Programme of Lectures

- The road to the Higgs discovery
- Characterizing the new particle
- What else?
 - Supersymmetry?
 - -Future accelerators?
 - -Cosmological inflation?

JE "Higgs Physics": arXiv:1312.5672

Elementary Higgs or Composite?

Higgs field:
<0|H|0> ≠ 0
Ouantum loop problems
Fermion-antifermion condensate
Just like OCD_BCS

No visible hint of anything beyond the Standard Model

Cut-off $\Lambda \sim 1$ TeV with Supersymmetry?

top

gauge

higgs

-Heavy scalar resonance?-Inconsistent with precision electroweak data?

Theoretical Confusion

- High mortality rate among theories
- (M_{H}, M_{t}) close to stability bound
- Λ close to Weinberg upper bound
- Split SUSY? High-scale SUSY?
- Modify/abandon naturalness? Does Nature care?
- String landscape?
- SUSY anywhere better than nowhere
- SUSY could not explain the hierarchy
- New ideas needed!

No BSM? Beware Historical Hubris

- "So many centuries after the Creation, it is unlikely that anyone could find hitherto unknown lands of any value" Spanish Royal Commission, rejecting Christopher Columbus proposal to sail west, < 1492
- " "The more important fundamental laws and facts of physical science have all been discovered" Albert Michelson, 1894
- "There is nothing new to be discovered in physics now. All that remains is more and more precise measurement" - Lord Kelvin, 1900
 - *"Is the End in Sight for Theoretical Physics?" Stephen Hawking, 1980*

The Dog(s) that did not Bark

• To Sherlock Holmes:

"Is there any other point to which you would wish to draw my attention?"

• Holmes:

"To the curious incident of the dog in the night-time."

• To Holmes:

"The dog did nothing in the night-time."

• Holmes:

"That was the curious incident."

• We have many clues:

Waiting for our Holmes: maybe a string player?

Why is there Nothing rather than Something?

- Higher-dimensional operators as relics of higherenergy physics: $\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$
 - Operators constrained by $SU(2) \times U(1)$ symmetry: $\mathcal{L}_{\text{SILH}} = \frac{\bar{c}_{H}}{2m^{2}} \partial^{\mu} \left[\Phi^{\dagger} \Phi \right] \partial_{\mu} \left[\Phi^{\dagger} \Phi \right] + \frac{\bar{c}_{T}}{2m^{2}} \left[\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] - \frac{\bar{c}_{6} \lambda}{m^{2}} \left[H^{\dagger} H \right]^{3}$ $- \left| \frac{\bar{c}_u}{v^2} y_u \Phi^{\dagger} \Phi \ \Phi^{\dagger} \cdot \bar{Q}_L u_R + \frac{\bar{c}_d}{v^2} y_d \Phi^{\dagger} \Phi \ \Phi \bar{Q}_L d_R + \frac{\bar{c}_l}{v^2} y_\ell \ \Phi^{\dagger} \Phi \ \Phi \bar{L}_L e_R + \text{h.c.} \right|$ $+\frac{ig\ \bar{c}_W}{m^2} \left[\Phi^{\dagger}T_{2k}\overleftrightarrow{D}^{\mu}\Phi\right] D^{\nu}W^k_{\mu\nu} + \frac{ig'\ \bar{c}_B}{2m^2} \left[\Phi^{\dagger}\overleftrightarrow{D}^{\mu}\Phi\right] \partial^{\nu}B_{\mu\nu}$ $+\frac{2ig \ \bar{c}_{HW}}{m_{\nu}^{2}} [D^{\mu} \Phi^{\dagger} T_{2k} D^{\nu} \Phi] W^{k}_{\mu\nu} + \frac{ig' \ \bar{c}_{HB}}{m_{\nu}^{2}} [D^{\mu} \Phi^{\dagger} D^{\nu} \Phi] B_{\mu\nu}$ $+\frac{g^{\prime 2} \bar{c}_{\gamma}}{m^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{g_s^2 \bar{c}_g}{m^2} \Phi^{\dagger} \Phi G^a_{\mu\nu} G^{\mu\nu}_a \quad \text{Alloul, Fuks \& Sanz, arXiv:1310.5150}$

Constrain with Higgs data, triple-gauge couplings...

Examples of Possible Effects in H Production

What else is there?

Supersymmetry

- Successful prediction for Higgs mass
 Should be < 130 GeV in simple models
- Successful predictions for Higgs couplings
 Should be within few % of SM values
- Could explain the dark matter
- Naturalness, GUTs, string, ... (???)

Loop Corrections to Higgs Mass²

Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + ...]$$

• Leading diverger
$$\lambda_S = i \ge 2$$

Supersymmetry!

Theoretical Constraints on Higgs Mass

$$\lambda(Q) = \lambda(v) - \frac{3m_t^4}{2\pi^2 v^4} \log \frac{Q}{v}$$

 Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ
 → vacuum unstable

• Vacuum could be stabilized by **Supersymmetry**

Degrassi, Di Vita, Elias-Miro, Giudice, Isodori & Strumia, arXiv:1205.6497

How to Stabilize a Light Higgs Boson?

- Top quark destabilizes potential: introduce stop-like scalar: $\mathcal{L} \supset M^2 |\phi|^2 + \frac{M_0}{v^2} |H|^2 |\phi|^2$
- Can delay collapse of potential:
- But new coupling must be fine-tuned to avoid blow-up:
- Stabilize with new fermions:
 just like Higgsinos
- Very like Supersymmetry!

D

Ross

Electroweak Symmetry Breaking

Could be driven by radiative corrections due to top A bonus: supersymmetry may explain why u < 0

(GeV)

Mass

Sparticle

 $M_0 = 300 \text{ GeV}, M_{1/2} = 100 \text{ GeV}, A_0 = 0$ 400 300 200 ŵ 100 Ĩ 1012 10¹⁵ 103 10⁶ 10⁹ (GeV) Q

Higgs Bosons in Supersymmetry

- Need 2 complex Higgs doublets (cancel anomalies, form of SUSY couplings)
- 8 3 = 5 physical Higgs bosons
 Scalars h, H; pseudoscalar A; charged H[±]
- Lightest Higgs < MZ at tree level:

 $M_{\rm H,h}^2 = \frac{1}{2} \left[M_{\rm A}^2 + M_{\rm Z}^2 \pm \sqrt{(M_{\rm A}^2 + M_{\rm Z}^2)^2 - 4M_{\rm Z}^2 M_{\rm A}^2 \cos^2 2\beta} \right]$

• Important radiative corrections to mass:

$$G_{\mu}m_{t}^{4}\ln\left(\frac{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}{m_{t}^{2}}\right)_{\mathrm{H}} \sim 1.5 \mathrm{~GeV}$$

MSSM Higgs Masses & Couplings

Limits on Heavy MSSM Higgses

Bechtle et al., arXiv:1211.1955

Maybe it is a Supersymmetric Duck?

• Fits with lighter/heavier scalar Higgs at 125 GeV

			Observable	Source	Constraint
				Th./Ex.	
			$m_t \; [\text{GeV}]$	[39]	173.2 ± 0.90
			$\Delta \alpha_{ m had}^{(5)}(m_{ m Z})$	[38]	0.02749 ± 0.00010
	l Data l		M_Z [GeV]	[40]	91.1875 ± 0.0021
			Γ_Z [GeV]	[24] / [40]	$2.4952 \pm 0.0023 \pm 0.001_{\rm SUSY}$
			$\sigma_{\rm had}^0$ [nb]	[24] / [40]	41.540 ± 0.037
			R_l	[24] / [40]	20.767 ± 0.025
			$A_{ m fb}(\ell)$	[24] / [40]	0.01714 ± 0.00095
			$A_{\ell}(P_{\tau})$	[24] / [40]	0.1465 ± 0.0032
• Floatnewool provision			$R_{\rm b}$	[24] / [40]	0.21629 ± 0.00066
• Electroweak precision			$R_{\rm c}$	[24] / [40]	0.1721 ± 0.0030
-			$A_{ m fb}(b)$	[24] / [40]	0.0992 ± 0.0016
observables			$A_{\rm fb}(c)$	[24] / [40]	0.0707 ± 0.0035
			A_b	[24] / [40]	0.923 ± 0.020
			A_c	[24] / [40]	0.670 ± 0.027
			$A_{\ell}(SLD)$	[24] / [40]	0.1513 ± 0.0021
• Flavour physics		$\sin^2 \theta_{\rm w}^{\ell}(Q_{\rm fb})$	[24] / [40]	0.2324 ± 0.0012	
		M_W [GeV]	[24] / [40]	$80.399 \pm 0.023 \pm 0.010_{\rm SUSY}$	
obsorvablas			$BR_{b \to s\gamma}^{EXP}/BR_{b \to s\gamma}^{SM}$	[41] / [42]	$1.117 \pm 0.076_{\rm EXP}$
UNCIVADICS					$\pm 0.082_{\rm SM}\pm 0.050_{\rm SUSY}$
• $g_1 - 2$ Deviation from Stands			and Madal	[27] / [37]	$(< 1.08 \pm 0.02_{\rm SUSY}) \times 10^{-8}$
			alu mouel.	[27] / [42]	$1.43 \pm 0.43_{EXP+TH}$
			4	[27] / [42]	$< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$
Ομ	Supersymmetry	at low	scale. or'	[43]/ [42]	0.99 ± 0.32
			$BR_{K \to \mu\nu}/BR_{K \to \mu\nu}$	[27] / [44]	$1.008 \pm 0.014_{\rm EXP+TH}$
• Hi	σσε mass		$\text{BR}_{K \to \pi \nu \bar{\nu}}^{\text{EXP}} / \text{BR}_{K \to \pi \nu \bar{\nu}}^{\text{SM}}$	[45]/ [46]	< 4.5
	iggs mass	1910	$\Delta M_{B_s}^{\text{EXP}} / \Delta M_{B_s}^{\text{SM}}$	[45] / [47,48]	$0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$
 Dark matter LHC		$\frac{\frac{(\Delta M_{B_g}^{\text{EXP}} / \Delta M_{B_g}^{\text{SM}})}{(\Delta M_{B_d}^{\text{EXP}} / \Delta M_{B_d}^{\text{SM}})}$	[27] / [42, 47, 48]	$1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$	
			$\Delta \epsilon_K^{\mathrm{EXP}} / \Delta \epsilon_K^{\mathrm{SM}}$	[45] / [45 49]	$1.08 \pm 0.14_{\rm EXP+TH}$
		$a^{\text{EXP}} = a^{\text{OM}}$	[49] / [38,50]	$(30.2 \pm 8.8 \pm 2.0_{SUSL}) \times 10^{-10}$	
		$M_{\rm H} = 125.6 \pm 0.3 \pm 1.5 \text{ GeV} \pm 1.5 \text{ SUSY}$			
			[0.2]	/ SL	
and the second of the second o		The second s	σ_p	[23]	$(m_{-2} - p)$ plane
			jets $+ \not\!\!\!E_T$	[16, 18]	$(m_0, m_{1/2})$ plane
MasterCo	ode: O.Buchmueller. JE et al.	the second and	$H/A, H^{\pm}$	[19]	$(M_A, \tan\beta)$ plane

Search with ~ 5/fb @ 8 TeV

MasterCode

Combines diverse set of tools

- different codes : all state-of-the-art
 - Electroweak Precision (FeynWZ)
 - Flavour (SuFla, micrOMEGAs)
 - Cold Dark Matter (DarkSUSY, micrOMEGAs)
 - Other low energy (FeynHiggs)
 - Higgs (FeynHiggs)
- different precisions (one-loop, two-loop, etc)
- different languages (Fortran, C++, English, German, Italian, etc)
- different people (theorists, experimentalists)
- Compatibility is crucial! Ensured by
 - close collaboration of tools authors
 - standard interfaces

O. Buchmueller, R. Cavanaugh, *M. Citron*, A. De Roeck, M.J. Dolan, J.E., H. Flacher, S. Heinemeyer, G. Isidori,

J. Marrouche, D. Martinez Santos, S. Nakach, K.A. Olive, S. Rogerson, F.J. Ronga, K.J. de Vries, G. Weiglein

Post-LHC, Post-XENON100

mas TeRcope

Post-LHC, Post-XENON100

2012 ATLAS + CMS with 20/fb of LHC Data

Post-LHC, Post-XENON100

2012 ATLAS + CMS with 20/fb of LHC Data

What Next: A Higgs Factory?

- To study the 'Higgs' in detail: •The LHC
 - Rethink LHC upgrades in this perspective?
- •A linear collider?
 - ILC up to 500 GeV
 - CLIC up to 3 TeV
 - (Larger cross section at higher energies)
- •A circular e⁺e⁻ collider: LEP3, TLEP
 - A photon-photon collider: SAPPHiRE
- •A muon collider

Possible High-Luminosity LHC Measurements

TLEP: Part of a Vision for the Future

Exploration of the 10 TeV scale Direct (VHE-LHC) + Indirect (TLEP) Need major effort to develop the physics case Work together

What Higgs Factory?

Circular e⁺e⁻ colliders

L.g., LEP3:

- Vs = 240 GeV in the LHC tunnel to produce e^+e^- ZH events
- Short beem lifetime (10 mins) requires two ring scheme
 - Top up injection from 240 GeV "accelerator ring"
 - "Collider ring" supplying 2-4 interaction points L = 10³⁴ cm⁻²s⁻¹ per IP
 Re-use ATLAS and CMS and/or install two dedicated LC-type detectors
- Current design uses arc optics from LHeC ring
 - Dipole fill factor 0.75 (smaller than for LEP)
 - increased synchrotron energy loss (7 GeV per turn)
 - redesign possible?
- e[±] polarization probably not possible at Vs = 240 GeV
- In principle space is available to install compact e⁺e⁻ facility on top of LHC ring
 - Is this really feasible?
 - Alternatively wait until completion of LHC physics programme and removal of LHC ring?
- SuperTRISTAN is a proposal for a similar machine in Japan

E.g., TLEP:

vs = 350 GeV in 80 km LHC tunnel to reach thresholds for top pair and e⁺e⁻ $\rightarrow vvWW \rightarrow vvH$

New large tunnel could also be used for VHE pp collisions

Possible Luminosities of e⁺e⁻ Colliders

Comparison of Possible Higgs Factory Measurements

H Coupling Measurements @TLEP

Future Accelerators

- (What) precision, (how) high energy, neutrinos?
- Which is THE top priority accelerator?
 - Precision: HL-LHC, ILC/CLIC, TLEP, MC, γγ
 - Energy: HE-LHC, VHE-LHC, CLIC, MC
 - Neutrinos: from superbeam to v factory
- HL-LHC is not a done deal, needs high-tech:
 - 11T dipoles, 13T quads, 500m HTS link, crab cavities
- Worldwide collaborative R&D needed

Impact of Higgs Factory?

- Predictions of current best fits in simple SUSY models
- Current uncertainties in SM calculations [LHC Higgs WG]
- Comparisons with
 - LHC
 - HL-LHC
 - ILC
 - TLEP
 - Don't decide before LHC 13/4

Summary

- Beyond any reasonable doubt, the LHC has discovered a (the) Higgs boson
- A big challenge for theoretical physics!
- The LHC may discover physics beyond the SM when it restarts at ~ 13 TeV
- If it **does**, priority will be to study it
- If it does **not**, natural to focus on the Higgs
- In this case, TLEP offers the best prospects
 and also other high-precision physics

Inflationary Models in Light of Planck

- Planck CMB observations consistent with inflation
- Tilted scalar perturbation spectrum (rolling down): $n_s = 0.9585 \pm 0.070$
- **BUT** strengthen upper limit on tensor perturbations: r < 0.10
- Challenge for simple inflationary models
 - Starobinsky R² to rescue?

• Higgs/supersymmetry/supergravity to rescue?

Starobinsky Model

- Non-minimal general relativity (singularity-free cosmology): • No scalar!? $S = \frac{1}{2} \int d^4x \sqrt{-g} (R + R^2/6M^2)$
- Inflationary interpretation, calculation of Mukhanov & Chibisov, 1981 perturbations:

$$\delta S_b = \frac{1}{2} \int d^4 x \left[\phi'^2 - \nabla_a \phi \nabla^a \phi + \left(\frac{a}{a} + M^2 a^2 \right) \phi^2 \right]$$

Conformally equivalent to scalar field model:

$$S = \frac{1}{2} \int d^4x \sqrt{-\tilde{g}} \left[\tilde{R} + (\partial_\mu \varphi')^2 - \frac{3}{2} M^2 (1 - e^{-\sqrt{2/3}\varphi'})^2 \right]$$

Higgs Inflation: a Single Scalar?

Bezrukov & Shaposhnikov, arXiv:0710.3755

• Standard Model with non-minimal coupling to gravity: $S_J = \int d^4x \sqrt{-g} \left\{ -\frac{M^2 + \xi h^2}{2} R \right\}$

• Consider case $1 \ll \sqrt{\xi} \ll 10^{17}$: in Einstein frame

 $+\frac{\partial_{\mu}h\partial^{\mu}h}{2}-\frac{\lambda}{4}\left(h^{2}-v^{2}\right)^{2}$

$$S_E = \int d^4x \sqrt{-\hat{g}} \left\{ -\frac{M_P^2}{2}\hat{R} + \frac{\partial_\mu \chi \partial^\mu \chi}{2} - U(\chi) \right\}$$

- With potential: $U(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 + \exp\left(-\frac{2\chi}{\sqrt{6}M_P}\right)\right)^{-2}$ Similar to Starobinsky, but not identical
 - Successful inflationary potential at $\chi \gg M_P$

Higgs Inflation: a Single Scalar?

BUT:

Bezrukov & Shaposhnikov, arXiv:0710.3755

- Need to take into account \geq 2-loop corrections
- Requires $\lambda > 0$ beyond M_p: need M_H > 127 GeV?
- Question of naturalness

Theoretical Constraints on Higgs Mass

- Large $M_h \rightarrow$ large self-coupling \rightarrow blow up at $\lambda(Q) = \lambda(v) - \frac{3m_t^4}{2\pi^2 v^4} \log \frac{Q}{v} \quad \text{Instability } @$
- Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ
 → vacuum unstable

• Vacuum could be stabilized by **Supersymmetry**

Degrassi, Di Vita, Elias-Miro, Giudice, Isodori & Strumia, arXiv:1205.6497

Inflation Cries out for Supersymmetry

- Want "elementary" scalar field

 (at least looks elementary at energies << M_p)
- To get right magnitude of perturbations
- Prefer mass $\ll M_p$
 - (~ 10^{13} GeV in simple φ^2 models)
- And/or prefer small self-coupling $\lambda << 1$
- Both technically natural with supersymmetry

JE, Nanopoulos, Olive, & Tamvakis: 1983

Effective Potential in Wess-Zumino Model

$$W = \frac{\mu}{2}\Phi^2 - \frac{\lambda}{3}\Phi^3$$

- Effective potential: $V = \left| \frac{\partial W}{\partial \phi} \right|^2$
- Equivalent to single-field model for $\theta = 0$ (good)
- Combination of $\varphi^2 + \varphi^4$ for $\theta = \pi/2$ (no good)
- Good inflation for suitable μ, λ

 $= Av^4(x^4 - 2\cos\theta x^3 + x^2)$

Croon, JE & Mavromatos: arXiv:1303.6253

Supersymmetric Inflation in Light of Planck

 Supersymmetric Wess-Zumino (WZ) model consistent with Planck data

From Supersymmetry to Supergravity

- The only good symmetry is a local symmetry (cf, gauge symmetry in Standard Model)
- Local supersymmetry = supergravity
- Early Universe cosmology needs gravity
- Supersymmetry + gravity = supergravity
- Superpartner of graviton is gravitino fermion
- Gravitino condensation? (cf, quarks in QCD)
- Mechanism for inflation? JE & Mavromatos, arXiv:1308.1906

No-Scale Supergravity Inflation

- Supersymmetry + gravity = Supergravity
- Include conventional matter?
- Potentials in generic supergravity models have 'holes' with depths $\sim \, M_{\scriptscriptstyle P}^{\, 4}$
- Exception: no-scale supergravity
- Appears in compactifications of string
- Flat directions, scalar potential ~ global model + controlled corrections JE, Nanopoulos & Olive, arXiv:1305.1247, 1307.3537

No-Scale Supergravity Inflation

• Inflationary potential for $\lambda \simeq \mu/3$

JE, Nanopoulos & Olive, arXiv:1305.1247

No-Scale Supergravity Inflation

The Standard Model = Cosmic DNA

The matter particles

Gravitation

electromagnetism

weak nuclear force

strong nuclear force