Homoclinic classes and equilibrium states

Lecture 1 – Homoclinic classes: general properties

Sylvain Crovisier

CNRS / Univ. Paris-Sud

Smooth and homogeneous dynamics Bangalore, september 23-27th 2019

Dynamics of diffeomorphisms

M: a compact boundaryless connected manifold, *f*: a C^r -diffeomorphism, r > 1.

Goal: Describe the orbits $\{f^n(x)\}_{n \in \mathbb{Z}}$.

Steps: - decompose the system (identify attractors, invariant pieces,...),

- analyze each piece (eg. build a coding),
- study limit behaviors (invariant measures, speed of convergence,...),

- ...

This is well understood for uniformly hyperbolic diffeomorphisms.

What about general diffeomorphisms?

Program: - Lecture 1: decomposition of the dynamics,

- Lecture 2: the case of surfaces,
- Lecture 3: coding,
- Lecture 4: limit measures.

Uniformly hyperbolic diffeomorphisms

Hyperbolic diffeomorphisms (1): definition

f is *hyperbolic* if for any $x \in M$, one of the following holds:

- no recurrence: there is U open s.t. $f(\overline{U}) \subset U$ and $x \in U \setminus f(U)$,
- hyperbolicity: there is $N \ge 1$ and $T_x M = E^s \oplus E^u$ s.t. for $\ell \in \mathbb{Z}$, $k \ge 1$,

 $\|Df^{kN}|_{Df^{\ell}(E^{s})}\| \leq 2^{-k}, \quad \|Df^{-kN}|_{Df^{\ell}(E^{u})}\| \leq 2^{-k}.$

Hyperbolic diffeomorphisms (2): decomposition

f: a hyperbolic diffeomorphism

Smale's spectral decomposition. The set $\Omega(f)$ of points which are not trapped is a finite disjoint union $\Omega(f) = K_1 \cup \cdots \cup K_\ell$ of sets K_i which are compact, invariant, and transitive: for any balls U, V of K, $f^k(U) \cap V \neq \emptyset$, for some k > 1.

The sets K_i are called *basic sets* of f.

Remark. There is a finer decomposition $K_i = A \cup f(A) \cup \ldots \cup f^{m-1}(A)$ s.t. *A* is preserved by f^m and *topologically mixing*: for any balls U, V of K, $f^{km}(U) \cap V \neq \emptyset$ for **all** large *k*.

Hyperbolic diffeomorphisms (3): coding

f: a hyperbolic diffeomorphism

Markov partition (Adler-Weiss, Sinaï, Bowen). For each basic set K, there are a symbolic system (Σ, σ) and $\pi \colon \Sigma \to K$ continuous s.t.

- $-\Sigma$: space of itineraries (a_n) on a finite oriented connected graph,
- $-\sigma \colon \Sigma \to \Sigma$ is the shift map $(a_n) \mapsto (a_{n+1})$,
- $-\pi \colon \Sigma \to K$ is surjective and semiconjugates: $f \circ \pi = \pi \circ \sigma$,
- each preimage $f^{-1}(x)$ is finite.

Hyperbolic diffeomorphisms (4): invariant measures

f: a hyperbolic diffeomorphism

 \mathcal{M} : space of probabilities μ that are invariant, $f_*(\mu) = \mu$.

 μ is ergodic if for any A invariant measurable set, $\mu(A) = 0$ or 1.

Physical measures. (Sinaï, Ruelle, Bowen). There exists finitely many ergodic probabilities ν_1, \ldots, ν_J , s.t. for Lebesgue almost every $x \in M$ and every continuous $\varphi \colon M \to \mathbb{R}$, $\frac{1}{n}(\varphi(x) + \varphi \circ f(x) + \ldots + \varphi \circ f^{n-1}(x))$ converges to one $\int \varphi d\nu_j$.

Periodic equidistribution. (Bowen). For each basic set K, let $Per_n(K)$: set of periodic points $x \in K$ with period $\leq n$. Then, $\frac{1}{Card(Per_n(K))} \sum_{x \in Per_n(K)} \delta_x$ converges to some $\mu_K \in \mathcal{M}$ as $n \to +\infty$. Hyperbolic diffeomorphisms (4): properties of the measures

f: a hyperbolic diffeomorphism

The physical measures ν_j and the periodic limit μ_K :

- are solutions of variational problems (called equilibrium states),
- $-\simeq$ Bernoulli measures on Markov chains (as measured transformations),
- in particular, they are *mixing*: for any measurable sets A, B,

 $\mu(A \cap f^{-n}(B)) \underset{n \to \infty}{\longrightarrow} \mu(A)\mu(B).$

Exponential mixing. Assume that f is topologically mixing on $Supp(\mu)$. For any Hölder maps $\varphi, \psi \colon M \to \mathbb{R}$ there exists C > 0, $\theta \in (0, 1)$ s.t.

 $\left|\int \varphi \circ f^{n}.\psi d\mu - \int \varphi d\mu \int \psi d\mu\right| \leq C.\theta^{n}.$

Central limit theorem. For any Hölder map $\varphi: M \to \mathbb{R}$ s.t. $\int \varphi d\mu = 0$, the variable $\frac{1}{\sqrt{n}}(\varphi(x) + \varphi(f(x) + \cdots + \varphi(f^{n-1}(x))))$ converges in law as $n \to +\infty$ towards some Gaussian law $\frac{1}{\sigma\sqrt{2\pi}} \int e^{-t^2/2\sigma^2} dt$.

Remark. $\sigma = 0$ iff $\varphi = \psi \circ f - \psi$ for some $\psi \in L^2(\mu)$. In this case, it converges to δ_0 .

How does this extends to general diffeomorphisms?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Homoclinic classes (1): definition

An orbit *O* with period *k* is *hyperbolic* if for $p \in O$, $Df^{k}(p)$ has no eigenvalue on the unit circle.

The stable and unstable sets of $p \in O$ are immersed submanifolds: $W^{s}(p) := \{x \in M, d(f^{n}(x), f^{n}(p)) \rightarrow 0 \text{ as } n \rightarrow +\infty\},$ $W^{u}(p) := \{x \in M, d(f^{-n}(x), f^{-n}(p)) \rightarrow 0 \text{ as } n \rightarrow +\infty\}.$ $W^{s/u}(O) := \bigcup_{p \in O} W^{s/u}(p).$

Definition (Newhouse). The *homoclinic class* of O is $H(O) := Closure(W^{s}(O) \pitchfork W^{u}(O)),$

where $\boldsymbol{\pitchfork}$ denotes the set of transverse intersections.

Homoclinic classes (1): definition

 $H(O) := Closure(W^{s}(O) \pitchfork W^{u}(O)).$

Remark. For hyperbolic diffeomorphisms, homoclinic classes and basic sets coincide. (Consequence of the *shadowing lemma*.)

 $H(O) = Closure(W^{s}(O) \oplus W^{u}(O))$ is transitive, invariant, compact.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $H(O) = Closure(W^{s}(O) \oplus W^{u}(O))$ is transitive, invariant, compact.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $H(O) = Closure(W^{s}(O) \oplus W^{u}(O))$ is transitive, invariant, compact.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $H(O) = Closure(W^{s}(O) \oplus W^{u}(O))$ is transitive, invariant, compact.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $H(O) = Closure(W^{s}(O) \oplus W^{u}(O))$ is transitive, invariant, compact.

(Consequence of the inclination lemma.)

The number of homoclinic class may be infinite.
 In general, two distinct homoclinic classes may not be disjoint.

Homoclinic classes (3): density of periodic points $H(O) := Closure(W^{s}(O) \pitchfork W^{u}(O)).$ *q*: a hyperbolic periodic point.

Definition. The point q is *homoclinically related* to O if $W^{s}(q) \pitchfork W^{u}(O) \neq \emptyset$ and $W^{u}(q) \pitchfork W^{s}(O) \neq \emptyset$. (One notes $q \sim O$.)

Properties. (1) The relation \sim is an equivalence relation. (2) $H(O) = Closure\{q \sim O\}.$

(Another consequence of the inclination lemma!) $(\square \land (\square) (\square$

Homoclinic classes (4): period of the class

Consider $p \in O$ and $h_p := Closure(W^s(p) \pitchfork W^u(p))$.

Property. $H(0) = h_p \cup f(h_p) \cup \ldots f^{k-1}(h_p)$ and $f^k(h_p) = h_p$, where k is the gcd of the periods of the $q \sim O$. Moreover h_p is a topologically mixing set of f^k .

k is called *period* of the homoclinic class H(O).

(Still uses the inclination lemma!!)

Homoclinic classes (5): hyperbolic measures

Consider $\mu \in \mathcal{M}$ ergodic.

Theorem (Oseledets) There is an inv. measurable decomposition $T_x M = E_1 \oplus \ldots \oplus E_k$ on a full measure set and $\lambda_1 < \ldots < \lambda_k$ s.t. $\frac{1}{n} \log \|Df_{E_i}^n \cdot v\| \xrightarrow[n \to \pm\infty]{} \lambda_i$ for any $v \in E_i \setminus \{0\}$.

 μ is *hyperbolic* if its *Lyapunov exponents* λ_i are all different from 0. \Rightarrow there exists a (non-uniform) splitting $T_x M = E^s \oplus E^u \mu$ -a.e.

Theorem (Pesin) If μ is hyperbolic, for μ -ae x, the stable and unstable sets $W^{s/u}(x)$ are immersed submanifolds tangent to $E_x^{s/u}$.

Homoclinic classes (5): hyperbolic measures

Definition. μ is *homoclinically related* to O if for μ -ae x, $W^{s}(x) \pitchfork W^{u}(O) \neq \emptyset$ and $W^{u}(x) \pitchfork W^{s}(O) \neq \emptyset$. (We note $\mu \sim O$.)

Theorem (Katok's theorem revisited) Each hyperbolic measure μ is homoclinically related to a hyperbolic periodic orbit O.

(Uses a non-uniform shadowing lemma.)

Dynamics on surfaces

The (topological) entropy

Definition. A conjugacy invariant:

$$h_{top}(f) = \lim_{\varepsilon \to 0} h_{top}(f, \varepsilon)$$

where $h_{top}(f,\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log \# \{ \text{orbits of length } n \text{ distinct at scale } \varepsilon \}.$

Surface dynamics with zero entropy:

- Conservative examples (eg. translations on \mathbb{T}^2 , hamiltonian systems).

Dissipative examples
 (eg. Morse-Smale systems, odometers).

Some classification results: Franks-Handel, LeCalvez-Tal, C.-Pujals.

Surface dynamics with positive entropy : statement

A generalized spectral decomposition theorem.

Theorem. (Buzzi-C-Sarig) $f: a C^{\infty}$ diffeomorphism of a surface. (a) Covering. \forall inv. compact A, $h_{top}(A \cap (\cup_O H(O))) = h_{top}(A)$. (b) Disjointness. $\forall O, O'$, either $O \sim O'$ or $h_{top}(H(O) \cap H(O')) = 0$. (c) Uniqueness. f transitive \Rightarrow at most one non-triv. homoclinic class. (d) Finiteness. $\forall \delta > 0$, the set $\{H(O): h_{top}(H(O)) > \delta\}$ is finite. (e) Properties of homoclinic classes (coding, equilibrium states).

Properties a: consequence of Katok's theorem. Properties b, c, d: lecture 2. Property d: lectures 3,4. R. Bowen. *Equilibrium states and the ergodic theory of Anosov diffeomorphisms.* Lecture Notes in Mathematics **470**.

J. Buzzi, S. Crovisier, O. Sarig. *Measures of maximal entropy for surface diffeomorphisms*. ArXiv:1811.02240.

Homoclinic classes and equilibrium states

Lecture 2 – Homoclinic classes on surfaces: disjointness and finiteness

Sylvain Crovisier

CNRS / Univ. Paris-Sud

Smooth and homogeneous dynamics Bangalore, september 23-27th 2019

Homoclinic classes

M: a compact boundaryless connected manifold, *f*: a C^r -diffeomorphism, r > 1,

Definition. The *homoclinic class* of a hyperbolic periodic orbit O is $H(O) := Closure(W^{s}(O) \pitchfork W^{u}(O)).$

Properties. – If $O \sim O'$, then H(O) = H(O').

- -H(O) is an invariant compact and transitive set.
- Any (ergodic) hyperbolic measure is supported on a homoclinic class.

Entropy

Entropy of invariant compact sets: $h_{top}(K) = h_{top}(f|_K)$.

Goal. Study the dynamics up to invariant sets with zero entropy.

One also defines the entropy $h(f, \mu)$ of an invariant probability μ . Variational principle. $h_{top}(K) = \sup\{h(f, \mu), supp(\mu) \subset K\}$.

Key property on surfaces.

Measures with positive entropy are hyperbolic.

Surface dynamics with positive entropy

Goal. Obtain a generalized spectral decomposition theorem for arbitrary surface diffeomorphisms with positive entropy. (Joint work with Jérôme Buzzi and Omri Sarig.)

Theorem. f: a C^{∞} diffeomorphism of a surface.

(a) Covering. μ ergodic with positive entropy ⇒ μ(∪_OH(O)) = 1.
(b) Disjointness. ∀O, O', either O ~ O' or h_{top}(H(O) ∩ H(O'))=0.
(c) Uniqueness. f transitive⇒at most one non-triv. homoclinic class.
(d) Finiteness. ∀δ > 0, the set {H(O): h_{top}(H(O)) > δ} is finite.
(e) Properties of homoclinic classes (coding, equilibrium states).

Disjointness

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Disjointness

Theorem. $f: C^{\infty}$ surface diffeomorphism, O, O': periodic saddles. Then, either $O \sim O'$ or the entropy of $H(O) \cap H(O')$ vanishes.

Definition. $Bilip(f) = \lim_{n \to +\infty} \frac{1}{n} \log \max(\|Df^n\|, \|Df^{-n}\|).$ Remark. $Bilip(f) \ge h_{top}(f)$ (Ruelle's inequality).

Theorem. $f: C^r$ surface diffeomorphism, O, O': periodic saddles such that $h_{top}(f|_{H(O)})$, $h_{top}(f|_{H(O')}) > Bilip(f)/r$. Then, either $O \sim O'$ or the entropy of $H(O) \cap H(O')$ vanishes.

Problem. Does there exists a C^r diffeomorphism and O, O' not homoclinically related such that $h_{top}(H(O) \cap H(O')) > 0$?

Assume that $h_{top}(H(O) \cap H(O')) > 0$.

(1) There exists μ ergodic and hyperbolic on $H(O) \cap H(O')$.

If one gets transverse intersections, one concludes that O ∼ O', hence H(O) = H(O').

Assume that $h_{top}(H(O) \cap H(O')) > 0$.

- (1) There exists μ ergodic and hyperbolic on $H(O) \cap H(O')$.
- (2) The Pesin foliations $\mathcal{W}^{s}(\mu)$ and $\mathcal{W}^{u}(\mu)$ define small rectangles.

▶ If one gets transverse intersections, one concludes that $O \sim O'$, hence H(O) = H(O').

Assume that $h_{top}(H(O) \cap H(O')) > 0$.

- (1) There exists μ ergodic and hyperbolic on $H(O) \cap H(O')$.
- (2) The Pesin foliations $\mathcal{W}^{s}(\mu)$ and $\mathcal{W}^{u}(\mu)$ define small rectangles.
- (3) $W^{s}(O), W^{u}(O)$ intersect the rectangles \Rightarrow "cross" $W^{s}(\mu), W^{u}(\mu)$.

► If one gets transverse intersections, one concludes that $O \sim O'$, hence H(O) = H(O').

- Assume that $h_{top}(H(O) \cap H(O')) > 0$.
- (1) There exists μ ergodic and hyperbolic on $H(O) \cap H(O')$.
- (2) The Pesin foliations $\mathcal{W}^{s}(\mu)$ and $\mathcal{W}^{u}(\mu)$ define small rectangles.
- (3) $W^{s}(O), W^{u}(O)$ intersect the rectangles \Rightarrow "cross" $\mathcal{W}^{s}(\mu), \mathcal{W}^{u}(\mu)$.
- (4) This holds for O and $O' \Rightarrow W^{s}(O)$ crosses topologically $W^{u}(O')$.

 If one gets transverse intersections, one concludes that O ~ O', hence H(O) = H(O').

- Assume that $h_{top}(H(O) \cap H(O')) > 0$.
- (1) There exists μ ergodic and hyperbolic on $H(O) \cap H(O')$.
- (2) The Pesin foliations $\mathcal{W}^{s}(\mu)$ and $\mathcal{W}^{u}(\mu)$ define small rectangles.
- (3) $W^{s}(O), W^{u}(O)$ intersect the rectangles \Rightarrow "cross" $\mathcal{W}^{s}(\mu), \mathcal{W}^{u}(\mu)$.
- (4) This holds for O and $O' \Rightarrow W^{s}(O)$ crosses topologically $W^{u}(O')$.

 If one gets transverse intersections, one concludes that O ~ O', hence H(O) = H(O').

A "dynamical" Sard theorem

Theorem.

- γ: a C^r-curve,
- $-\mathcal{W}$: a lamination by C^r-leaves, continuous in C^r-topology, with Lipschitz holonomies (\Rightarrow transverse dimension well defined).

Then $\mathcal{T}:= \{ \text{leaves of } \mathcal{W} \text{ tangent to } \gamma \}$ has transverse dimension $\leq 1/r$.

Remark. When \mathcal{W} is a C^r -foliation, one recovers the usual C^r -Sard lemma.

A "dynamical" Sard theorem (2): a consequence

- f: a C^r-diffeomorphism
- K: a transitive hyperbolic set

with entropy larger than Bilip(f)/r

O, O': two saddles such that $O \in K$.

Corollary. If $W^{s}(O)$ crosses topologically $W^{u}(O')$, then $W^{s}(O) \oplus W^{u}(O') \neq \emptyset$.

Proof. $W^u(O')$ is a C^r -curve γ . The stable lamination W^s of K has C^r -leaves, continuous in C^r -topology.

Lemma. \mathcal{W}^{s} has Lipschitz holonomies. (since 1-codim.)

Lemma (Manning). The dimension of K inside its unstable leaves is $\geq h_{top}(f|_{K})/\log \|Df\|.$

 \Rightarrow The transverse dimension of \mathcal{W}^s is $\ge h_{top}(f|_{\mathcal{K}})/Bilip(f) > 1/r$.

By Sard, one leaf of \mathcal{W}^s intersects $W^u(O')$ transversally.

Since $W^{s}(O)$ is C^{1} dense in \mathcal{W}^{s} , it intersects $W^{u}(O'_{a})$ transversally.

Uniqueness

Corollary. $f = C^r$ -diffeomorphism of a surface and K a transitive compact set such that $h_{top}(f|_K) > Bilip(f)/r$. Then K contains at most one non-trivial homoclinic class.

Proof. If H(O) and H(O') are non-trivial, the transitivity forces $W^{s}(O)$ and $W^{u}(O')$ to cross topologically.

Dynamical Sard Lemma gives the transverse intersection.

Finiteness

Finiteness

Notation. Bilip(f) := $\lim_{n\to+\infty} \frac{1}{n} \log \max(\|Df^n\|, \|Df^{-n}\|)$.

Theorem. Let f be a C^r diffeomorphism of a surface. For any $\chi > Bilip(f)/r$, the number of homoclinic classes such that $h_{top}(f|_{H(O)}) > \chi$ is finite.

Remark. The bound Bilip(f)/r is optimal.

The proof uses:

- the tail entropy,
- Yomdin theory,
- 2-dim arguments.

Entropy at small scales: tail entropy (1)

Topological entropy: $h_{top}(f) = \lim_{\varepsilon \to 0} h_{top}(f, \varepsilon)$

where $h_{top}(f,\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log \# \{ \text{orbits of length } n \text{ distinct at scale } \varepsilon \}.$

Entropy of an ergodic measure: $h(\mu) = \lim_{\epsilon \to 0} h_{top}(f, \mu, \epsilon)$ (Katok)

 $h(f,\mu,\varepsilon) = \limsup_{n\to\infty} \inf_{\mu(X)=1/2} \frac{1}{n} \log \# \{ \text{orbits of length } n \text{ distinct at scale } \varepsilon \text{ meeting } X \}.$

Local contribution: $h^*(f, \varepsilon) = \sup_{x \in M} h_{top}(Dyn.Ball(f, x, \varepsilon)),$ $h^*(f, \mu, \varepsilon) = \inf_{\mu(X)=1/2} \sup_{x \in X} h_{top}(Dyn.Ball(f, x, \varepsilon)),$

where $Dyn.Ball(f, x, \varepsilon) = \{y : \forall n, d(f^n(x), f^n(y)) \le \varepsilon\}.$

Entropy at small scales: tail entropy (2)

Definition. Tail entropy. $h^*(f) = \lim_{\varepsilon \to 0} h^*(f, \varepsilon).$

Proposition. (Misiurewicz, Newhouse) $h(f, \mu) \leq h(f, \mu, \varepsilon) + h^*(f, \varepsilon).$ $\limsup_n h(f, \mu_n) \leq h(f, \mu) + h^*(f) \qquad \text{if } \mu_n \to \mu.$

Yomdin theory.

Theorem. (Yomdin, Newhouse, Buzzi, Downarowicz, Burguet,...) *f*: *C*^{*r*}-diffeomorphism of surface.

$$h^*(f) \leq \frac{Bilip(f)}{r}.$$

Entropy at small scales: summary

Corollary. For a
$$C^r$$
-diffeomorphism of surface,

$$h(f,\mu) \le h(f,\mu,\varepsilon) + \frac{Bilip(f)}{r}.$$

$$\limsup_n h(f,\mu_n) \le h(f,\mu) + \frac{Bilip(f)}{r} \quad \text{if } \mu_n \to \mu.$$

・ロト・4回ト・4回ト・4回ト・4回ト

Proof of the finiteness (1)

Theorem. Let $f: C^r$ diffeomorphism on a surface and any $\delta > 0$ $\left\{H(O): h_{top}(H(O)) > \frac{Bilip(f)}{r} + \delta\right\}$ is finite.

Consider a family of $H(O_n)$ supporting μ_n with $h(f, \mu_n) > \frac{Bilip(f)}{r} + \delta$. \triangleright We have to show that there are $n \neq m$ such that $O_n \sim O_m$.

Assume $\mu_n \to \nu$. Then $h(f, \nu) > \limsup h(f, \mu_n) - Bilip(f)/r > 0$.

Decompose $\nu = \alpha \nu_1 + (1 - \alpha)\nu_2$ such that $\alpha > 0$ and: $h(f, \nu_1) = 0$ and all components of ν_2 have positive entropy.

(1) Fix a $\varepsilon > 0$ small and N_0 large: there is a large ν_1 -measure set X st. $\frac{1}{n} \log \# \{ \text{orbits of length } N_0 \text{ distinct at scale } \varepsilon \text{ meeting X} \} \ll 1.$

A D F A B F A B F A B F

 (2) ν₂ is approximated by a hyperbolic set K ~ ν₂: there exist squares R₁,..., R_n bounded by W^s(K) and W^u(K) with diameter smaller than ε and large total ν₂-measure.

Proof of the finiteness (2)

Each $H(O_n)$ decomposes as $A_1 \cup \cdots \cup A_\ell$, cyclically permuted by f.

 $H(O_n)$

```
First case. For n large,
some A_i meets a rectangle R and R^c.
The W^s(A_i) and W^u(A_i) are connected.
Consequently O_n \sim \nu_2.
If this occurs for distinct n and m:
\triangleright We get O_n \sim O_m.
```


(日)、

Second case. μ_n -typical orbits decomposes as:

- segments of orbits of length N_0 near ν_1 ,
- iterates in a A_i contained in a rectangle R_i
- other iterates (small proportion).

Conclusion: the entropy $h(\mu_n, \varepsilon)$ is small. but $h(\mu_n) \le h(\mu_n, \varepsilon) + Bilip(f)/r$. \triangleright A contradiction.

Proof of the "dynamical" Sard theorem

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of the "dynamical" Sard theorem

Theorem.

- $-\gamma$: a C^{r} -curve,
- W: a lamination by C^r-leaves, continuous in C^r-topology, with Lipschitz holonomies (⇒ transverse dimension well defined).
 Then T:= { leaves of W tangent to γ} has transverse dimension < 1/r.

 $\mathcal{T}_k := \{ \text{leaves of } \mathcal{W} \text{ with contact of order } k \text{ with } \gamma \}.$

Lemma. T_k is at most countable for k < r.

Proof of the "dynamical" Sard theorem

Theorem.

 $-\gamma$: a C^{r} -curve,

 - W: a lamination by C^r-leaves, continuous in C^r-topology, with Lipschitz holonomies (⇒ transverse dimension well defined).
 Then T:= {leaves of W tangent to γ} has transverse dimension ≤ 1/r.

Lemma. $T_r = \{ \text{leaves with contact of order} \ge r \}$ has dimension $\le 1/r$.

Proof.

Cover γ by small intervals I_i $\sum |I_i| < 1.$

Project by holonomy as interval J_i in a transversal D.

 $\sum |J_i|^{1/r} < 1.$

・ロット (日) (日) (日) (日) (日)

Examples

<□ > < @ > < E > < E > E のQ @

Measures of large entropy: examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Measures of large entropy: examples

 $\Rightarrow h_{top}(f) \geq \frac{\log \mu}{r} \sim Bilip(f)/r.$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Measures of large entropy: examples

Proposition. For any r > 1 and $\eta > 0$, there exists a C^r -diffeomorphism with infinitely many disjoint homoclinic classes with entropy larger than $(1 - \eta)$.Bilip(f)/r.

Homoclinic classes and equilibrium states

Lecture 3 – Homoclinic classes: coding

Sylvain Crovisier

CNRS / Univ. Paris-Sud

Smooth and homogeneous dynamics Bangalore, september 23-27th 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Homoclinic classes

M: a compact boundaryless connected manifold, *f*: a C^r -diffeomorphism, r > 1.

The *homoclinic class* of a hyperbolic periodic orbit O is $H(O) := Closure(W^s(O) \pitchfork W^u(O)).$

It is an invariant compact and transitive set.

Program:

- Lecture 1: decomposition of the dynamics,
- Lecture 2: the case of surfaces,
- Lecture 3: coding,
- Lecture 4: limit measures.

(Adler-Weiss, Sinaï, Bowen)

Anosov "cat map":

$$f = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

(Adler-Weiss, Sinaï, Bowen)

Anosov "cat map":

$$f = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$$

Partition:

rectangles A, B, C parallel to E^s, E^u

(Adler-Weiss, Sinaï, Bowen)

Anosov "cat map":

$$f = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$$

Partition: rectangles A, B, C parallel to E^s, E^u

Markov property:

If f(R) intersects *interior*(R'), it crosses.

Transitions: a finite oriented graph

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Transitions: a finite oriented graph

Symbolic space Σ : space of admissible sequences.

Projection $\pi: \Sigma \to M$ defined by

$$\pi(\ldots R_{-1}, R_0, R_1, \ldots) = \bigcap f^{-i}(\overline{R_i}).$$

 $\blacktriangleright \pi$ is continuous, surjective, generally not injective but finite-to-one.

Coding the non-uniformly hyperbolic set (global version)

Def. μ is χ -hyperbolic if its Lyapunov exponents belong to $\mathbb{R} \setminus [-\chi, \chi]$.

Theorem (Sarig, Ben Ovadia). For $\chi > 0$, there exist: – a locally compact Markov shift $(\widehat{\Sigma}, \sigma)$ on a countable alphabet, – a Hölder map $\pi : \widehat{\Sigma} \to M$ satisfying $\pi \circ \sigma = f \circ \pi$, such that: (a) $\pi(\widehat{\Sigma}^{\#})$ has full measure for every χ -hyperbolic measure, (b) $\pi^{-1}(x) \cap \widehat{\Sigma}^{\#}$ is finite for every $x \in M$.

Here $\widehat{\Sigma}^{\#}$ = set of orbits with arb. large forward & backward iterates in a compact set.

Remarks. – Compact sets in $\widehat{\Sigma}$ project to unif. hyperbolic sets in M. – Invariant probabilities in a transitive component of $\widehat{\Sigma}$ project to measures that are homoclinically related.

Coding of a homoclinic class

H(O): a homoclinic class of a C^r diffeomorphism f, r > 1.

Theorem (Buzzi, C-, Sarig). For any $\chi > 0$, there exists: - a locally compact Markov shift on a countable alphabet (Σ, σ) , - a Hölder map $\pi : \Sigma \to H(O)$ satisfying $\pi \circ \sigma = f \circ \pi$, such that (a) $\mu(\pi(\Sigma^{\#})) = 1$ for any χ -hyperbolic measure $\mu \sim O$, (b) $\pi^{-1}(y) \cap \Sigma^{\#}$ is finite for all $y \in \pi(H(O))$, (c) (Σ, σ) is **transitive** (irreductible).

Here $\Sigma^{\#}=$ set of orbits with arb. large forward & backward iterates in a compact set.

Remark. Any χ -hyperbolic $\mu \sim O$ lifts as an inv. probability $\hat{\mu}$ on $\Sigma^{\#}$. From (b), the entropy of $\hat{\mu}$ and μ coincide.

Coding of a homoclinic class

Three steps:

- I. Construction of a highly redundant coding Σ_0 .
- II. Refinement to a finite-to-one global coding $\widehat{\Sigma}$.
- III. Extraction of an irreducible component $\Sigma \subset \widehat{\Sigma}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quality of hyperbolicity

Fix $\varepsilon, \beta > 0$ small. To simplify, *M* is a surface.

The Non-Uniformly Hyperbolic set
$$\text{NUH}_{\chi}$$
:
set of $x \in M$ with directions e^s , e^u and angle $\alpha(x)$ s.t.
 $\circ s(x) := \left(\sum_{n\geq 0} e^{2\chi n} \|Df^n(x).e^s\|^2\right)^{1/2} < \infty$,
 $\circ u(x) := \left(\sum_{n\geq 0} e^{2\chi n} \|Df^{-n}(x).e^u\|^2\right)^{1/2} < \infty$,
 $\circ \frac{1}{n} \log Q(f^n(x)) \longrightarrow 0 \text{ as } n \to \pm \infty$,
where $Q(x) := \max(\alpha(x), 1/s(x), 1/u(x)))^{1/\beta}$.

Points $x \in \text{NUH}_{\chi}$ have a *Pesin chart* of size: Q(x).

Size of stable manifold: $q^{s}(x) = \min\{e^{\varepsilon n}Q(f^{n}(x)), n \ge 0\},\$ Size of unstable manifold: $q^{u}(x) = \min\{e^{\varepsilon n}Q(f^{-n}(x)), n \ge 0\}.$

I- Markov covering: construction

– it "covers" NUH_{χ} ,

- it is discrete: the set of charts $\Psi_x^{p^s,p^u}$ with $p^s, p^u > t$ is finite.

Transitions. $\Psi_x^{p_1^s,p_1^u} \to \Psi_y^{p_2^s,p_2^u}$ if $f(x) \sim y$ and $p_1^{s/u} \sim p_2^{s/u}$.

 Σ_0 : space of sequences in \mathcal{A} compatible with the transitions.

Non-uniform shadowing $\pi_0(\underline{\Psi})$: For any $\underline{\Psi} = (\Psi_n)_{\mathbb{Z}} \in \Sigma_0$, there is a unique point $\pi_0(\underline{\Psi}) = x \in M$ such that $f^n(x) \in Im(\Psi_n)$ for all $n \in \mathbb{Z}$.

 \Rightarrow Any orbit in NUH_{χ} lifts by $\pi_0 \colon \Sigma_0 \to M$.

I- Markov covering: local finiteness

We have built
$$\pi_0 \colon \Sigma_0 \to M$$

 $\underline{\Psi} = (\Psi_n) \mapsto \pi_0(\underline{\Psi}).$

Summary. Let $Z_{\Psi} = \pi_0(\{(\Psi_n), \Psi_0 = \Psi\} \cap \Sigma_0^{\#})$ (projected cylinder), $\Psi \in \mathcal{A}$. One gets a locally finite covering \mathcal{Z} of $\pi_0(\Sigma_0^{\#})$ by "Markov rectangles": $x \in \pi_0(\Sigma_0^{\#})$ belongs to finitely many Z_{Ψ} , but has maybe infinitely many lifts in $\Sigma_0^{\#}$.

II- The global coding: construction

 \mathcal{Z} : collection of projected rectangles Z_{Ψ} with transition relation $\Psi \to \Psi'$.

Bowen-Sinaï refinement.

Any $Z_{\Psi}, Z_{\Psi'}$ which intersect generate seven rectangles.

$$\mathcal{R}$$
: partition of $\pi_0(\Sigma_0^{\#})$ induced by all rectangles generated by pairs $Z_{\Psi}, Z_{\Psi'} \in \mathcal{Z}$.

Transitions: $R \to R'$ if $f(R) \cap R' \neq \emptyset$. $\widehat{\Sigma}$: space of sequences on \mathcal{R} compatible with transitions. Projection: $\pi(\underline{R}) = \bigcap_{n \in \mathbb{Z}} f^{-n}(Closure(R_n)).$

 \Rightarrow A well-defined continuous map $\pi \colon \widehat{\Sigma} \to M$.

II- The global coding: properties

Bowen property. There exists a relation \sim on \mathcal{R} (affiliation) st:

- For any $\underline{R}, \underline{R}' \in \widehat{\Sigma}^{\#}$, $\pi(\underline{R}) = \pi(\underline{R}') \Leftrightarrow (\forall n, R_n \sim R'_n)$.
- For any R, the set $\{R' \sim R\}$ is finite.

 $\sim \text{ is defined by:} \qquad R \sim R' \text{ iff } R \subset Z_{\Psi}, \ R' \subset Z_{\Psi'} \text{ and } Z_{\Psi} \cap Z_{\Psi'} \neq \emptyset.$

Corollary. $\pi: \widehat{\Sigma}^{\#} \to M$ is finite-to-one. Consider $\underline{R} = (R_n)$ and R_-, R_+ such that $R_n = R_-$ for infinitely many n < 0, $R_n = R_+$ for infinitely many n > 0. Then $\#\{\underline{R}' \in \widehat{\Sigma}^{\#}, \ \pi(\underline{R}') = \pi(\underline{R})\}$ is bounded by a $Cte(R_-, R_+)$.

Characterization of the uniform hyperbolicity.

Uniformly χ -hyperbolic sets in M can be lifted as compact sets in Σ . The transitivity is preserved.

III- Selection of a transitive component Σ of $\widehat{\Sigma}$

H(O): a homoclinic class.

Proposition.

There exists a transitive component $\Sigma \subset \widehat{\Sigma}$ containing periodic orbits that lift all the periodic orbits $O' \sim O$ that are χ -hyperbolic.

Proof.

Consider these periodic orbits O_1, O_2, \ldots

There exists transitive hyperbolic set K_n which contains O_1, \ldots, O_n . Lift $K_n \subset M$ as a transitive compact set $\widehat{K}_n \subset \widehat{\Sigma}$.

Finiteness-to-one property on $\Sigma^{\#}$ \Rightarrow there is a transitive component $\Sigma \subset \widehat{\Sigma}$ containing infinitely many \widehat{K}_n .

III- Lifting the measures in $\boldsymbol{\Sigma}$

 $\mu \sim {\it O}$ a χ -hyperbolic measure

Proposition.

There exists a measure ν on Σ such that $\pi_*(\nu) = \mu$.

Proof.

- Lift $\hat{\nu}$ on a transitive component Σ' of $\widehat{\Sigma}$ (maybe not Σ).
- Approximate $\widehat{\nu}$ by periodic orbits $\widehat{O}_1, \widehat{O}_2, \ldots$ in $\widehat{\Sigma}$: there are $\widehat{p}_i \in \widehat{O}_i$ such that $\widehat{p}_i \to \widehat{x}$ typical for $\widehat{\nu}$.
- Project in *M* as periodic orbits O_1, O_2, \ldots s.t. χ -hyperbolic and $\sim O$.
- Lift them as periodic orbits $\widetilde{O}_1, \widetilde{O}_2, \ldots$ in Σ . There is $\widetilde{\rho}_i \in \widetilde{O}_i$ such that $\pi(\widetilde{\rho}_i) = \pi(\widehat{\rho}_i)$.
- (\widetilde{p}_i) is precompact (Bowen property) \Rightarrow converges to some $\widetilde{x} \in \Sigma^{\#}$.

- This lift to $\Sigma^{\#}$ all points of a set of full μ -measure and average \Rightarrow defines a measure ν on $\Sigma^{\#}$ which lifts μ .

Summary

H(O): a homoclinic class of a C^r diffeomorphism of surface NUH_{χ} : set of points in H(O) that are ' χ -hyperbolic'.

Theorem (Local coding). For any $\chi > 0$, there exists: - a loc. compact Markov shift on a countable alphabet (Σ, σ) , - a Hölder map $\pi: \Sigma \to H(O)$ satisfying $\pi \circ \sigma = f \circ \pi$, such that (a) $\pi(\Sigma^{\#}) \supset NUH_{\chi}$, (b) π is finite-to-one on $\Sigma^{\#}$, (c) (Σ, σ) is transitive.

Questions.

- How does Σ behave at infinity?
- Is it possible to code the whole $\bigcup_{\chi} NUH_{\chi}$ (when f is C^{∞})?
- How to address $H(O) \setminus \pi(\Sigma^{\#})$?

Homoclinic classes and equilibrium states

Lecture 4 - Equilibrium states: existence and uniqueness

Sylvain Crovisier

CNRS / Univ. Paris-Sud

Smooth and homogeneous dynamics Bangalore, september 23-27th 2019

・ロト・日本・モート モー うへぐ

Measures of maximal entropy

μ maximizes the entropy if it realizes the supremum $h_{top}(f) = h(f, \mu).$

Motivation (Burguet). For a C^{∞} -diffeomorphism on surface, the periodic orbits with Lyapunov exponents δ -far from 0 equidistribute towards the measures maximizing the entropy.

Existence?

- Yes under expansivity (hyperbolic diffeomorphisms,...).
- No in general for C^r -diffeomorphisms. (Buzzi)

Theorem. (Newhouse) If f is a C^{∞} diffeomorphism on a compact manifold, it has a measure of maximal entropy.

Measures of maximal entropy: finiteness

Finiteness of the set of ergodic measures maximizing the entropy? was known for: – hyperbolic diffeomorphisms,... – some non-uniformly hyperbolic Hénon maps. (Berger)

Theorem. $f: a C^{\infty}$ -diffeo of surface with $h_{top}(f) > 0$. The number of ergodic measures maximizing the entropy is finite. Moreover, if f is transitive, it is equal to 1 (uniqueness).

Remark. When f is C^r :

- the same holds if $h_{top}(f) > Bilip(f)/r$,
- this may fail when $h_{top}(f) < Bilip(f)/r$.

Physical / SRB measures

 μ : a hyperbolic measure of a C^2 -diffeomorphism.

Definition. μ is SRB if its desintegrations along W^{μ} are abs continuous.

Equivalent definitions (Ledrappier, Young, Tsujii,...):

(1) μ is "strongly" physical: for x in a set of positive Lebesgue measure, ¹/_n Σⁿ⁻¹_{i=0} δ_{fⁱ(x)} → μ and the forward orbit of x has the same exponents as μ.
(2) h(f, μ) equals the sum of the positive Lyapunov exponents of μ.

Restatement. On introduces the geometrical potential ϕ_{geom} : $M \to \mathbb{R}$. $\phi_{geom}(x) = \begin{cases} -\log |\det(Df|_{E^u(x)})| & \text{if } x \text{ has an unstable space,} \\ -\infty & \text{otherwise.} \end{cases}$

If μ is an SRB it maximizes $h(f, \mu) + \int \phi_{geom} d\mu$.

Physical / SRB measures: finiteness

Theorem (Hertz-Hertz-Tahzibi-Ures). f: a C^2 diffeo of surface. Each homoclinic class supports at most one SRB measure.

Corollary. On a transitive attractor, there is at most one SRB measure.

Theorem (BCS). f: a C^{∞} diffeo of surface. Fix $\delta > 0$. If Leb. a.e. point thas an upper Lyapunov exponent $> \delta$, then there exist at most finitely many ergodic SRB measures.

Remark. When f is C^r , the same holds if $\delta > Bilip(f)/r$.

Equilibrium measures

 $\phi \colon H(O) \to \mathbb{R} \cup \{-\infty\}$: a measurable potential.

Definition. μ is an *equilibrium state* for ϕ if it realizes the supremum:

$$\mathsf{P}_{\mathsf{f}}(\phi) := \sup_{
u} \left(\mathsf{h}(f,
u) + \int \phi d
u
ight).$$

Remark (*small potential condition*.) For surface diffeomorphisms, the equilibrium states are hyperbolic provided that:

$$\sup \varphi - \inf \varphi < h_{top}(f).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Uniqueness

Equilibrium measures: uniqueness

Theorem. Consider f, a C^2 diffeomorphism of a compact manifold, O a hyperbolic periodic orbit and φ either Hölder or = φ_{geom} . Then there is at most one hyperbolic equilibrium state $\mu \sim O$. Its support coincides with H(O); if period(H(O))=1, μ is Bernoulli.

Other approaches under various hyperbolic settings, using:

- the specification for the original system
 - (for instance the recent works by Climenhaga, Thompson, Burns, Fisher,...),

- the geometrical properties of measures
 - (for instance Hopf argument),

- ...

Equilibrium measures: uniqueness

Fix $\chi > 0$ small.

- (1) There exists a coding by transitive Markov shift $\pi: \Sigma \to M$ st: - π is Hölder continuous,
 - any χ -hyperbolic measure $\mu \sim O$ lifts as a measure $\widehat{\mu}$ on Σ ,

$$-h(f,\mu)=h(\sigma,\widehat{\mu}).$$

- (2) χ -hyperbolic equilibrium states $\mu \sim O$ lift as eq. states on Σ . Hölder or geometrical potentials lift as Hölder bounded potentials on Σ .
- (3) The Bernoulli property is preserved by factor maps. (Ornstein)

Conclusion. We are reduced to a problem on Markov shifts.

Properties of Markov shifts

 (Σ, σ) : a transitive locally compact Markov shift on a countable alphabet and with finite entropy.

Theorem (Gurevich, Buzzi-Sarig). $\phi: \Sigma \to \mathbb{R}$ Hölder and bounded. Then ϕ admits at most one equilibrium measure. When it exists, it has full support and it is isomorphic to Bernoulli \times finite permutation.

Proof. In the case $\phi = 0$. Denote by [*i*] the 0-cyclinders of Σ .

Any measure μ has a Markov approximation $\bar{\mu}$: $\bar{\mu}[i] := \mu[i]$ with transitions $P_{i,j} := \mu[i,j]/\mu[i]$.

Then
$$h(\mu) \leq h(\bar{\mu}) = -\sum_{i,j} \bar{\mu}[i] P_{i,j} \log P_{i,j}$$
.

Existence

Equilibrium measures: existence

Theorem. Take $f \ C^{\infty}$ on a compact manifold and φ continuous. Then there exists an equilibrium state.

Proof. Yomdin theory for a C^r -diffeomorphism gives:

and
$$\begin{split} \limsup_n h(f,\mu_n) &\leq h(f,\mu) + h^*(f) \qquad \text{if } \mu_n \to \mu, \\ h^*(f) &\leq \frac{\textit{Bilip}(f)}{r}. \end{split}$$

Hence $h \mapsto h(f, \mu)$ is semi-continuous for C^{∞} diffeomorphisms.

Thus one considers any limit of measures approaching the supremum.

Yomdin theory

Notation.
$$B_f(x, n, \varepsilon) := \{z, d(f^i(x), f^i(z)) \le \varepsilon, 0 \le i \le n\}.$$

 $B_f(x, \infty, \varepsilon) := \{z, d(f^i(x), f^i(z)) \le \varepsilon, 0 \le i\}.$

 $\begin{array}{ll} \textit{Local contribution} & h^*(f,\varepsilon) = \sup_{x \in M} h_{top}(B_f(x,\infty,\varepsilon)), \\ \textit{to entropy} \\ \textit{at scale } \varepsilon & h^*(f,\mu,\varepsilon) = \inf_{\mu(X) = 1/2} \sup_{x \in X} h_{top}(B_f(x,\infty,\varepsilon)), \end{array}$

Theorem. $f: C^r$ -diffeomorphism of surface.

$$h^*(f) := \lim_{arepsilon o 0} h^*(f,arepsilon) \leq rac{{\it Bilip}(f)}{r}$$

.

Yomdin theory: steps of the proof

A variational principle:
 (Downarowicz-Newhouse)

.

$$h^*(f) \leq \sup_{\mu} h^*(f,\mu,arepsilon)$$

- Newhouse's bound: $h^*(f,\mu,\varepsilon) \leq L^*_r(f,2\varepsilon)$

where

$$L_r^*(f,\varepsilon) = \sup_{C^r - curve \ \gamma} \left(\limsup_{n \ x} \sup_{x} \frac{1}{n} \log^+ \operatorname{Length}(f^n(\gamma \cap B_f(x, n, \varepsilon))) \right).$$

– Yomdin's bound:	$\lim_{\varepsilon \to 0} L_r^*(f,\varepsilon) \le \frac{Bilip(f)}{r}$
-------------------	--

Entropy at small scales: Yomdin's reparametrization lemma

Given $\gamma : [0,1] \xrightarrow{C^r} M$, how to bound Length $(f^n(\gamma \cap B_f(x, n, \varepsilon)))$?

Consider
$$I_1, \ldots, I_{\ell(n)} \subset [0, 1]$$
 and parametrizations $\psi_i \colon [0, 1] \to I_i$ st:
(a) $\|f^n \circ \gamma \circ \psi_i\|_{C^r} \leq 1$
(b) $Im(\gamma) \cap B_f(x, n, \varepsilon) \subset \cup_i Im(\gamma \circ \psi_i).$

The growth of $\ell(n)$ is estimated by induction: $\ell(n) \leq Lip(f)^{n/r}$.

Entropy at small scales: Yomdin's reparametrization lemma

Given $\gamma: [0,1] \xrightarrow{C'} M$, how to bound Length $(f^n(\gamma \cap B_f(x, n, \varepsilon)))$?

Consider
$$I_1, \ldots, I_{\ell(n)} \subset [0, 1]$$
 and parametrizations $\psi_i \colon [0, 1] \to I_i$ st:
(a) $\|f^n \circ \gamma \circ \psi_i\|_{C^r} \leq 1$
(b) $Im(\gamma) \cap B_f(x, n, \varepsilon) \subset \cup_i Im(\gamma \circ \psi_i).$

The growth of $\ell(n)$ is estimated by induction: $\ell(n) \leq Lip(f)^{n/r}$.

 $Lip(f) = ||f||_{C^r}$ and $||\gamma||_{C^r} \le 1 \Rightarrow ||D^r f \circ \gamma(L, \cdot)||_0 \le 1$, where $L \sim Lip(f)^{-1/r}$.

Algebraic lemma. One can subdivide and reparametrize $f(\gamma) \cap B(x, \varepsilon)$ into at most cte.Lip $(f)^{1/r}$ arcs γ' st $\|\gamma'\|_{C^r} \leq 1$.