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Dynamics of di↵eomorphisms

M: a compact boundaryless connected manifold,

f : a C r
-di↵eomorphism, r > 1.

Goal: Describe the orbits {f n(x)}n2Z.

Steps: – decompose the system (identify attractors, invariant pieces,...),

– analyze each piece (eg. build a coding),

– study limit behaviors (invariant measures, speed of convergence,...),

– ...

This is well understood for uniformly hyperbolic di↵eomorphisms.

What about general di↵eomorphisms?

Program: – Lecture 1: decomposition of the dynamics,

– Lecture 2: the case of surfaces,

– Lecture 3: coding,

– Lecture 4: limit measures.



Uniformly hyperbolic di↵eomorphisms



Hyperbolic di↵eomorphisms (1): definition

f is hyperbolic if for any x 2 M, one of the following holds:

– no recurrence: there is U open s.t. f (U) ⇢ U and x 2 U \ f (U),

– hyperbolicity: there is N � 1 and TxM=Es�Eu
s.t. for `2Z, k�1,

kDf
kN |

Df `(Es )
k  2

�k , kDf
�kN |

Df `(Eu)
k  2

�k .



Hyperbolic di↵eomorphisms (2): decomposition

f : a hyperbolic di↵eomorphism

Smale’s spectral decomposition. The set ⌦(f ) of points which
are not trapped is a finite disjoint union

⌦(f ) = K1 [ · · · [ K`
of sets Ki which are compact, invariant, and transitive:

for any balls U,V of K , f k(U) \ V 6= ;, for some k � 1.

The sets Ki are called basic sets of f .

Remark. There is a finer decomposition Ki =A[f (A)[. . .[f m�1
(A) s.t.

A is preserved by f m and topologically mixing:
for any balls U,V of K , f km(U) \ V 6= ; for all large k .



Hyperbolic di↵eomorphisms (3): coding

f : a hyperbolic di↵eomorphism

Markov partition (Adler-Weiss, Sinäı, Bowen). For each basic set K ,
there are a symbolic system (⌃,�) and ⇡ : ⌃ ! K continuous s.t.

– ⌃: space of itineraries (an) on a finite oriented connected graph,

– � : ⌃ ! ⌃ is the shift map (an) 7! (an+1),

– ⇡ : ⌃ ! K is surjective and semiconjugates: f � ⇡ = ⇡ � �,
– each preimage f �1

(x) is finite.

0 1



Hyperbolic di↵eomorphisms (4): invariant measures

f : a hyperbolic di↵eomorphism

M: space of probabilities µ that are invariant, f⇤(µ) = µ.

µ is ergodic if for any A invariant measurable set, µ(A) = 0 or 1.

Physical measures. (Sinäı, Ruelle, Bowen).

There exists finitely many ergodic probabilities ⌫1, . . . , ⌫J , s.t.
for Lebesgue almost every x 2 M and every continuous ' : M ! R,

1

n
('(x)+' � f (x)+. . .+' � f n�1

(x)) converges to one
R
'd⌫j .

Periodic equidistribution. (Bowen). For each basic set K ,
let Pern(K ) : set of periodic points x 2 K with period  n. Then,

1

Card(Pern(K))

P
x2Pern(K)

�x converges to some µK 2M as n!+1.



Hyperbolic di↵eomorphisms (4): properties of the measures

f : a hyperbolic di↵eomorphism

The physical measures ⌫j and the periodic limit µK :

– are solutions of variational problems (called equilibrium states),

– ' Bernoulli measures on Markov chains (as measured transformations),

– in particular, they are mixing: for any measurable sets A,B ,
µ(A \ f �n

(B)) �!
n!1

µ(A)µ(B).

Exponential mixing. Assume that f is topologically mixing on Supp(µ).
For any Hölder maps ', : M ! R there exists C > 0, ✓ 2 (0, 1) s.t.��R ' � f n. dµ�

R
'dµ

R
 dµ

��  C .✓n.

Central limit theorem. For any Hölder map ':M!R s.t.
R
'dµ = 0,

the variable 1p
n
('(x) + '(f (x) + · · ·+ '(f n�1

(x))) converges in law as

n ! +1 towards some Gaussian law 1

�
p
2⇡

R
e�t

2/2�2

dt.

Remark. � = 0 i↵ ' =  � f �  for some  2 L2(µ). In this case, it converges to �0.



How does this extends to general

di↵eomorphisms?



Homoclinic classes (1): definition

An orbit O with period k is hyperbolic if

for p 2 O, Df k(p) has no eigenvalue on the unit circle.

The stable and unstable sets of p 2 O are immersed submanifolds:

W s
(p) := {x 2 M, d(f n(x), f n(p)) ! 0 as n ! +1},

W u
(p) := {x 2 M, d(f �n

(x), f �n
(p)) ! 0 as n ! +1}.

W s/u
(O) := [p2OW s/u

(p).

Definition (Newhouse). The homoclinic class of O is

H(O) := Closure(W s
(O) t W u

(O)),

where t denotes the set of transverse intersections.



Homoclinic classes (1): definition

H(O) := Closure(W s
(O) t W u

(O)).

Remark. For hyperbolic di↵eomorphisms, homoclinic classes and

basic sets coincide. (Consequence of the shadowing lemma.)



Homoclinic classes (2): transitivity

H(O) = Closure(W s
(O) t W u

(O)) is transitive, invariant, compact.

(Consequence of the inclination lemma.)

! The number of homoclinic class may be infinite.

!! In general, two distinct homoclinic classes may not be disjoint.
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Homoclinic classes (2): transitivity

H(O) = Closure(W s
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(O)) is transitive, invariant, compact.

(Consequence of the inclination lemma.)

! The number of homoclinic class may be infinite.
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Homoclinic classes (3): density of periodic points

H(O) := Closure(W s
(O) t W u

(O)).

q: a hyperbolic periodic point.

Definition. The point q is homoclinically related to O if

W s
(q)tW u

(O) 6=; and W u
(q)tW s

(O) 6=;. (One notes q ⇠ O.)

Properties. (1) The relation ⇠ is an equivalence relation.

(2) H(O) = Closure{q ⇠ O}.

(Another consequence of the inclination lemma!)



Homoclinic classes (4): period of the class

Consider p 2 O and hp := Closure(W s
(p) t W u

(p)).

Property. H(0) = hp [ f (hp) [ . . . f k�1
(hp) and f k(hp) = hp,

where k is the gcd of the periods of the q ⇠ O.
Moreover hp is a topologically mixing set of f k .

k is called period of the homoclinic class H(O).

(Still uses the inclination lemma!!)



Homoclinic classes (5): hyperbolic measures

Consider µ 2 M ergodic.

Theorem (Oseledets) There is an inv. measurable decomposition
TxM=E1�. . .�Ek on a full measure set and �1<. . .<�k s.t.

1

n
log kDf n

Ei
.vk �!

n!±1
�i for any v 2 Ei \ {0}.

µ is hyperbolic if its Lyapunov exponents �i are all di↵erent from 0.

) there exists a (non-uniform) splitting TxM = E s � E u µ-a.e.

Theorem (Pesin) If µ is hyperbolic, for µ-ae x , the stable and

unstable sets W s/u
(x) are immersed submanifolds tangent to E s/u

x .

W s W u



Homoclinic classes (5): hyperbolic measures

Definition. µ is homoclinically related to O if for µ-ae x ,
W s

(x) t W u
(O) 6= ; and W u

(x) t W s
(O) 6= ;.

(We note µ ⇠ O.)

Theorem (Katok’s theorem revisited) Each hyperbolic measure µ is
homoclinically related to a hyperbolic periodic orbit O.

W s W u

(Uses a non-uniform shadowing lemma.)



Dynamics on surfaces



The (topological) entropy

Definition. A conjugacy invariant:

htop(f ) = lim
"!0

htop(f , ")

where htop(f , ") = lim sup
n!1

1

n
log#{orbits of length n distinct at scale "}.

Surface dynamics with zero entropy:

– Conservative examples

(eg. translations on T2
, hamiltonian systems).

– Dissipative examples

(eg. Morse-Smale systems, odometers).

Some classification results: Franks-Handel, LeCalvez-Tal, C.-Pujals.



Surface dynamics with positive entropy : statement

A generalized spectral decomposition theorem.

Theorem. (Buzzi-C-Sarig) f : a C1
di↵eomorphism of a surface.

(a) Covering. 8 inv. compact A, htop
�
A \ ([OH(O))

�
= htop(A).

(b) Disjointness. 8O,O 0, either O ⇠ O 0 or htop(H(O) \ H(O 0
))=0.

(c) Uniqueness. f transitive)at most one non-triv. homoclinic class.

(d) Finiteness. 8� > 0, the set {H(O): htop(H(O)) > �} is finite.

(e) Properties of homoclinic classes (coding, equilibrium states).

Properties a: consequence of Katok’s theorem.

Properties b, c, d: lecture 2.

Property d: lectures 3,4.



Some references

R. Bowen. Equilibrium states and the ergodic theory of Anosov
di↵eomorphisms. Lecture Notes in Mathematics 470.

J. Buzzi, S. Crovisier, O. Sarig. Measures of maximal entropy for
surface di↵eomorphisms. ArXiv:1811.02240.
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Homoclinic classes

M: a compact boundaryless connected manifold,

f : a C r
-di↵eomorphism, r > 1,

Definition. The homoclinic class of a hyperbolic periodic orbit O is

H(O) := Closure(W s
(O) t W u

(O)).

Properties. – If O ⇠ O 0
, then H(O) = H(O 0

).

– H(O) is an invariant compact and transitive set.

– Any (ergodic) hyperbolic measure is supported on a homoclinic class.



Entropy

Entropy of invariant compact sets: htop(K ) = htop(f |K ).

Goal. Study the dynamics up to invariant sets with zero entropy.

One also defines the entropy h(f , µ) of an invariant probability µ.

Variational principle. htop(K ) = sup{h(f , µ), supp(µ) ⇢ K}.

Key property on surfaces.

Measures with positive entropy are hyperbolic.



Surface dynamics with positive entropy

Goal. Obtain a generalized spectral decomposition theorem

for arbitrary surface di↵eomorphisms with positive entropy.

(Joint work with Jérôme Buzzi and Omri Sarig.)

Theorem. f : a C1
di↵eomorphism of a surface.

(a) Covering. µ ergodic with positive entropy ) µ([OH(O)) = 1.

(b) Disjointness. 8O,O 0, either O ⇠ O 0 or htop(H(O) \ H(O 0
))=0.

(c) Uniqueness. f transitive)at most one non-triv. homoclinic class.

(d) Finiteness. 8� > 0, the set {H(O): htop(H(O)) > �} is finite.

(e) Properties of homoclinic classes (coding, equilibrium states).



Disjointness



Disjointness

Theorem. f : C1
surface di↵eomorphism, O,O 0

: periodic saddles.

Then, either O ⇠ O 0 or the entropy of H(O) \ H(O 0
) vanishes.

Definition. Bilip(f ) = lim
n!+1

1

n logmax(kDf nk, kDf �nk).

Remark. Bilip(f ) � htop(f ) (Ruelle’s inequality).

Theorem. f : C r
surface di↵eomorphism, O,O 0

: periodic saddles

such that htop(f |H(O)), htop(f |H(O0)) > Bilip(f )/r .

Then, either O ⇠ O 0 or the entropy of H(O) \ H(O 0
) vanishes.

Problem. Does there exists a Cr di↵eomorphism and O,O0 not homoclinically related

such that htop(H(O) \ H(O0)) > 0?



Disjointness (2): proof

Assume that htop(H(O) \ H(O 0
)) > 0.

(1) There exists µ ergodic and hyperbolic on H(O) \ H(O 0
).

I If one gets transverse intersections,

one concludes that O ⇠ O 0
, hence H(O) = H(O 0

).



Disjointness (2): proof
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(µ) define small rectangles.

(3) W s
(O),W u

(O) intersect the rectangles ) “cross” Ws
(µ),Wu

(µ).

(4) This holds for O and O 0 ) W s
(O) crosses topologically W u

(O 0
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A “dynamical” Sard theorem

Theorem.
– �: a C r -curve,
– W: a lamination by C r -leaves, continuous in C r -topology,
with Lipschitz holonomies () transverse dimension well defined).

Then T := {leaves of W tangent to �} has transverse dimension 1/r .

�

W

Remark. When W is a Cr -foliation, one recovers the usual Cr -Sard lemma.



A “dynamical” Sard theorem (2): a consequence

f : a C r
-di↵eomorphism

K : a transitive hyperbolic set

with entropy larger than Bilip(f )/r
O,O 0

: two saddles such that O 2 K .

O 0

O

K

Corollary. If W s
(O) crosses topologically W u

(O 0
),

then W s
(O) |\ W u

(O 0
) 6= ;.

Proof. W u
(O 0

) is a C r
-curve �.

The stable lamination Ws
of K has C r

-leaves, continuous in C r
-topology.

Lemma. Ws has Lipschitz holonomies. (since 1-codim.)

Lemma (Manning). The dimension of K inside its unstable leaves is
� htop(f |K )/log kDf k.

) The transverse dimension of Ws
is � htop(f |K )/Bilip(f ) > 1/r .

By Sard, one leaf of Ws
intersects W u

(O 0
) transversally.

SinceW s
(O) is C 1

dense inWs
, it intersectsW u

(O 0
) transversally.



Uniqueness

Corollary. f a C r -di↵eomorphism of a surface and K a tran-
sitive compact set such that htop(f |K ) > Bilip(f )/r .
Then K contains at most one non-trivial homoclinic class.

Proof.
If H(O) and H(O 0

) are non-trivial,

the transitivity forces W s
(O) and W u

(O 0
) to cross topologically.

Dynamical Sard Lemma gives the transverse intersection.



Finiteness



Finiteness

Notation. Bilip(f ) := limn!+1
1

n logmax(kDf nk, kDf �nk).

Theorem. Let f be a C r
di↵eomorphism of a surface.

For any � > Bilip(f )/r , the number of homoclinic classes such that
htop(f |H(O)) > � is finite.

Remark. The bound Bilip(f )/r is optimal.

The proof uses:

– the tail entropy,

– Yomdin theory,

– 2-dim arguments.



Entropy at small scales: tail entropy (1)

Topological entropy: htop(f ) = lim
"!0

htop(f , ")

where htop(f , ") = lim sup
n!1

1

n log#{orbits of length n distinct at scale "}.

Entropy of an ergodic measure: h(µ) = lim
"!0

htop(f , µ, ") (Katok)

h(f , µ, ") = lim sup
n!1

inf
µ(X )=1/2

1

n log#{orbits of length n distinct at scale " meeting X}.

Local contribution: h⇤(f , ") = sup
x2M

htop(Dyn.Ball(f , x , ")),

h⇤(f , µ, ") = inf
µ(X )=1/2

sup
x2X

htop(Dyn.Ball(f , x , ")),

where Dyn.Ball(f , x , ") = {y : 8n, d(f n(x), f n(y))  "}.



Entropy at small scales: tail entropy (2)

Definition. Tail entropy. h⇤(f ) = lim
"!0

h⇤(f , ").

Proposition. (Misiurewicz, Newhouse)

h(f , µ)  h(f , µ, ") + h⇤(f , ").

lim supn h(f , µn)  h(f , µ) + h⇤(f ) if µn ! µ.

Yomdin theory.

Theorem. (Yomdin, Newhouse, Buzzi, Downarowicz, Burguet,...)

f : C r
-di↵eomorphism of surface.

h⇤(f )  Bilip(f )

r
.



Entropy at small scales: summary

Corollary. For a C r
-di↵eomorphism of surface,

h(f , µ)  h(f , µ, ") + Bilip(f )
r .

lim supn h(f , µn)  h(f , µ)+ Bilip(f )
r if µn ! µ.



Proof of the finiteness (1)

Theorem. Let f : C r
di↵eomorphism on a surface and any � > 0

⇢
H(O) : htop(H(O)) > Bilip(f )

r + �

�
is finite.

Consider a family of H(On) supporting µn with h(f , µn) >
Bilip(f )

r + �.
. We have to show that there are n 6= m such that On ⇠ Om.

Assume µn ! ⌫. Then h(f , ⌫) > lim sup h(f , µn)� Bilip(f )/r > 0.

Decompose ⌫ = ↵⌫1 + (1� ↵)⌫2 such that ↵ > 0 and:

h(f , ⌫1) = 0 and all components of ⌫2 have positive entropy.

(1) Fix a " > 0 small and N0 large: there is a large ⌫1-measure set X st.
1

n log#{orbits of length N0 distinct at scale " meeting X} ⌧ 1.

(2) ⌫2 is approximated by a hyperbolic set K ⇠ ⌫2:
there exist squares R1, . . . ,Rn

bounded by W s
(K ) and W u

(K )

with diameter smaller than "
and large total ⌫2-measure.

⌫2



Proof of the finiteness (2)

Each H(On) decomposes as A1 [ · · · [ A`, cyclically permuted by f .

First case. For n large,

some Ai meets a rectangle R and Rc
.

The Ws(Ai ) and Wu(Ai ) are connected.

Consequently On ⇠ ⌫2.
If this occurs for distinct n and m:

. We get On ⇠ Om.
⌫2H(On)

Second case. µn-typical orbits decomposes as:

– segments of orbits of length N0 near ⌫1,
– iterates in a Ai contained in a rectangle R ,
– other iterates (small proportion).

Conclusion: the entropy h(µn, ") is small.

but h(µn)  h(µn, ") + Bilip(f )/r .

. A contradiction.

⌫2H(On)



Proof of the “dynamical”
Sard theorem



Proof of the “dynamical” Sard theorem

Theorem.
– �: a C r -curve,
– W: a lamination by C r -leaves, continuous in C r -topology,
with Lipschitz holonomies () transverse dimension well defined).

Then T := {leaves of W tangent to �} has transverse dimension 1/r .

Tk := {leaves of W with contact of order k with �}.

Lemma. Tk is at most countable for k < r .

Proof. Two close leaves at x1, x2.
x2 � x1 = d
x3 � x2 = K .d
A = c .dk

B = c .((K + 1)
k � K k

).dk

Contradicts the Lipschitz holonomy

(if K is large)

c.(x � x1)k

c.(x � x2)k

x1 x2 x3
A

B

�



Proof of the “dynamical” Sard theorem

Theorem.
– �: a C r -curve,
– W: a lamination by C r -leaves, continuous in C r -topology,
with Lipschitz holonomies () transverse dimension well defined).

Then T := {leaves of W tangent to �} has transverse dimension 1/r .

Lemma. Tr = {leaves with contact of order � r} has dimension  1/r .

Proof.

Cover � by small intervals IiP
|Ii | < 1.

Project by holonomy as interval Ji
in a transversal D.P

|Ji |1/r < 1.

Ji

Ii

D

�



Examples



Measures of large entropy: examples

Newhouse construction:

f n

�

µ

� < 1 < µ < ��1

µ ' ��1



Measures of large entropy: examples

Newhouse construction:

f n

�

µ µ�n

� < 1 < µ < ��1

µ ' ��1

Number of waves after a C r
-perturbation: µn/r

.

) htop(f ) � log µ
r ⇠ Bilip(f )/r .



Measures of large entropy: examples

Proposition. For any r > 1 and ⌘ > 0, there exists a
C r -di↵eomorphism with infinitely many disjoint homoclinic classes
with entropy larger than (1� ⌘).Bilip(f )/r .

f n3
f n2

f n1
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Homoclinic classes

M: a compact boundaryless connected manifold,

f : a C r
-di↵eomorphism, r > 1.

The homoclinic class
of a hyperbolic periodic orbit O is

H(O) := Closure(W s
(O) t W u

(O)).

It is an invariant compact and transitive set.

Program:

– Lecture 1: decomposition of the dynamics,

– Lecture 2: the case of surfaces,

– Lecture 3: coding,

– Lecture 4: limit measures.



Coding of uniformly hyperbolic systems

(Adler-Weiss, Sinäı, Bowen)

Anosov “cat map”:

f =


2 1
1 1

�
: T2 ! T2

.

Markov property:

If f (R) intersects interior(R 0
), it crosses.

R R 0



Coding of uniformly hyperbolic systems

(Adler-Weiss, Sinäı, Bowen)

Anosov “cat map”:

f =


2 1
1 1

�
: T2 ! T2

.

C

B

A

Partition:

rectangles A,B ,C parallel to E s ,Eu

Markov property:

If f (R) intersects interior(R 0
), it crosses.

R R 0



Coding of uniformly hyperbolic systems

(Adler-Weiss, Sinäı, Bowen)

Anosov “cat map”:

f =


2 1
1 1

�
: T2 ! T2

.

C

B

A

Partition:

rectangles A,B ,C parallel to E s ,Eu

Markov property:

If f (R) intersects interior(R 0
), it crosses.

R R 0



Coding of uniformly hyperbolic systems

Transitions: a finite oriented graph

C

B

A

A B

C

Symbolic space ⌃: space of admissible sequences.

Projection ⇡ : ⌃! M defined by

⇡(. . .R�1,R0,R1, . . .) =
T
f �i

(Ri ).

I ⇡ is continuous, surjective, generally not injective but finite-to-one.



Coding of uniformly hyperbolic systems

Transitions: a finite oriented graph
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Symbolic space ⌃: space of admissible sequences.

Projection ⇡ : ⌃! M defined by

⇡(. . .R�1,R0,R1, . . .) =
T

f �i
(Ri ).

I ⇡ is continuous, surjective, generally not injective but finite-to-one.



Coding the non-uniformly hyperbolic set (global version)

Def. µ is �-hyperbolic if its Lyapunov exponents belong toR\[��,�].

Theorem (Sarig, Ben Ovadia). For � > 0, there exist:
– a locally compact Markov shift (b⌃,�) on a countable alphabet,
– a Hölder map ⇡ : b⌃! M satisfying ⇡ � � = f � ⇡,
such that:

(a) ⇡(b⌃#
) has full measure for every �-hyperbolic measure,

(b) ⇡�1
(x) \ b⌃# is finite for every x 2 M.

Here b⌃#= set of orbits with arb. large forward & backward iterates in a compact set.

Remarks. – Compact sets in b⌃ project to unif. hyperbolic sets in M.

– Invariant probabilities in a transitive component of b⌃
project to measures that are homoclinically related.



Coding of a homoclinic class

H(O): a homoclinic class of a C r
di↵eomorphism f , r > 1.

Theorem (Buzzi, C-, Sarig). For any � > 0, there exists:

– a locally compact Markov shift on a countable alphabet (⌃,�),
– a Hölder map ⇡ : ⌃! H(O) satisfying ⇡ � � = f � ⇡,

such that

(a) µ(⇡(⌃#
)) = 1 for any �-hyperbolic measure µ ⇠ O,

(b) ⇡�1
(y) \ ⌃#

is finite for all y 2 ⇡(H(O)),

(c) (⌃,�) is transitive (irreductible).

Here ⌃# = set of orbits with arb. large forward & backward iterates in a compact set.

Remark. Any �-hyperbolic µ ⇠ O lifts as an inv. probability bµ on ⌃
#
.

From (b), the entropy of bµ and µ coincide.



Coding of a homoclinic class

Three steps:

I. Construction of a highly redundant coding ⌃0.

II. Refinement to a finite-to-one global coding b⌃.
III. Extraction of an irreducible component ⌃ ⇢ b⌃.



Quality of hyperbolicity

Fix ",� > 0 small. To simplify, M is a surface.

The Non-Uniformly Hyperbolic set NUH�:

set of x 2 M with directions es , eu and angle ↵(x) s.t.

� s(x) :=
�P

n�0 e
2�nkDf n(x).esk2

�1/2
< 1,

� u(x) :=
�P

n�0 e
2�nkDf �n

(x).euk2
�1/2

< 1,

� 1
n logQ(f n(x)) �! 0 as n ! ±1,

where Q(x) := max(↵(x), 1/s(x), 1/u(x)))1/� .

Points x 2 NUH� have a Pesin chart of size: Q(x).

Size of stable manifold: qs(x) = min{e"nQ(f n(x)), n � 0},

Size of unstable manifold: qu(x) = min{e"nQ(f �n
(x)), n � 0}.



I- Markov covering: construction

A: collection of Pesin charts  
ps ,pu
x for x 2 NUH�, ps , pu < Q(x),

with ps = stable size and pu = unstable size, such that:

– it “covers” NUH�,

– it is discrete: the set of charts  
ps ,pu

x with ps , pu > t is finite.

Transitions.  
ps1,p

u
1

x !  
ps2,p

u
2

y if f (x) ⇠ y and ps/u1 ⇠ ps/u2 .

⌃0: space of sequences in A compatible with the transitions.

Non-uniform shadowing ⇡0( ): For any  =( n)Z 2⌃0, there is

a unique point ⇡0( )=x 2M such that f n(x)2 Im( n) for all n2Z.

) Any orbit in NUH� lifts by ⇡0 : ⌃0 ! M.



I- Markov covering: local finiteness

We have built ⇡0 : ⌃0 ! M

 =( n) 7! ⇡0( ).

Inverse theorem.
There exists c > 0 st. for any  2 ⌃#

0 and n 2 Z,

c�1  psn
qs(f n(x))

 c and c�1  pun
qu(f n(x))

 c .

Summary. Let Z = ⇡0({( n),  0 =  }\⌃#
0 ) (projected cylinder),  2 A.

One gets a locally finite covering Z of ⇡0(⌃
#
0 ) by “Markov rectangles”:

x 2 ⇡0(⌃
#
0 ) belongs to finitely many Z , but has maybe infinitely many lifts in ⌃#

0 .



II- The global coding: construction

Z: collection of projected rectangles Z with transition relation  !  
0
.

Bowen-Sinäı refinement.

Any Z ,Z 0 which intersect generate seven rectangles.

R: partition of ⇡0(⌃
#
0 ) induced by all rectangles

generated by pairs Z ,Z 0 2 Z.

Transitions: R ! R 0
if f (R) \ R 0 6= ;.

b⌃: space of sequences on R compatible with transitions.

Projection: ⇡(R) = \n2Zf �n
(Closure(Rn)).

) A well-defined continuous map ⇡ : b⌃! M.



II- The global coding: properties

Bowen property. There exists a relation ⇠ on R (a�liation) st:

– For any R ,R 0 2 b⌃#, ⇡(R)=⇡(R 0
) , (8n,Rn ⇠ R 0

n).

– For any R , the set {R 0 ⇠ R} is finite.

⇠ is defined by: R ⇠ R0 i↵ R ⇢ Z , R0 ⇢ Z 0 and Z \ Z 0 6= ;.

Corollary. ⇡ : b⌃# ! M is finite-to-one.

Consider R = (Rn) and R�,R+ such that Rn=R� for infinitely many n<0,
Rn=R+ for infinitely many n>0.

Then #{R0 2 b⌃#, ⇡(R0) = ⇡(R)} is bounded by a Cte(R�,R+).

Characterization of the uniform hyperbolicity.

Uniformly �-hyperbolic sets in M can be lifted as compact sets in b⌃.
The transitivity is preserved.



III- Selection of a transitive component ⌃ of b⌃

H(O): a homoclinic class.

Proposition.
There exists a transitive component ⌃ ⇢ b⌃ containing periodic orbits
that lift all the periodic orbits O 0 ⇠ O that are �-hyperbolic.

Proof.
Consider these periodic orbits O1,O2, . . . .

There exists transitive hyperbolic set Kn which contains O1, . . . ,On.

Lift Kn ⇢ M as a transitive compact set bKn ⇢ b⌃.

Finiteness-to-one property on ⌃
#

) there is a transitive component ⌃ ⇢ b⌃ containing infinitely many bKn.



III- Lifting the measures in ⌃

µ ⇠ O a �-hyperbolic measure

Proposition.
There exists a measure ⌫ on ⌃ such that ⇡⇤(⌫) = µ.

Proof.
- Lift b⌫ on a transitive component ⌃

0
of b⌃ (maybe not ⌃).

- Approximate b⌫ by periodic orbits bO1, bO2, . . . in b⌃:
there are bpi 2 bOi such that bpi ! bx typical for b⌫.
- Project in M as periodic orbits O1,O2, . . . s.t. �-hyperbolic and ⇠ O.

- Lift them as periodic orbits eO1, eO2, . . . in ⌃.

There is epi 2 eOi such that ⇡(epi ) = ⇡(bpi ).
- (epi ) is precompact (Bowen property) ) converges to some ex 2 ⌃#

.

- This lift to ⌃
#

all points of a set of full µ-measure and average

) defines a measure ⌫ on ⌃
#

which lifts µ.



Summary

H(O): a homoclinic class of a C r
di↵eomorphism of surface

NUH�: set of points in H(O) that are ‘�-hyperbolic’.

Theorem (Local coding). For any � > 0, there exists:

– a loc. compact Markov shift on a countable alphabet (⌃,�),
– a Hölder map ⇡ : ⌃! H(O) satisfying ⇡ � � = f � ⇡,

such that (a) ⇡(⌃#
) � NUH�,

(b) ⇡ is finite-to-one on ⌃
#
,

(c) (⌃,�) is transitive.

Questions.

– How does ⌃ behave at infinity?

– Is it possible to code the whole
S

� NUH� (when f is C1
)?

– How to address H(O) \ ⇡(⌃#
)?
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Measures of maximal entropy

µ maximizes the entropy if it realizes the supremum
htop(f ) = h(f , µ).

Motivation (Burguet). For a C1-di↵eomorphism on surface, the periodic

orbits with Lyapunov exponents �-far from 0 equidistribute towards the

measures maximizing the entropy.

Existence?

– Yes under expansivity (hyperbolic di↵eomorphisms,...).

– No in general for C r -di↵eomorphisms. (Buzzi)

Theorem. (Newhouse) If f is a C1 di↵eomorphism on a compact
manifold, it has a measure of maximal entropy.



Measures of maximal entropy: finiteness

Finiteness of the set of ergodic measures maximizing the entropy?

was known for: – hyperbolic di↵eomorphisms,...

– some non-uniformly hyperbolic Hénon maps. (Berger)

Theorem. f : a C1-di↵eo of surface with htop(f ) > 0.
The number of ergodic measures maximizing the entropy is finite.
Moreover, if f is transitive, it is equal to 1 (uniqueness).

Remark. When f is C r :

– the same holds if htop(f ) > Bilip(f )/r ,

– this may fail when htop(f ) < Bilip(f )/r .



Physical / SRB measures

µ: a hyperbolic measure of a C 2-di↵eomorphism.

Definition. µ is SRB if its desintegrations along W u are abs continuous.

Equivalent definitions (Ledrappier, Young, Tsujii,...):

(1) µ is “strongly” physical: for x in a set of positive Lebesgue measure,
1
n

Pn�1
i=0 �f i (x) ! µ and the forward orbit of x has the same exponents as µ.

(2) h(f , µ) equals the sum of the positive Lyapunov exponents of µ.

Restatement. On introduces the geometrical potential �geom : M ! R.

�geom(x)=

(
� log | det(Df |Eu(x))| if x has an unstable space,

�1 otherwise.

If µ is an SRB it maximizes h(f , µ) +
R
�geomdµ.



Physical / SRB measures: finiteness

Theorem (Hertz-Hertz-Tahzibi-Ures). f : a C 2 di↵eo of surface.
Each homoclinic class supports at most one SRB measure.

Corollary. On a transitive attractor, there is at most one SRB measure.

Theorem (BCS). f : a C1 di↵eo of surface. Fix �>0.
If Leb. a.e. point thas an upper Lyapunov exponent > �,
then there exist at most finitely many ergodic SRB measures.

Remark. When f is C r , the same holds if � > Bilip(f )/r .



Equilibrium measures

� : H(O) ! R [ {�1}: a measurable potential.

Definition. µ is an equilibrium state for � if it realizes the supremum:

Pf (�) := sup⌫

✓
h(f , ⌫) +

R
�d⌫

◆
.

Remark (small potential condition.) For surface di↵eomorphisms, the
equilibrium states are hyperbolic provided that:

sup'� inf ' < htop(f ).



Uniqueness



Equilibrium measures: uniqueness

Theorem. Consider f , aC 2di↵eomorphism of a compact manifold,
O a hyperbolic periodic orbit and ' either Hölder or = 'geom.

Then there is at most one hyperbolic equilibrium state µ ⇠ O.

Its support coincides withH(O); if period(H(O))=1, µ is Bernoulli.

Other approaches under various hyperbolic settings, using:

– the specification for the original system
(for instance the recent works by Climenhaga, Thompson, Burns, Fisher,...),

– the geometrical properties of measures
(for instance Hopf argument),

– ...



Equilibrium measures: uniqueness

Fix � > 0 small.

(1) There exists a coding by transitive Markov shift ⇡ : ⌃ ! M st:
– ⇡ is Hölder continuous,
– any �-hyperbolic measure µ ⇠ O lifts as a measure bµ on ⌃,

– h(f , µ) = h(�, bµ).

(2) �-hyperbolic equilibrium states µ ⇠ O lift as eq. states on ⌃.
Hölder or geometrical potentials lift as Hölder bounded potentials on⌃.

(3) The Bernoulli property is preserved by factor maps. (Ornstein)

Conclusion. We are reduced to a problem on Markov shifts.



Properties of Markov shifts

(⌃,�): a transitive locally compact Markov shift on a countable
alphabet and with finite entropy.

Theorem (Gurevich, Buzzi-Sarig). � : ⌃ ! R Hölder and bounded.
Then � admits at most one equilibrium measure.
When it exists, it has full support and

it is isomorphic to Bernoulli ⇥ finite permutation.

Proof. In the case � = 0.
Denote by [i ] the 0-cyclinders of ⌃.

Any measure µ has a Markov approximation µ̄:

µ̄[i ] := µ[i ] with transitions Pi,j := µ[i , j ]/µ[i ].

Then h(µ)  h(µ̄) = �
P
i,j

µ̄[i ] Pi,j logPi,j .



Existence



Equilibrium measures: existence

Theorem. Take f C1 on a compact manifold and ' continuous.
Then there exists an equilibrium state.

Proof. Yomdin theory for a C r -di↵eomorphism gives:

lim supn h(f , µn)  h(f , µ) + h⇤(f ) if µn ! µ,
and

h⇤(f )  Bilip(f )
r .

Hence h 7! h(f , µ) is semi-continuous for C1 di↵eomorphisms.

Thus one considers any limit of measures approaching the supremum.



Yomdin theory

Notation. Bf (x , n, ") := {z , d(f i (x), f i (z))  ", 0  i  n}.
Bf (x ,1, ") := {z , d(f i (x), f i (z))  ", 0  i}.

Local contribution h⇤(f , ") = sup
x2M

htop(Bf (x ,1, ")),

to entropy

at scale " h⇤(f , µ, ") = inf
µ(X )=1/2

sup
x2X

htop(Bf (x ,1, ")),

Theorem. f : C r -di↵eomorphism of surface.

h⇤(f ) := lim
"!0

h⇤(f , ")  Bilip(f )

r
.



Yomdin theory: steps of the proof

– A variational principle: h⇤(f )  supµ h
⇤(f , µ, ")

(Downarowicz-Newhouse)

– Newhouse’s bound: h⇤(f , µ, ")  L⇤r (f , 2")

where

L⇤r (f , ") = sup
Cr�curve �

✓
lim sup

n
sup
x

1
n log

+ Length(f n(� \Bf (x , n, ")))

◆
.

– Yomdin’s bound: lim
"!0

L⇤r (f , ") 
Bilip(f )

r



Entropy at small scales: Yomdin’s reparametrization lemma

Given � : [0, 1]
Cr

�! M, how to bound Length(f n(� \Bf (x , n, ")))?

Consider I1, . . . , I`(n) ⇢ [0, 1] and parametrizations  i : [0, 1] ! Ii st:
(a) kf n � � �  ikCr  1
(b) Im(�) \ Bf (x , n, ") ⇢ [i Im(� �  i ).

The growth of `(n) is estimated by induction: `(n) . Lip(f )n/r .

Lip(f )=kf kCr and k�kCr 1 ) kDr f ��(L . )k01, where L⇠Lip(f )�1/r .

Algebraic lemma. One can subdivide and reparametrize f (�) \ B(x , ")

into at most cte.Lip(f )1/r arcs �0 st k�0kCr  1.
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