN) force summation
studies of galaxy encounters and stellar clusters

1980’s - particle-mesh (FFT’s) and Tree algorithms for large-scale gravity
studies of cosmic web’ topology from initial random noise field

|990’s - parallelization on Beowulf clusters, special purpose chips (GRAPE)
detailed studies of clustering statistics, cosmological dependence

- first multi-fluid codes to model coupled dark matter and baryons
initial studies of galaxy formation

2000’s - massive parallelization on large-scale supercomputers
toward precision calibrations of large-scale structure statistics

- multi-fluid codes with approx. radiation transfer, MHD
initial studies of stellar feedback effects, high-rez galaxy formation
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Commercial Off The Shelf technology (COTS)

“Clusters” 12 years of legacy MPI applications base
From my presentation at ISC 2005
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Improvement are Flat-Lining (2004)

10,000,000

* New Constraints

— 15 years of exponential courtesy Horst Simon (LBL)
1,000,000 P

clock rate growth has .

ended "
100,000

* Moore’s Law reinterpreted:

— How do we use all of those
transistors to keep
performance increasing at
historical rates?

— Industry Response:
#cores per chip doubles
every 18 months instead
of clock frequency!
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@500 Performance Projection

courtesy Horst Simon (LBL)
Performance Projection
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simulation particles
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Springel et al (2005)
direct summation
P°M or AP'M
© distributed-memory parallel Tree
parallel or vectorized P°M
distributed-memory parallel TreePM
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LSS is a cosmic web connecting locally bound structures called halos

optical/lensing

massive
halo of

mass M,
redshift z
that hosts
a galaxy

cluster

halo = local Minkowski T
patch in expanding R LA

-~

4=

FRW background metric | . “*.~7 = AR,

sub-mm

a=0.4
(z=1.5)




collisionless N-body: applications to dark matter evolution

* single halo simulations to study
— substructure (subMN-halos)
— direct dark matter detection signatures

— faint galaxy luminosity function
+ ..

* cosmological volumes to study
— halo space density (aka, mass function)

— halo clustering (aka, bias)
+ ...

* large ensemble of runs to study
— precise evolution of non-linear power spectrum, P(k)
LANL+Argonne emulation campaign (Heitmann, Habib+)
— covariance of LSS signatures (lensing, clustering, +)




cosmological N-body systems

% . . . . : Efstathiou et al 1985
model triply-periodic cube in comoving frame Bertschinger 1998

(infinite volume of cubic replications) Springel et al 2001
Springel 2005

* *peculiar’ (non-Hubble) particle equation of motion

Dark matter is represented in cosmological simulations by particles samp-
ling the phase space distribution. Particles are evolved forward in time using
Newton’s laws written in comoving coordinates (Peebles 1980):

@
dt

dx

= = 61—13, FHi=3 V-3=-4nGalpG.0—p®]. (1)
Here a(t) is the cosmic expansion factor (related to redshift z by a™' =1 +z),
H = dlna/dt is the Hubble parameter, v is the peculiar velocity, o is the
mass density, p is the spatial mean density, and V=2 /0X is the gradient in
comoving coordinates. Note that the first pair of relationships in Equation 1 is
to be integrated for every dark matter particle by using the gravity field produced

by all matter (dark and baryonic) contributing to p. Bertschinger 1998




cosmological N-body systems: various methods to compute acceleration

Bertschinger 1998
TREE: The hierarchical tree algorithm (Appel 1985, Barnes & Hut 1986) divides space

recursively into a hierarchy of cells, each containing one or more particles. When computing the
gravitational acceleration of a particle, a cell of size s a distance d from that particle is treated as
one pseudoparticle (located at the center of mass of the cell) if the cell satisfies a critical non-
opening condition, s/d < 0. Otherwise, the cell is “opened’ and to the a higher level in the
hierarchy and the condition tested again. Computation is thus saved by replacing the set of
particles by a low-order multipole expansion due to the distribution of mass in the cell.

PARTICLE-MESH: The particle-mesh (PM) method is based on representing the gravitational
potential on a Cartesian grid (with a total of N, grid points), used in solving Poisson’s equation
on this grid. The development of the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey
1965) made possible a fast Poisson solver requiring O(N, log N,) operations (Miller &
Prendergast 1968, Hohl & Hockney 1969, Miller 1970).

The PM algorithm has three basic steps:
1) The particles are “assigned’ to nearby grid points to create a density field on the grid. This
is then FFT ed to create a Fourier representation of the density field.

2Pk, 1)
o

3) The gravity field (or the potential, which is then differenced to give the gravity field) is

determined on the grid, and interpolated back to determine particle acceleration.

2) Poisson’s equation is solved in Fourier space. (}3(]_5, t) = —4nGa




cosmological N-body systems: various methods (cont’d)

Bertschinger 1998
PP-PM (P3M): This hybrid algorithm, first developed for plasma physics by Hockney et al
(1974), was applied in cosmology by Efstathiou & Eastwood (1981). It is described in detail
by Hockney & Eastwood (1988) and Efstathiou et al (1985), and it was used extensively by
the latter authors in a series of articles beginning with Davis et al (1985).
The P3M method readily achieves high accuracy forces through the combination of mesh-
based and direct summation forces. The mesh may be regarded as simply a convenience for
providing periodic boundary conditions and removing much of the burden of computation
from the direct pair summation.

The short-range calculation computes

the difference between Newtonian gravity
and the grid force, stored as a look-up table
as a function of r, within a sphere of

radius ~3 grid cells.

log x

TREE-PM: Similar to P3M, but the short-range force is computed by a tree algorithm rather
than direct particle summation. The gadget code, developed by Volker Springel and
colleagues, is a popular TREE-PM that represents state-of-the-art in N-body cosmological
methods.

http://www.mpa-garching.mpg.de/gadget/




cosmological N-body systems: evolving the system

Efstathiou et al 1985

* time evolution is typically 2nd-order accurate (e.g., leapfrog)

(see, e.g., Peebles 1980, § 7),

ijx,j

. a -
o,+2zvi=—a3z 3
i*j Ixijl

time variable p = ¢®. Equation (9) then becomes

W, 2 4(p)u,=B(p)E,/m,,

dp
where
dx ~ (1+a+ada/a*) B
"_dp’ A(.p)_ zaaa ’ B(p)_

In comoving coordinates, Newton’s equations of motion are

=aE/m, (9

where m,; is the mass of the ith particle, dots denote differ-
entiation with respect to time, and v = x. To integrate equa-
tion (9) numerically, it is convenient to transform to a new

(10a)

1

2.2 2a+1"

aa-a

In the N-body codes described here, the positions are specified
at step n and the velocities are specified at step n —1/2. The
forces on the particles are computed using the methods de-
scribed in § II, and the positions and velocities of the ith
particle are incremented according to the time-centered
leapfrog scheme:

; . (1-4,Ap) B,F Ap (11a)
ntl2 T2 (14 4, Ap)  (1+A,Ap)m,’
xn+l=xn+un+l/2AP’ (llb)

where 4, and B, are the values of 4 and B at step n and Ap
is the time step. With this integration scheme, the errors in
both positions and velocities are of order (A p)* per time step.

* Layzer-Irvine equation for energy conservation (~0.5% typical accuracy)

d(a®T) dU
a9 =0

where

T=%zm,~l)i2, U=‘%Zm,'¢n

Written in

a*T + aU—fUda=C,

integral forms,
where C and C’

are constants ST+U+ fasza —C.




initial conditions: quick method

* Zel'dovich approximation (st order linear PT):

A convenient and efficient method for setting up initial
conditions with any desired power spectrum can be derived
from Zel’dovich’s (1970) formulation of the linear evolution of
a general distribution of fluctuations

x(1)=q-b(1)¥(q), (19)

where x is the comoving Eulerian coordinate of a particle, g is
the Lagrangian coordinate denoting its initial position, b(?) is
the growth factor of linear fluctuations, and v describes the
spatial structure of the density fluctuations. Substituting this
relation into the equations of motion (eq. [9]), we can express
Y in terms of the force field at time ¢,

___ F(q,1)
W) == b +200) (20)
i=—by(q). (21)

log P(k)

Efstathiou et al 1985

m

T

323 particles!
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grid
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initial conditions: next order to suppress non-growing mode transients

*2LPT (2nd-order linear PT):

The equations of motion for the evolution of dark matter can be
written in a compact way by introducing the two-component ‘vector’

ok, n) = @k, n), -0k, n)/H), (D

where the index a = 1, 2 selects the density or velocity compo-
nents, with §(k) being the Fourier transform of the density contrast
8(x, t) = p(x)/p — 1 and similarly for the peculiar velocity diver-
gencef = V.v.’H = dIna/dr is the conformal expansion rate with
a(t) being the cosmological scale factor and t being the conformal
time. The time variable 7 is defined from the scale factor by

n = Ina(r), (2)

Wk, n) = gas(n) ¢u(k) + / dn’ ga(n — 1)
0

x vk, Ky, ky) W, (ky, 1)k, 1), )

e"[3 2| e i-2 2

(ki + ko) - ky

yl(g)l (k,ki,k2) = p(k — ki — k) 20 , 5)
5 ki + ko |*(ky - K
Van(k. ki ko) = 8ok — ki — k2) ud 2221521 2): (6)
172

ya(z)c(k, kik;)= ya(g,(k, k;, k;) and y is zero otherwise, 8, denotes

the Dirac delta distribution. The formal integral solution to equa-

Crocce, Pueblas, Scoccimarro (2006)
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Figure 6. Power spectrum for different initial conditions (2LPT z; = 11.5,
ZA z; = 49 and ZA z; = 24, from top to bottom in each panel) compared
to the reference runs at z = 0 (top), z = 1 (middle) and z = 3 (bottom). The
dotted lines show an estimate of the transients for ZA z; = 49 and ZA z; =

24 from one-loop PT.




force softening: mass and spatial resolution

* discreteness imposes Steinmetz and White (1997)
- ﬁ nite PartICIE Mass Consider a fluid element of mass m, and density @, which is at rest.
- Softening Of POtentiaI This ﬁuiq clcmcnl' cncour?tcrs a dark matter panic‘lc of mass Mpy
. and relative velocity  with a closest approach distance b. In the
at small r (tO avoid impulse approximation (see, e.g., Binney & Tremaine 1987), the
. . _ fluid element is accelerated to velocity
infinite forces at r=0) i
Ap — EDM ' e

or to a corresponding kinetic energy

* various studies of how s chad

oG pMmm
best to set these AE = ——5 5. @)
Parameters’ but in Practice This energy is dissipated to heat by shocks, by artificial viscosity, or

by an adiabatic expansion of the gas to a new equilibrium state.
Such encounters occur with a rate 2w vbdb @pyMpy, so the
heating rate can be written as

— 3
mP pm L / NP dE ZGZMDM QDM"’g

soft ~ (0.1-0.2) L/ N,'’3 a bo

where f(v) is the velocity distribution function for the dark matter
particles. Assuming this to be Maxwellian, we obtain, after the

Bruan
=Jd3vf(v)J 2mdb (3)
heat bmm

Convergence tests are a evaluation of the integrals,
pragmatic approach to Y e S L @)
I |heat o J1p

test ng d Iscreteness effECtS o1p being the 1D velocity dispersion of the dark matter and In A the

Coulomb logarithm. For typical galaxy formation experiments In A
is in the range 3 to 7.




“Milky Way” haliy
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Position Space @ 8 kpc

M. Zemp
Via Lactea Il




Velocity Space @ 8 kpc
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Velocity Space @ 400 kpc
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many statistics to study with cosmological N-body simulations

Table 1 Statistical measures applied to galaxies and numerical simulations of structure formation

Category

Statistic

Name

Reference

Particle positions &(r)

P (k)

¢(r1,r2,13)

B(k1, k2, k3)

En,En

Po(V), Pn(V)

Density fields G(v)

v; (v)
f(9)

(&)

Two-point correlation
function

Power spectrum

Three-point correlation
function

Bispectrum

N-point correlation
functions and moments

Void probability function,
cell counts

Percolation, minimal
spanning tree statistics

Multifractal statistics

Genus of isodensity
surfaces

Area of isodensity
surfaces

Minkowski functionals

One-point density
distribution

One-point cumulants
(skewness, kurtosis, etc)

Shape statistics

Peebles 1980

Bertschinger 1992
Groth & Peebles 1977

Peebles 1980
Peebles 1980

White 1979
Coles 1992

Martinez et al 1990
Melott 1990

Ryden 1988

Mecke et al 1994
Kofman et al 1994

Peebles 1980

Davé et al 1997b

=

Velocity fields

Redshift space

) Clusters or halos

f)

M
£

f(v12), 012
E(rp, m),&(s)

Ps(k, 1)

n(m)
n(Ve)
n(o)
n(T),n(L)

One-point velocity

distribution (and moments)

Mach number
Velocity divergence

distribution (and moments)

Pairwise radial velocity
distribution and dispersion

Redshift space correlation
functions

Redshift space power
spectrum

Mass distribution
Circular velocity distribution

Bertschinger 1998

Inagaki et al 1992

Ostriker & Suto 1990
Bernardeau et al 1985

Davis & Peebles 1983

Davis & Peebles 1983

Cole et al 1995

Press & Schechter 1974

Gelb & Bertschinger 1994a

Velocity dispersion distribution Evrard 1989

Temperature and X-ray
luminosity distributions

Cen & Ostriker 1994a




N-body simulations of DM halos:
internal structure




similarity of internal halo structure, from galaxy to cluster scales

A rich galaxy cluster halo A 'Milky Way' halo
Springel et al 2001 Power et al 2002

courtesy S.D.M.White, CATB2009




similarity of internal halo density profiles

Navarro, Frenk & White 1996
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The average dark matter
density of a dark halo depends
on distance from halo centre in
a very similar way in halos of
all masses at all times

-- a universal profile shape --

p(r)p ~ o r [r(l+1/r)

More massive halos and halos
that form earlier have
higher densities (bigger 9)

Concentration ¢ = rZOO/ r 1S

an alternative density measure
Beware variety of definitions!

courtesy S.D.M.White, CATB2009




halo internal structure: concentration behavior

Gap et _al 2008' |

serenene POWEr law
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DM halo kinematic structure: velocity space
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DM virial scaling relation
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: precision calibration

Evrard et al (2008)

N, 3
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* results from six
different N-body
codes

* mergers are
relatively non-
violent

Myg, (1015 h=t M)

h(z)M:- «
opm(M,2z) = opwm,15 (M)

1015 M,




DM virial scaling relation: precision calibration

Evrard et al (2008)

MWa

opm(M,z) = opm,15 (

h(Z)Mzoo

1015 Mg

7

HOTa+b

frequency

MB

log-normal

RTM

error in mas

dispersion

* residuals from
PL fit are nearly

* 4. 6% scatter
implies ~15%

s for

given velocity




DM virial scaling relation: precision calibration

B T T T T T T TTTT T T T T T Evrardetal (2008)
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hierarchical clustering exists within individual halos

Subhalos have subhalos have subhalos... Springel et al 2008




sub-halo structure does not dominate the internal density field

Density relative to a smooth ellipsoidal model

1Q°
1072

= 10"

10°®

10°®

Vogelsberger et al 2008 e Estimate a density p at each
1] point by adaptively smoothing
sins | usingthe 64 t particl
AG-A2 g the 64 nearest particles
Ag-A-3 i
Ag-A-4

point distributi

 prediction for a uniform

on

| » Fit to a smooth density profile
10kpe>r>6kpe | gtratified on similar ellipsoids

+ ® The chance of a random point

\ lying in a substructure is < 10™

o _ 1 ® The rms scatter about the smooth

1

10 model for the remaining points is
only about 4%

courtesy S.D.M.White, CATB2009
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halos in the sky (past light-cone) are dynamically frustrated; future is relaxed!

Busha et al (2005)
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= 104
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1 Figure 1. The distribution of dark matter radial velocities as a function
€)1  of distance from the halo centre. The top two panels show the conditional

-1.0 ' . phase-space density p(v, | r) as a function of radius for the ensemble of
1 10 400 largest haloes at the present epoch (a) and for the future when a =

100 (b). The solid line shows the mean velocity as a function of radius: the

r / 200 erey-scale indicates the regions enclosing 40, 60, 80, 95, and 99 per cent of

. the particle population as specified by piv, | r): the vertical lines represent
Scaled dlStance from halo center the zero-velocity surfaces. Panel (¢) shows the mean radial velocity for an
ensemble of haloes at epochs a = 0,34, 0,59, 1.0, 1.8, and 4.8, with the bold

line representine the function at g = 100




N-body simulations of DM halos:
low-order spatial statistics




web-embedded halos have fuzzy topologies => variety of mass measures
Lukic et al (2008)
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halo space density from large N-body simulations
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halo space density from large N-body simulations
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halo space density from large N-body simulations

similarity variable -
variance in filtered linear  ((6M/M)?) = (M) = /d3kW%(kR)P(k, 2)
density field :
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other fitting formulae

(A detailed study of universality and numerical issues can be found in
Bhattacharya++10 from which this table is taken )

MASS FUNCTION FITTING FORMULAE DERIVED IN PREVIOUS STUDIES

Reference Fitting function f(o) Mass Range Redshift range
2 2 03
Sheth & Tormen (2002) fs7 (o) =0.3222 @ exp [— ‘)'zijgi] {1 + ( O;’Ts) J % Unspecified Unspecified
Jenkins et al. (2001) 0.315exp [-|Ino™! +0.61|>#] -12<Ino! >1.05 z=0-5
Warren et al. (2006) 0.7234 (0712 +0.2538) exp [ 1-1%82] (10'°-10%) h"'M, z=0
2(0. 707 - 0.3
Reedetal. (2007)  0.3222,/20790 [1 +(om) +0.661(a)+0.4G2(a)] ~0.5<Inc! >1.2 2=0-30
5. _0.76457 0.03
X £ exp [ 252 (nq'_f+3)2(6(-/0')0'6]
2\P1 &, 13 15y -1
Manera et al. (2010) fir(@)=03222/%exp [-55 | [1+ (&) ] & (33x108-33x 105 h"'My  2=0-0.5
Crocce et al. (2010) A(2) [07@ + b(2)] exp [- <42 ] (10'°-10") h"'M, z=0-1
M  dn >
flo) = = L ding f(o) =1
P dlno— 0

courtesy M.White, COTB201 |




analytic underpinnings for the halo mass function

 EXxcursion set formalism
— The most popular “theory”.

— The fraction of mass in halos more massive than M is related
to the fraction of volume in which the smoothed initial density
field is above some threshold, §..

— Mass function related to random walk.
* Press-Schechter 1974; Bond, Cole, Efstathiou & Kaiser 1991.

— Spherical collapse vs. elliptical collapse approx.
« Mo & White, Sheth & Tormen, Zhang & Lam, ...

— How to deal with “non-locality” of halo collapse.

« Statistics of (Gaussian) peaks plus a model for halo
collapse (spherical or ellipsoidal).

« Bardeen, Bond, Kaiser & Szalay 1986

— Based on Rice (1944; 1945) who studied 1D Gaussian fields as models of
noise in communications devices.

 Bond & Myers 1996. courtesy M.White, COTB20] |
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MICE (Marenostrum) calibration

Crocce et al (2009)
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clustering of halos is biased relative to the total matter

The clustering of the rare, massive dark matter halos is enhanced
relative to the general mass distribution
— Kaiser 1984; Efstathiou++88; Cole & Kaiser 1989; Bond++91; Mo & White
1996; Sheth & Tormen 1999; ...; Tinker++10; ...

T T llIlll] T

100 =
0f
! The clustering of rare halos
0.1 thought to host quasars (here 1012
0.01 and 10'2°> M /h) at z=3-4 is two
;&Z’ 100 £ — ] = orders of n.lagnitude stronger than
E 8 a 1 the clustering of the DM!
10 ° o | .
1 -y
0.1 .
0.01 k ]

courtesy M.White, COTB201 |
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characteristics of biasing derived from simulations

This enhanced clustering is known as “bias”.
Bias depends on scale [b(r)], but at very large scales it becomes scale-
independent [b].
— Bias, b, depends primarily on halo mass or “rarity”.
* In simplest models b=1+(v2-1)/8,, where v=3/c(M).
* For more accuracy, use N-body-calibrated fitting function.
* Behavior at “extremes” can depart from fitting functions!

— Numerical simulations now large enough to test for the dependence
on halo formation history and other properties.

» Dependencies on formation redshift, internal structure, and spin.

« Gao++05; Wechsler++06; Harker++06; Bett++07; Wetzel++07;
Jing++07; Gao&White07; Angulo++08

courtesy M.White, COTB201 |




bias function calibrated by large N-body ensemble (Tinker et al. 2010)

Tinker++10
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summary: lessons from N-body simulations about halo model of LSS

* general aspects of halos
— halos are dynamically evolving systems: close to virial equilibrium but

frustrated by mergers and continual accretion
— ellipsoidal in shape (tending prolate) with 2:1 axis ratios common
aligned with surrounding filaments

* internal structure of halos
— relaxation to common density + velocity radial profiles

— surviving substructures contain a small percentage of total mass
— hierarchical nesting of sub-structure families reflect accretion history

* low-order spatial distribution of halos
— functional forms for mass function, n(M,z), and bias function, b(M,z),

precisely calibrated via similarity variable,c(M)  (mainly wCDM)

— different, one-parameter mass assignment methods (FOF, SO) exist
good: flexibility, reflects edge complexity bad: literature confusing




the end




