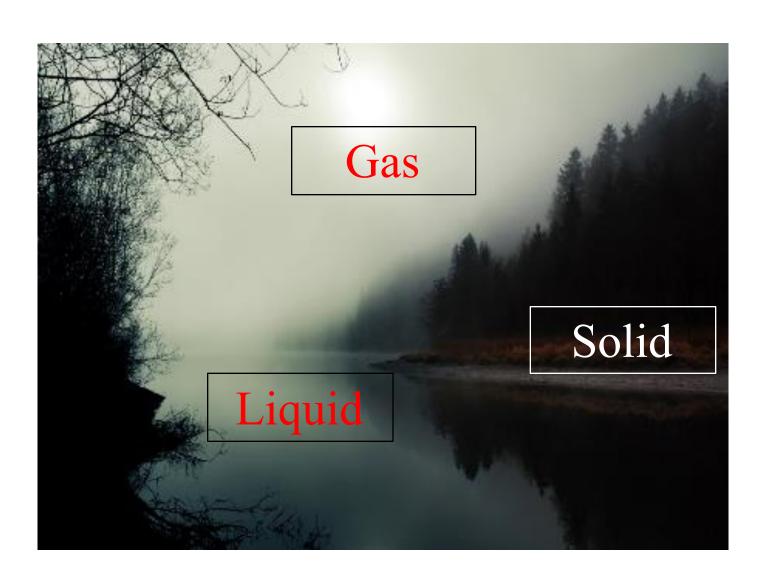
Non-equilibrium Kinetics of the Transformation of Liquids into Physical Gels

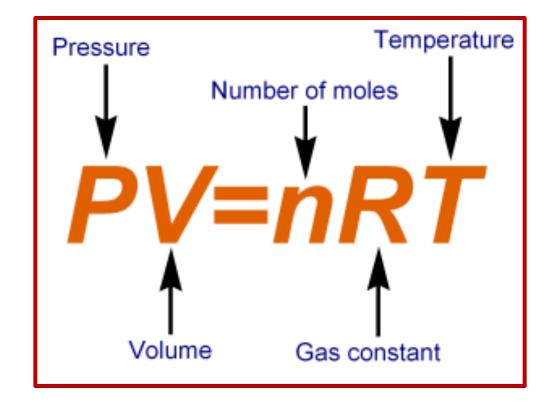
M. Medina Noyola Instituto de Física "Manuel Sandoval Vallarta" Universidad Autónoma de San Luis Potosí

ENTROPY, INFORMATION AND ORDER IN SOFT MATTER ICTS Bangalore, September 2018.

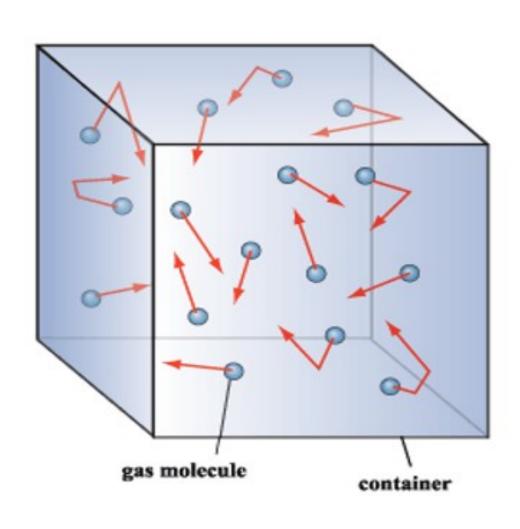
Understanding the States of Matter



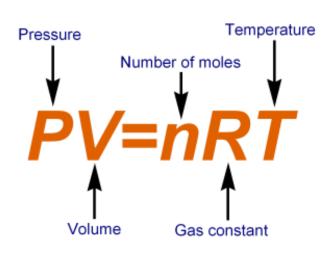
Characterizing the States of Matter



Understanding = in Molecular Terms



Understanding = in Molecular Terms



STATISTICAL THERMODYNAMICS: UNIVERSAL PRINCIPLES

Termodinámica Clásica (Callen)

PRIMERA LEY: $A = [A_1, A_2, ..., A_M].$

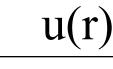
(Y la energía interna es una de ellas.)

Termodinámica Clásica (Callen)

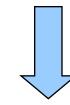
SEGUNDA LEY: Relación

Termodinámica Fundamental:

$$S = S[\mathbf{A}]$$



$S[A]=k_B Log W[A]$

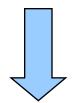


Ecuaciones de Estado

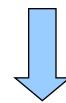
FOR EQUILIBRIUM, MANY FORMATS TO PLAY BOLTZMANN'S GAME!

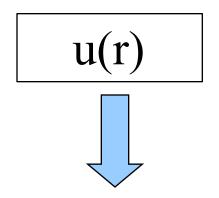


MINIMIZING FREE ENERGY

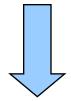


Ecuaciones de Estado

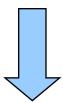


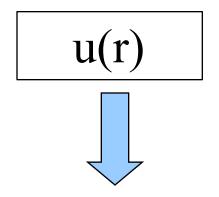


DENSITY FUNCTIONAL THEORY

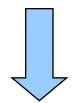


Ecuaciones de Estado

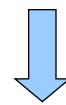




MONTECARLO SIMULATIONS

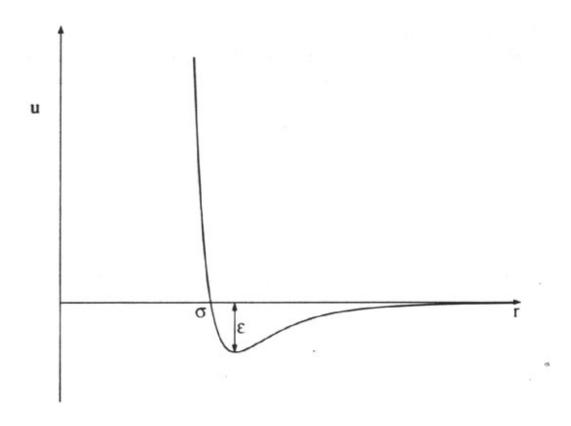


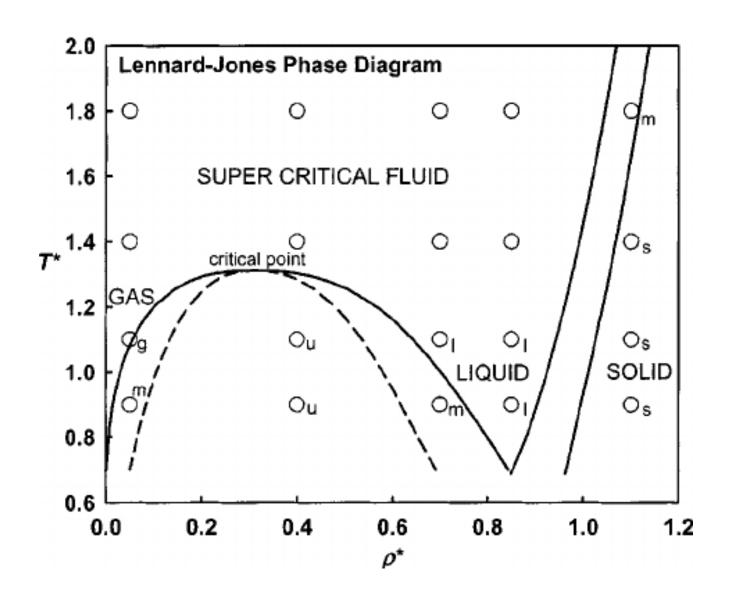
Ecuaciones de Estado

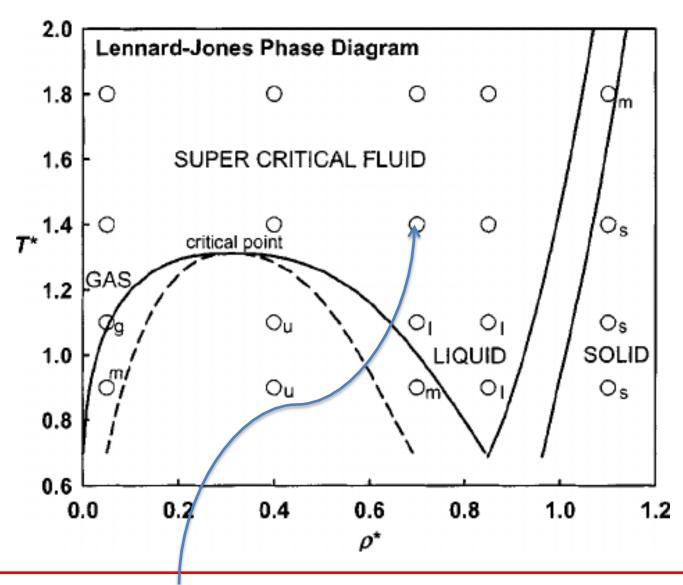


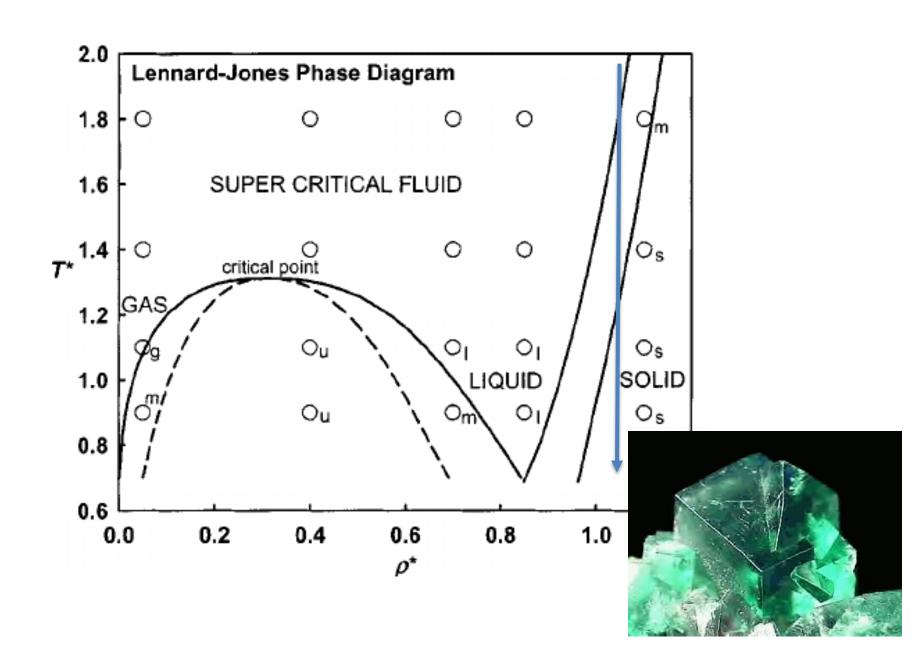
LENNARD-JONES POTENTIAL

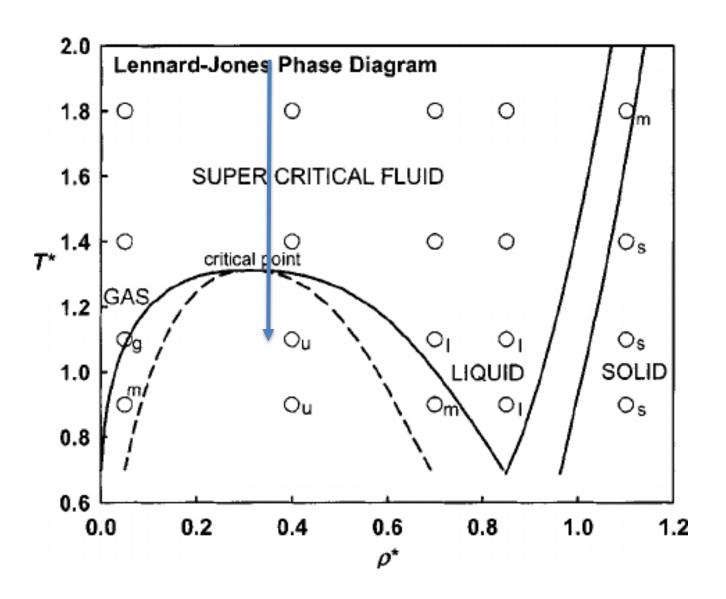
$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

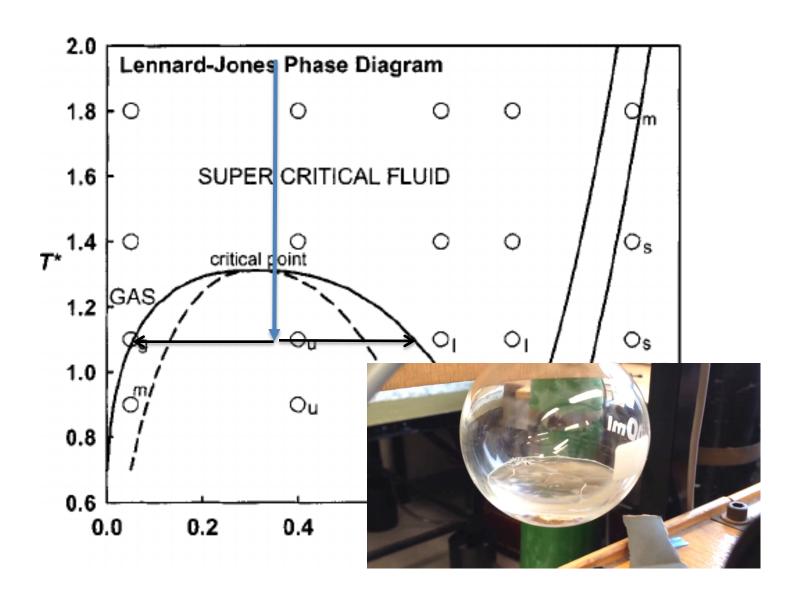








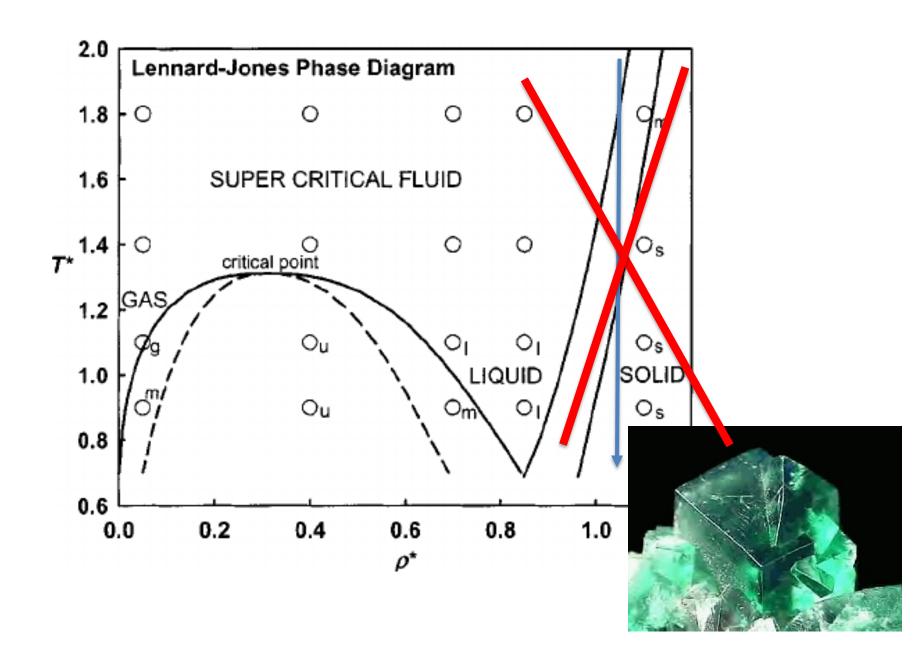




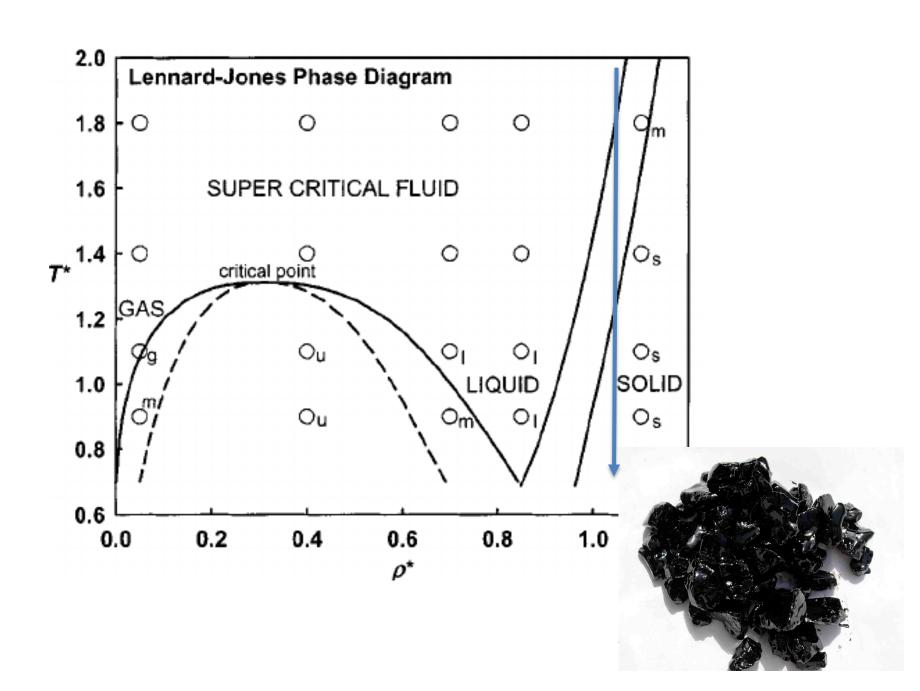
BUT...!

Sometimes things go wrong!

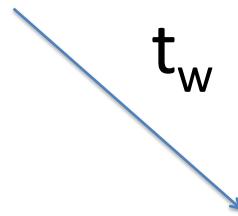
Sometimes



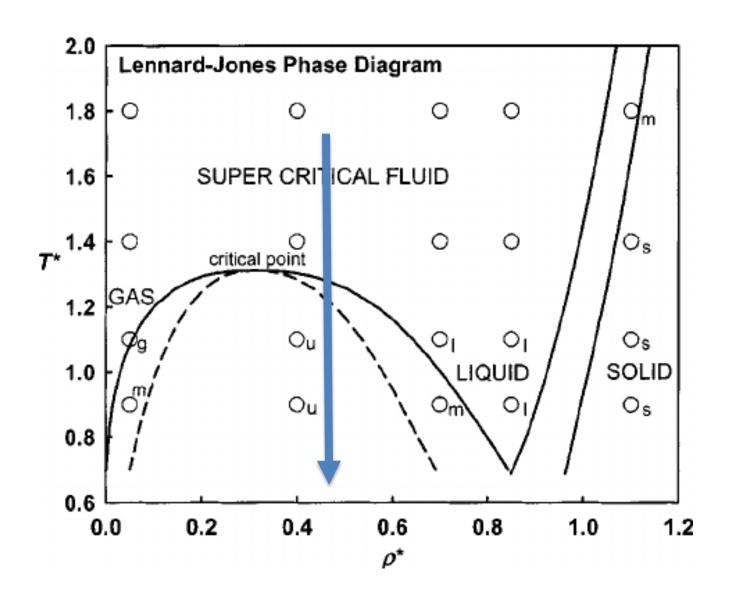
Sometimes

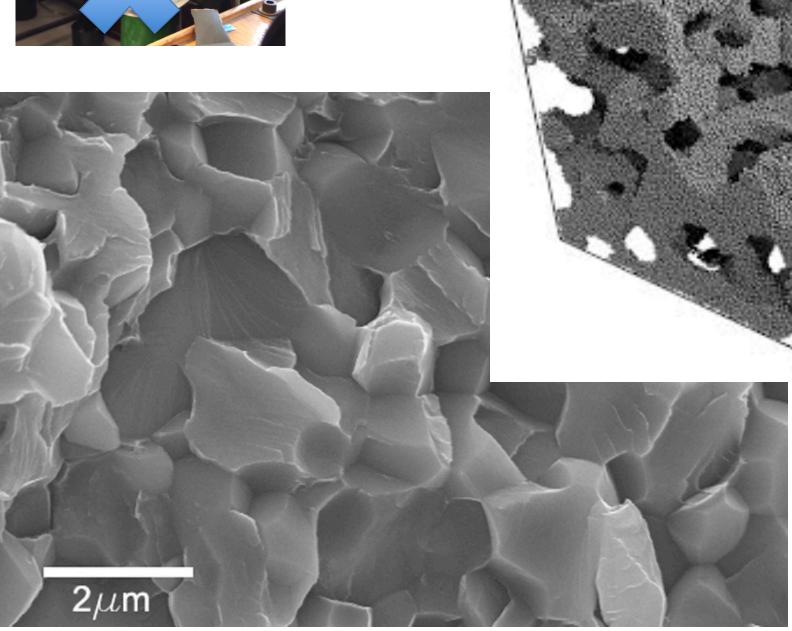


Amorphous Solidification:



Or, instead of gas-liquid,





NON-EQUILIBRIUM AMORPHOUS SOLIDS

I. Are not stationary (Aging)

Fortschr. Hochpolym.-Forsch., Bd. 3, S. 394-507 (1963)

Transition vitreuse dans les polymères amorphes. Etude phénoménologique

Par

A. I. Kovacs

Centre de Recherches sur les Macromolécules, Strasbourg, France

Avec 25 Figures

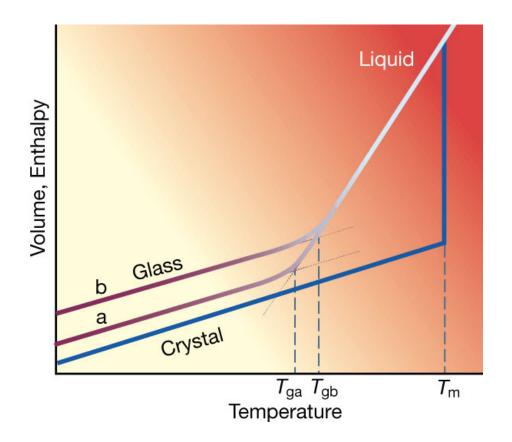
Physical Aging in Plastics and Other Glassy Materials

L. C. E. STRUIK

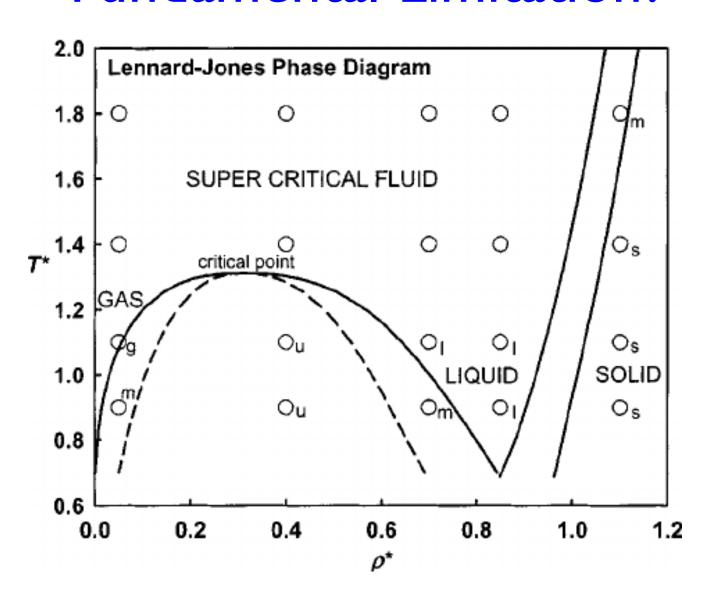
Centraal Laboratorium TNO Delft, The Netherlands

NON-EQUILIBRIUM AMORPHOUS SOLIDS

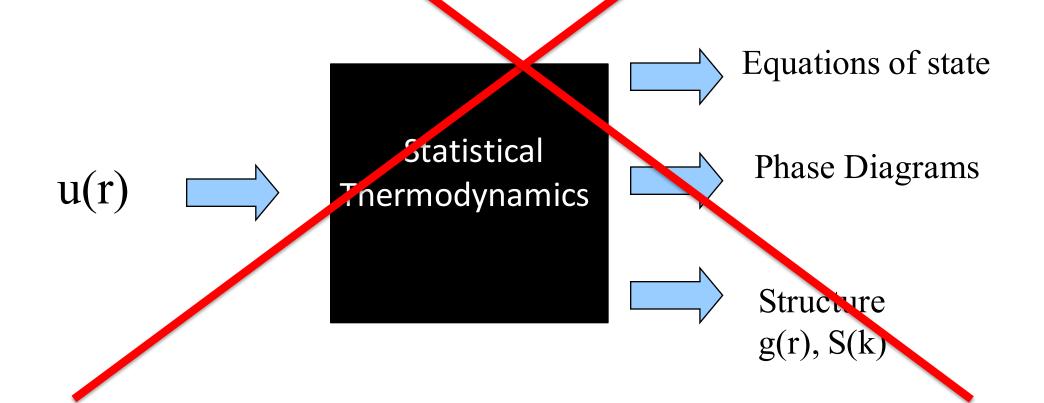
II. Depend on preparation protocol.



Incompetence or Fundamental Limitation?

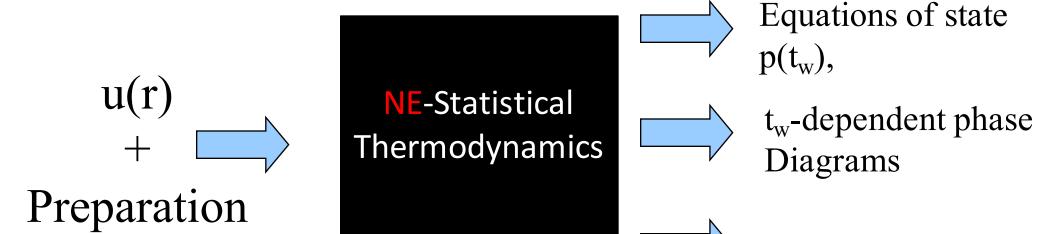


(principle of maximum entropy)



Non-equilibrium Statistical Thermodynamics?

(the principle of maximum entropy?)



Protocol

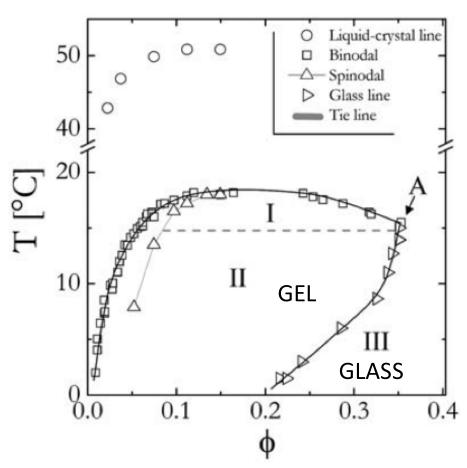
tw-dependent

properties:g(r; t_w),

Structural

 $F(k,t;t_w)$

SUCH THAT IT *PREDICTS*NON-EQUILIBRIUM PHASE DIAGRAMS:



Cite this: Soft Matter, 2011, 7, 857

www.softmatter.org

COMMUNICATION

Phase separation and dynamical arrest for particles interacting with mixed potentials—the case of globular proteins revisited†

Thomas Gibaud, ‡a Frédéric Cardinaux, a Johan Bergenholtz, Anna Stradner and Peter Schurtenberger *d

CONTENT

- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

CONTENT

- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

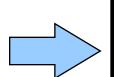
EQUILIBRIUM SCGLE THEORY

|Equilibrium Structure S(k)|

$$\hat{F}(k,z;t) = \frac{S(k;t)}{z + \frac{k^2 D^0 S^{-1}(k;t)}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\hat{F}_S(k,z;t) = \frac{1}{z + \frac{k^2 D^0}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\Delta \zeta^*(\tau;t) = \frac{D_0}{3(2\pi)^3 \,\overline{n}^{(f)}} \int d\mathbf{k} \, k^2 \left[\frac{S(k;t) - 1}{S(k;t)} \right]^2 F(k,\tau;t) F_S(k,\tau;t).$$



Equilibrium Dynamic

Properties

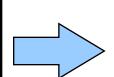
MODE COUPLING THEORY

|Equilibrium Structure S(k)|

$$\hat{F}(k,z;t) = \frac{S(k;t)}{z + \frac{k^2 D^0 S^{-1}(k;t)}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\hat{F}_S(k,z;t) = \frac{1}{z + \frac{k^2 D^0}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

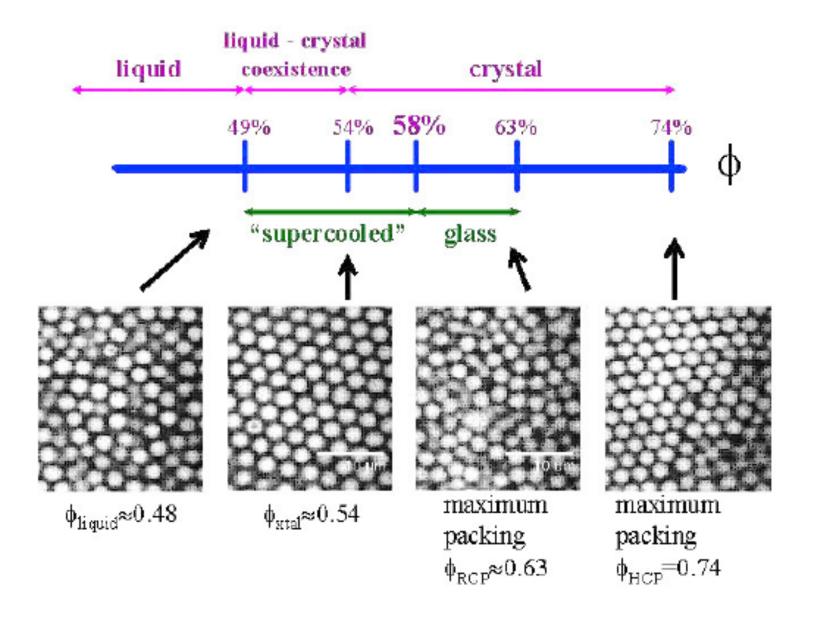
$$\Delta \zeta^*(\tau;t) = \frac{D_0}{3(2\pi)^3 \,\overline{n}^{(f)}} \int d\mathbf{k} \, k^2 \left[\frac{S(k;t) - 1}{S(k;t)} \right]^2 F(k,\tau;t) F_S(k,\tau;t).$$



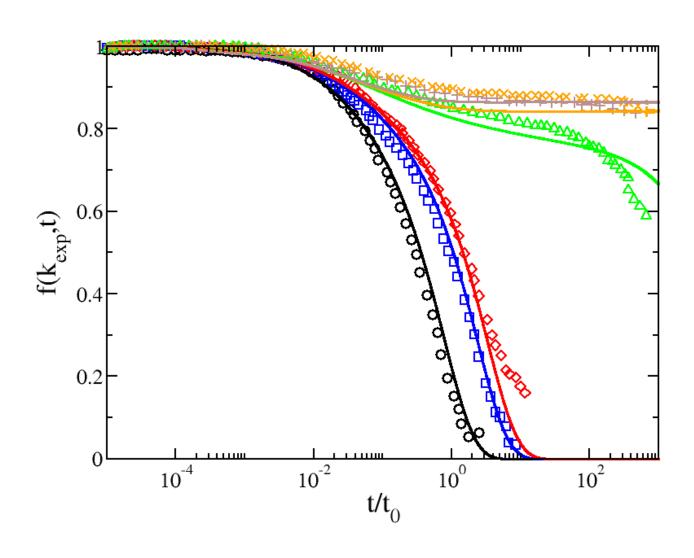
Equilibrium Dynamic Properties

Hard Sphere System

Coloid Glasses

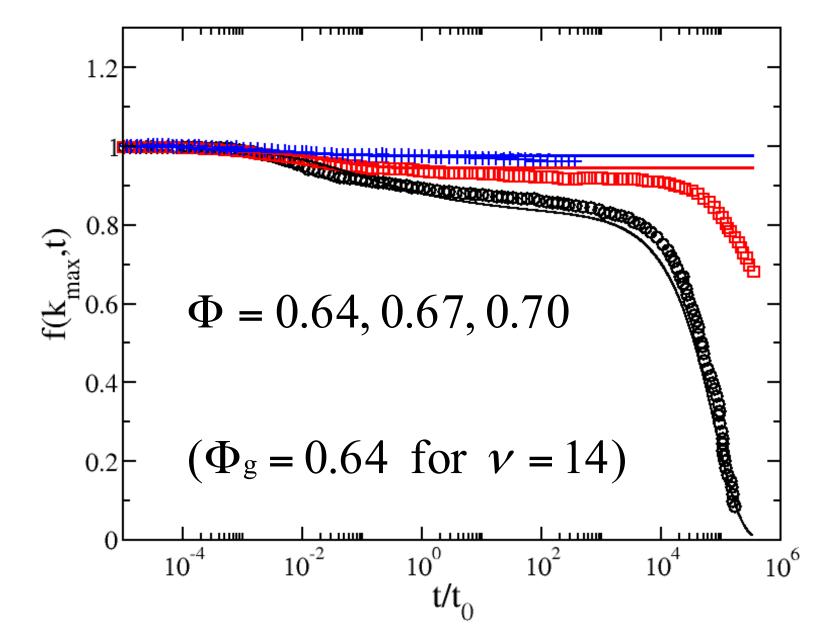


Comparison with Experiment: Hard-Sphere System at the Transition



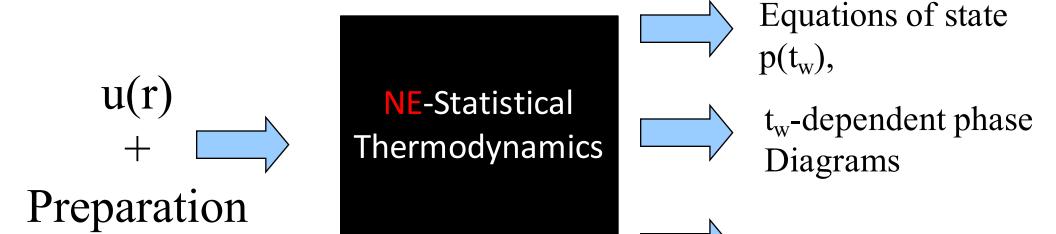
(P. Ramírez-González et al., PRE **76**: 041504 (2007); JPCM, **21**: 75101 (2008))

Soft-sphere system (v=14)



(P. Ramírez-González and M. M.-N., JPCM, 21: 75101 (2008))

(the principle of maximum entropy?)



Protocol

tw-dependent

properties:g(r; t_w),

Structural

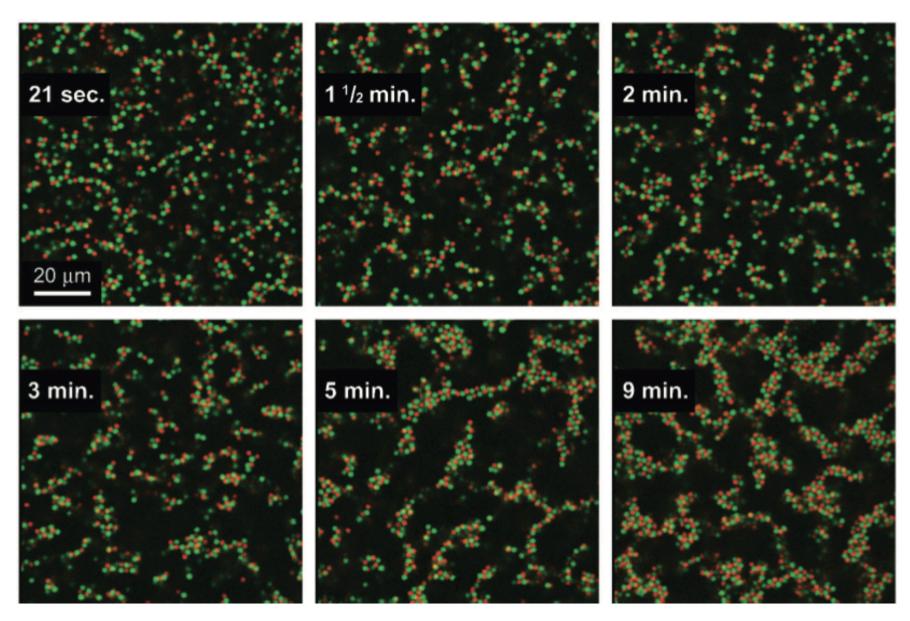
 $F(k,t;t_w)$

(the principle of maximum entropy?)

How it started?

Gel Formation in Suspensions of Oppositely Charged Colloids: Mechanism and Relation to the Equilibrium Phase Diagram

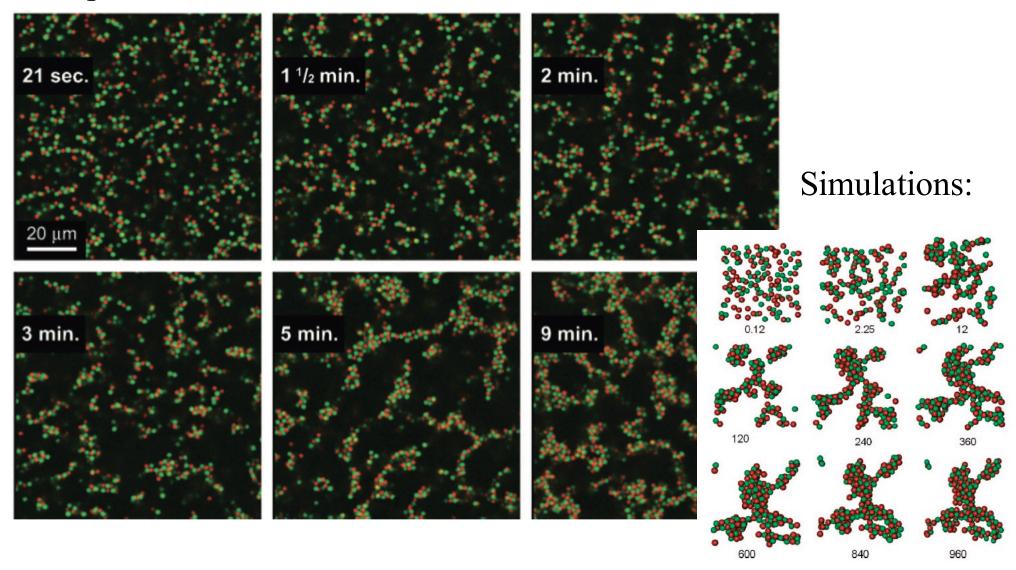
Eduardo Sanz, Mirjam E. Leunissen, Andrea Fortini, Alfons van Blaaderen, and Marjolein Dijkstra *J. Phys. Chem. B*, **2008**, 112 (35), 10861-10872 • DOI: 10.1021/jp801440v • Publication Date (Web): 08 August 2008

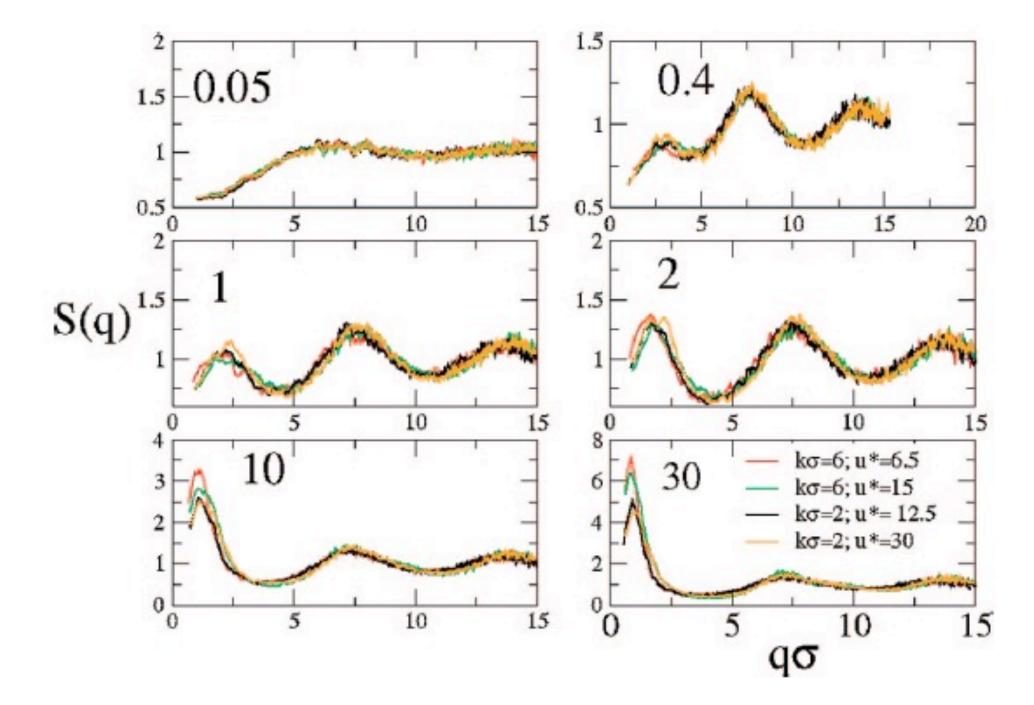


Gel Formation in Suspensions of Oppositely Charged Colloids: Mechanism and Relation to the Equilibrium Phase Diagram

Eduardo Sanz, Mirjam E. Leunissen, Andrea Fortini, Alfons van Blaaderen, and Marjolein Dijkstra *J. Phys. Chem. B*, **2008**, 112 (35), 10861-10872 • DOI: 10.1021/jp801440v • Publication Date (Web): 08 August 2008

Experiments:





$\frac{\partial S(k; t_w)}{\partial t_w} = ?$

THE NON-EQUILIBRIUM SELF-CONSISTENT GENERALIZED LANGEVIN EQUATION (NE-SCGLE) THEORY:

PHYSICAL REVIEW E **82**, 061503 (2010)

General nonequilibrium theory of colloid dynamics

Pedro Ramírez-González and Magdaleno Medina-Noyola
Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí,
Álvaro Obregón 64, San Luis Potosí, 78000 San Luis Potosí, Mexico
(Received 18 December 2009; revised manuscript received 27 October 2010; published 14 December 2010)

NE-SCGLE THEORY OF IRREVERSIBLE PROCESSES

- General Theory of Nonequilibrium Relaxation: P. Ramírez-González and M. Medina-Noyola Phys. Rev. E 82, 061503 (2010); Ibid. Phys. Rev. E 82 061504 (2010)
- Equilibration and aging of dense soft-sphere glass-forming liquids L. E. Sánchez-Díaz, P. Ramírez-González and M. Medina-Noyola Phys. Rev. E 87, 052306 (2013)
- Non-equilibrium dynamics of glass-forming liquid mixtures L. E. Sánchez-Díaz, E. Lázaro-Lázaro, J.M. Olais-Govea, and M. Medina-Noyola, J. Chem. Phys. 140, 234501 (2014)
- Non-equilibrium Theory of Arrested Spinodal Decomposition J. M. Olais-Govea, L. López-Flores and M. Medina-Noyola, J. Chem. Phys. 143, 174505 (2015).
- Equilibration and Aging of Liquids of Non-Spherically Interacting Particles, E.C. Cortés-Morales, L.F. Elizondo-Aguilera, and M. Medina-Noyola, J. Phys. Chem. B, 120 7975 (2016).
- Crossover from Equilibration to Aging: (Non-equilibrium) Theory vs. Simulations, P. Mendoza-Méndez, E. Lázaro-Lázaro, L. E. Sánchez-Díaz, P. E. Ramírez-González, G. Pérez-Ángel, and M. Medina-Noyola. Phys. Rev. E 96, 022608 (2017).
- Nonequilibrium kinetics of the transformation of liquids into physical gels, J. M. Olais-Govea, L. López-Flores and M. Medina-Novola, Phys. Rev. E Rapid Commun. (in press, 2018).

CONTENT

- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

Classical Thermodynamics (Callen)

FIRST LAW: $A=[A_1, A_2, ..., A_M]$. (And the energy is one of them.)

SECOND LAW:

Fundamental Thermodynamic Relation:

$$S = S[\mathbf{A}]$$

Thermodynamic Theory of Fluctuations (Components of A, random variables)

$$P[\mathbf{A}] = (const.)exp[(S[\mathbf{A}] - S[\mathbf{A}^{eq}])/k_B]$$

$$\overline{(\delta \mathbf{A})(\delta \mathbf{A})^T} \circ \mathcal{E}^{eq} = \mathbf{I}$$

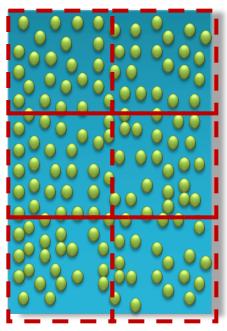
$$\mathcal{E}_{ij}^{eq} \equiv -\frac{1}{k_B} \left(\frac{\partial^2 S[\mathbf{A}]}{\partial A_i \partial A_j} \right)_{\mathbf{A} = \mathbf{A}^{eq}}$$

Thermodynamic Theory of Fluctuations (Components of A, random variables)

EQUILIBRIUM CONDITION FOR THE SECOND MOMENTS

$$\overline{(\delta \mathbf{A})(\delta \mathbf{A})^T} \circ \mathcal{E}^{eq} = \mathbf{I}$$

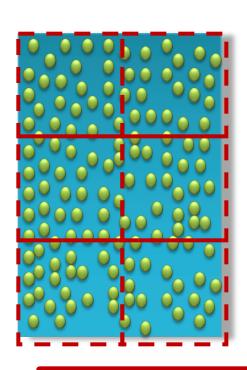
$$\mathcal{E}_{ij}^{eq} \equiv -\frac{1}{k_B} \left(\frac{\partial^2 S[\mathbf{A}]}{\partial A_i \partial A_j} \right)_{\mathbf{A} = \mathbf{A}^{eq}}$$



$$E^{(r)}, N^{(r)}$$
 and $V^{(r)}$

$$r = 1, 2, ..., C.$$

$$S = S[\mathbf{E}, \mathbf{N}, \mathbf{X}]$$



$$E^{(r)}, N^{(r)}$$
 and $V^{(r)}$

$$r = 1, 2, ..., C.$$

$$\beta \mu^{(r)}[\beta; \mathbf{N}] = \beta \mu^{o}(\beta) + \ln(N^{(r)}/\Delta V) - c^{(r)}[\beta; \mathbf{N}] + \beta \psi^{(r)}$$

$$\sum_{r'=1}^{C} < \delta N^{(r)} \delta N^{(r')} > E^{(r',r'')} = \delta_{r,r''}$$

$$E^{(r',r'')} \equiv \left(\frac{\partial \beta \mu^{(r')}[\beta, \mathbf{N}]}{\partial N^{(r'')}}\right)_{\mathbf{N}=\mathbf{N}_{eq}}$$

$$S^{(eq)}(k;\phi,T) = 1/\overline{n}\mathcal{E}_h(k;\phi,T)$$

$$E^{(r',r'')} \equiv \left(\frac{\partial \beta \mu^{(r')}[\beta, \mathbf{N}]}{\partial N^{(r'')}}\right)_{\mathbf{N}=\mathbf{N}_{eq}}$$

$$S^{(eq)}(k;\phi,T) = 1/\overline{n}\mathcal{E}_h(k;\phi,T)$$

(Equilibrium condition for the static structure factor)

BIBLIOGRAPHY

https://www.dropbox.com/sh/dnub6awebf71
 5rt/AAAhmk6-u611s7l1J-09lxFDa?dl=0

medina@ifisica.uaslp.mx

CONTENT

- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

(the principle of maximum entropy?)

Kinetic theory

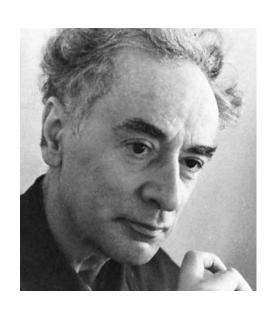
(the principle of maximum entropy?)

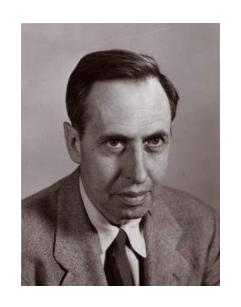
Brownian Motion

(the principle of maximum entropy?)

Irreversible thermodynamics

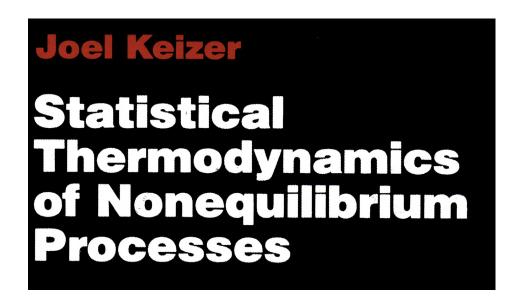
(the principle of maximum entropy?)





Fluctuating hydrodynamics

(the principle of maximum entropy?)



Springer-Verlag New York Berlin Heidelberg London Paris Tokyo

(the principle of maximum entropy?)

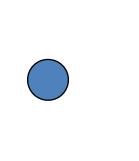
Brownian Motion

Langevin Equation:

$$M\frac{dV(t)}{dt} = -\zeta^{0}V(t) + f^{0}(t)$$

$$\langle f^0(t)f(0)\rangle = \gamma \delta(t)$$

$$\langle \mathbf{V}(t)\mathbf{V}(t)\rangle_{t\to\infty} = I(k_BT/M)$$



Ornstein-Uhlenbeck Process

$$\delta a_i(t)$$
 $(i = 1, 2, ..., m)$

$$\frac{d\delta a(t)}{dt} = -H \cdot \delta a(t) + f(t)$$

With f(t) being a "white" noise: Gaussian, stationary, and δ -correlated $\langle f(t)f(0)\rangle = \gamma \delta(t)$.

Ornstein-Uhlenbeck Process

$$\delta a_i(t)$$
 $(i = 1, 2, ..., m)$

$$\frac{d\delta a(t)}{dt} = -H \cdot \delta a(t) + f(t)$$

With f(t) being a "white" noise: Gaussian, stationary, and δ -correlated $\langle f(t)f(0)\rangle = \gamma \delta(t)$.

The Ornstein-Uhlenbeck process $\delta a(t)$ thus defined is Gaussian, stationary, and Markovian

Important properties of an Ornstein-Uhlenbeck process:

(0): The fluctuation-dissipation Theorem:

$$\langle f(t)f(0)\rangle = \gamma \delta(t)$$

$$\gamma = H \cdot \sigma^{ss} + \sigma^{ss} \cdot H^{T}$$

$$\sigma^{ss} = \langle \delta a(t) \delta a(t) \rangle^{ss}$$

Important properties of an Ornstein-Uhlenbeck process:

(I) On the mean value:

$$\frac{d\Delta \overline{\mathbf{a}}(t)}{dt} = -\mathcal{H} \circ \Delta \overline{\mathbf{a}}(t)$$

where
$$\Delta \overline{\mathbf{a}}(t) \equiv \overline{\mathbf{a}}^0(t) - \mathbf{a}^{ss}$$

(II) On the covariance $\sigma(t) \equiv \delta \mathbf{a}(t) \delta \mathbf{a}^{\dagger}(t)$

$$\frac{d\sigma(t)}{dt} = -H \cdot \sigma(t) - \sigma(t) \cdot H^{T} + \gamma$$

(with
$$\gamma = H \cdot \sigma^{ss} + \sigma^{ss} \cdot H^T$$
)

(III) On the structure of the relaxation matrix:

$$\mathcal{H} = \mathcal{L} \circ \sigma^{ss-1}$$

(IV) On the structure of the "linear laws":

$$\frac{d\Delta \overline{\mathbf{a}}(t)}{dt} = -\mathcal{L} \circ \sigma^{ss-1} \circ \Delta \overline{\mathbf{a}}(t)$$

(V) The OU process also comes with a handy exact expression for the second moment $\mathbf{W}(t) \equiv \langle \Delta \mathbf{x}(t) \Delta \mathbf{x}^{\dagger}(t) \rangle$ of the "displacement" $\Delta \mathbf{x}(t) \equiv \int_0^t \mathbf{a}(\tau) d\tau$. For the monocomponent case $(\nu = 1)$, such an expression reads

$$W(t) = 2H^{-1}\sigma^{ss}[t + H^{-1}(e^{-Ht} - 1)], \qquad (2)$$

which at short times is quadratic in the time t, and at long times is linear, i.e.,

$$W(t) \approx \begin{cases} \sigma^{ss} t^2 & \text{if } t < H^{-1} \\ 2\sigma^{ss} H^{-1} t & \text{if } t > H^{-1}. \end{cases}$$
 (3)

Introducing the dimensionless variables $t^* \equiv tH$ and $W^* \equiv W(t)H^2/\sigma^{ss}$ one can rewrite Eq.(2) as the following master equation:

$$W^*(t^*) = 2[t^* + e^{-t^*} - 1]. (4)$$

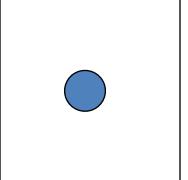
Langevin Equation:

$$M\frac{dV(t)}{dt} = -\xi^{0}V(t) + f^{0}(t)$$

$$\langle f^0(t)f(0)\rangle = \gamma \delta(t)$$

$$\langle \mathbf{V}(t)\mathbf{V}(t)\rangle_{t\to\infty} = I(k_BT/M)$$

$$(\sigma^{ss} = \langle \delta a(t) \delta a(t) \rangle^{ss})$$

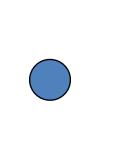


Langevin Equation:

$$M\frac{dV(t)}{dt} = -\xi^{0}V(t) + f^{0}(t)$$

$$\langle f^0(t)f(0)\rangle = \gamma \delta(t)$$

$$\langle \mathbf{V}(t)\mathbf{V}(t)\rangle_{t\to\infty} = ?$$



Received: 21 July 2017

Accepted: 18 September 2017

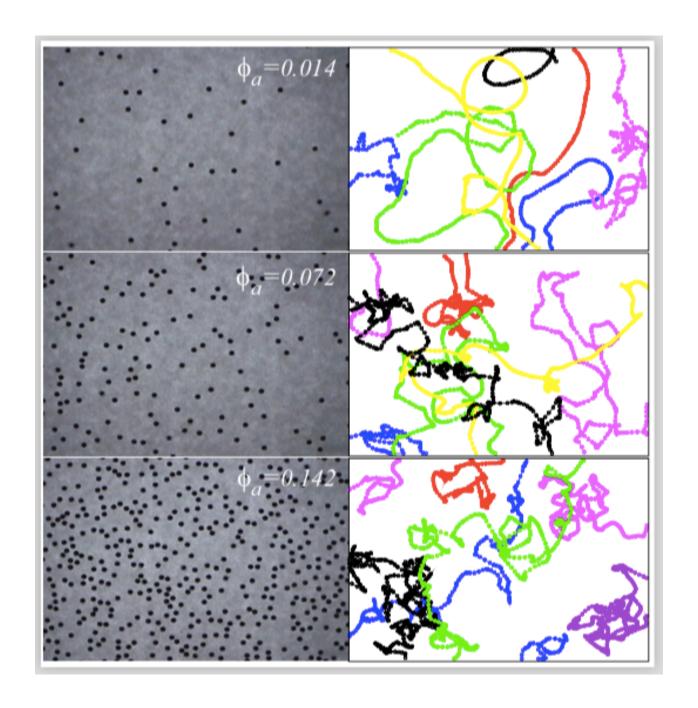
Published online: 03 October 2017

OPEN Brownian motion in nonequilibrium systems and the Ornstein-Uhlenbeck stochastic process

F. Donado¹, R. E. Moctezuma², L. López-Flores³, M. Medina-Noyola³ & J. L. Arauz-Lara³

SCIENTIFIC REPORTS | 7: 12614 | DOI:10.1038/s41598-017-12737-1

CCD Camera В Function generator Power amplifier





Onsager's Theory of Thermal fluctuations

Onsager's Theory:

I. Thermal fluctuations behave as an Ornstein-Uhlenbeck process

II. Thermodynamic equilibrium:

$$\sigma^{ss} = \langle \delta a(t) \delta a(t) \rangle^{ss}$$
 is given by $\sigma^{eq} = \varepsilon^{-1}$

$$\mathcal{E}_{ij}[\mathbf{a}] \equiv -\left(\frac{\partial F_i[\mathbf{a}]}{\partial a_j}\right) = -\frac{1}{k_B} \left(\frac{\partial^2 S[\mathbf{a}]}{\partial a_i \partial a_j}\right)$$

(IV) On the structure of the "linear laws":

$$\frac{d\Delta \overline{\mathbf{a}}(t)}{dt} = -\mathcal{L} \circ \sigma^{ss-1} \circ \Delta \overline{\mathbf{a}}(t)$$

(IV) On the structure of the "linear laws":

$$\frac{d\Delta \overline{\mathbf{a}}(t)}{dt} = -\mathcal{L} \circ \sigma^{ss-1} \circ \Delta \overline{\mathbf{a}}(t)$$

$$= -L \cdot \varepsilon \cdot \Delta a(t)$$

(IV) On the structure of the "linear laws":

$$\frac{d\Delta \overline{\mathbf{a}}(t)}{dt} = -\mathcal{L} \circ \sigma^{ss-1} \circ \Delta \overline{\mathbf{a}}(t)$$
$$= -L \cdot \varepsilon \cdot \Delta a(t)$$

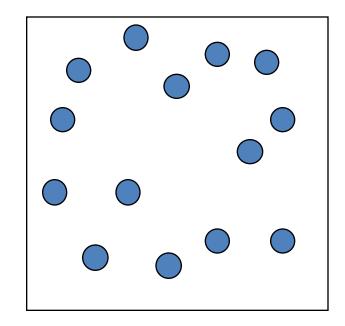
Thus, linear laws of irreversible thermodynamics

$$\frac{d\Delta a(t)}{dt} = -L \cdot \Delta F(t)$$

CONTENT

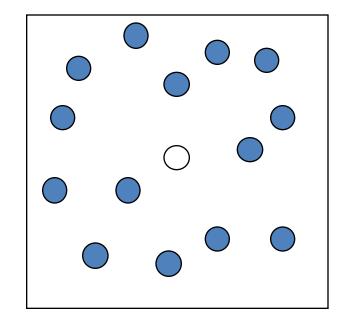
- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

Example: Langevin Equation for N Interacting Brownian Particles



$$M\frac{dV_{i}(t)}{dt} = -\zeta^{0}V_{i}(t) + f_{i}^{0}(t) - \nabla \sum_{j} u^{eff}(\rho_{ij}) \qquad \text{(i=1,2, ..., N)}$$

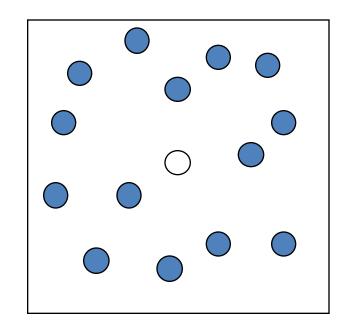
Example: Langevin Equation for N Interacting Brownian Particles



$$M\frac{dV(t)}{dt} = -\zeta^{0}V(t) + f^{0}(t) - \nabla \sum_{j} u^{eff}(\rho_{j})$$

Example:

Langevin Equation for Interacting Brownian Particles



$$M\frac{dV(t)}{dt} = -\xi^{0}V(t) + f^{0}(t) - \nabla \sum_{j} u^{eff}(\rho_{j})$$

$$M\frac{dV(t)}{dt} = -\zeta^{0}V(t) + f^{0}(t) - \int \nabla u^{eff}(\rho)n^{*}(\rho,t)d^{3}\rho$$

$$n^*(\rho,t) \equiv \sum_{i=1}^n \delta(\rho - \rho_i(t))$$

$$M\frac{dV(t)}{dt} = -\zeta^{0}V(t) + f^{0}(t) - \int \nabla u^{eff}(\rho)\delta n *(\vec{\rho},t)$$

$$\frac{\partial \delta n^*(\vec{\rho},t)}{\partial t} = \left[\nabla n^{eq}(\rho)\right] \cdot V(t) + D^0 \nabla^2 \delta n^*(\vec{\rho},t) + f(r,t)$$

$$M\frac{dV(t)}{dt} = -\zeta^{0}V(t) + f^{0}(t) - \int \nabla u^{eff}(\rho)\delta n *(\vec{\rho},t)$$

$$\frac{\partial \delta n^*(\vec{\rho},t)}{\partial t} = \left[\nabla n^{eq}(\rho)\right] \cdot V(t) + D^0 \nabla^2 \delta n^*(\vec{\rho},t) + f(r,t)$$

$$M\frac{dV(t)}{dt} = -\xi^{0}V(t) + f^{0}(t) - \int \Delta\xi(t-t')V(t')dt' + F(t)$$

$$M\frac{dV(t)}{dt} = -\xi^{0}V(t) + f^{0}(t) - \int \Delta\xi(t-t')V(t')dt' + F(t)$$

$$\Delta \xi(t) = \int \left[\nabla u^{eff}(\rho) \right] \chi * (\vec{\rho}, \vec{\rho}'; t) \left[\nabla n^{eq}(\rho') \right] d^3 \rho d^3 \rho'$$

$$M\frac{dV(t)}{dt} = -\xi^{0}V(t) + f^{0}(t) - \int \Delta\xi(t-t')V(t')dt' + F(t)$$

$$\Delta \xi^*(t) = \frac{\Delta \xi(t)}{\xi^0} = \frac{D_0 n}{3(2\pi)^3} \int d^3 k \frac{\left[kh(k)\right]^2}{S^2(k)} F(k,t) F_S(k,t)$$

F(k,t) describes the decay of density fluctuations

$$F(k,t) = \langle \delta n(k,t) \delta n(k,0) \rangle$$

Thus, we need

$$\frac{\partial \delta n(k,t)}{\partial t} = ?$$

Physica 146A (1987) 483-505 North-Holland, Amsterdam

THE FLUCTUATION-DISSIPATION THEOREM FOR NON-MARKOV PROCESSES AND THEIR CONTRACTIONS: THE ROLE OF THE STATIONARITY CONDITION

M. MEDINA-NOYOLA*

Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, Fed. Rep. Germany

J.L. DEL RIO-CORREA

Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Mexico 13 DF, Mexico

Received 6 May 1987

THEOREM OF STATIONARITY

$$\mathrm{d}\boldsymbol{a}(t)/\mathrm{d}t = -\int_{0}^{t} \mathbf{G}(t-t')\boldsymbol{a}(t')\,\mathrm{d}t' + f(t)$$

Theorem A. Let a(t) be an N-dimensional stochastic process defined as the formal solution of the generalized Langevin equation, eq. (3.1), with random initial condition a(0), and with f(t) being an N-dimensional stochastic process, statistically uncorrelated with a(0) for all times t, i.e., such that

$$\langle f(t)a^{\mathrm{T}}(0)\rangle = \langle a(0)f^{\mathrm{T}}(t)\rangle = \mathbf{0}.$$
 (3.4)

Let us also assume that $\langle a(0) \rangle = \langle f(t) \rangle = 0$. Then, the following three statements are equivalent:

(i) a(t) is stationary, i.e.,

$$\langle \mathbf{a}(t+s)\mathbf{a}^{\mathrm{T}}(t'+s)\rangle = \langle \mathbf{a}(t)\mathbf{a}^{\mathrm{T}}(t')\rangle.$$
 (3.5)

(ii) f(t) is stationary and G(t) is such that the generalized Langevin equation has the general structure

$$\mathrm{d}\boldsymbol{a}(t)/\mathrm{d}t = -\boldsymbol{\omega}\boldsymbol{\sigma}^{-1}\boldsymbol{a}(t) - \int_{0}^{t} \mathbf{L}(t-t')\boldsymbol{\sigma}^{-1}\boldsymbol{a}(t')\,\mathrm{d}t' + \boldsymbol{f}(t), \qquad (3.6)$$

where

$$\mathbf{\sigma} \equiv \langle \mathbf{a}(0)\mathbf{a}^{\mathrm{T}}(0)\rangle , \qquad (3.7)$$

 ω is a time-independent antisymmetric matrix,

$$\mathbf{\omega} = -\mathbf{\omega}^{\mathrm{T}} \,, \tag{3.8}$$

and L(t) is given by

$$\mathbf{L}(t) = \mathbf{L}^{\mathrm{T}}(-t) = \langle \mathbf{f}(t)\mathbf{f}^{\mathrm{T}}(0)\rangle. \tag{3.9}$$

Fundamental vs. Phenomenological

Generalized Langevin Equation

$$\mathbf{a}(t) = \left(a_1(t), a_2(t), \dots, a_n(t)\right)$$

$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{w} \cdot \sigma^{-1} \cdot \mathbf{a}(t) - \int_0^t \mathbf{L}(t - t') \cdot \sigma^{-1} \cdot \mathbf{a}(t') dt' + \mathbf{f}(t)$$

- "Rigorous" point of view (Kirkwood, Mori, Zwanzig,)
- "Phenomenological" point of view (Langevin, Onsager, Fox-Uhlenbeck, Keizer, ...)

F(k,t) describes the decay of density fluctuations

$$F(k,t) = \langle \delta n(k,t) \delta n(k,0) \rangle$$

Thus, we need

$$\frac{\partial \delta n(k,t)}{\partial t} = ?$$

$$F(k,z) = \frac{S(k)}{z + \frac{k^2 D_0 S^{-1}(k)}{1 + C(k,z)}}$$

Self-consistent generalized Langevin equation (SCGLE) theory

$$\Delta \zeta(t) = \frac{Do}{3(2\pi^3)n} \int d^3k \left[\frac{k[S(k) - 1]}{S(k)} \right]^2 F(k, t) F_S(k, t)$$

$$F(k,z) = \frac{S(k)}{z + \frac{k^2 D_0 S^{-1}(k)}{1 + \lambda(k) \Delta \zeta(z)}}$$

$$F_S(k,z) = \frac{1}{z + \frac{k^2 D_0}{1 + \lambda(k)\Delta\zeta(z)}}$$

$$\lambda(k) = \frac{1}{1 + (k/k_{min})^2}.$$

(PRE **67**: 021108(2003); PRE **76**: 062502 (2007))

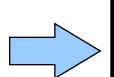
EQUILIBRIUM SCGLE THEORY

|Equilibrium Structure S(k)|

$$\hat{F}(k,z;t) = \frac{S(k;t)}{z + \frac{k^2 D^0 S^{-1}(k;t)}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\hat{F}_S(k,z;t) = \frac{1}{z + \frac{k^2 D^0}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\Delta \zeta^*(\tau;t) = \frac{D_0}{3(2\pi)^3 \, \overline{n}^{(f)}} \int d\mathbf{k} \, k^2 \left[\frac{S(k;t) - 1}{S(k;t)} \right]^2 F(k,\tau;t) F_S(k,\tau;t).$$



Equilibrium Dynamic

Properties

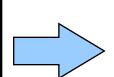
MODE COUPLING THEORY

|Equilibrium Structure S(k)|

$$\hat{F}(k,z;t) = \frac{S(k;t)}{z + \frac{k^2 D^0 S^{-1}(k;t)}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\hat{F}_S(k,z;t) = \frac{1}{z + \frac{k^2 D^0}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\Delta \zeta^*(\tau;t) = \frac{D_0}{3(2\pi)^3 \,\overline{n}^{(f)}} \int d\mathbf{k} \, k^2 \left[\frac{S(k;t) - 1}{S(k;t)} \right]^2 F(k,\tau;t) F_S(k,\tau;t).$$



Equilibrium Dynamic Properties

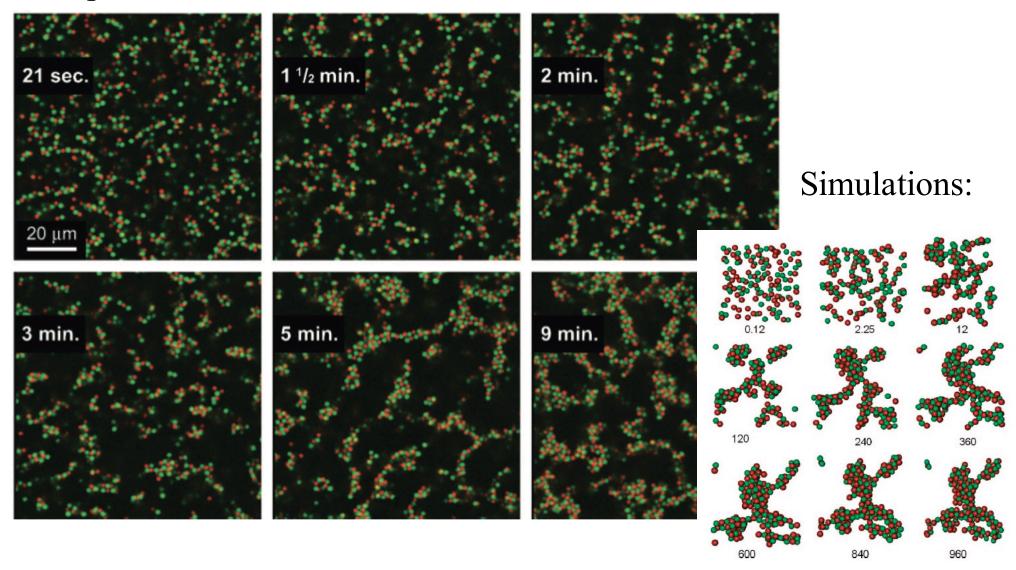
CONTENT

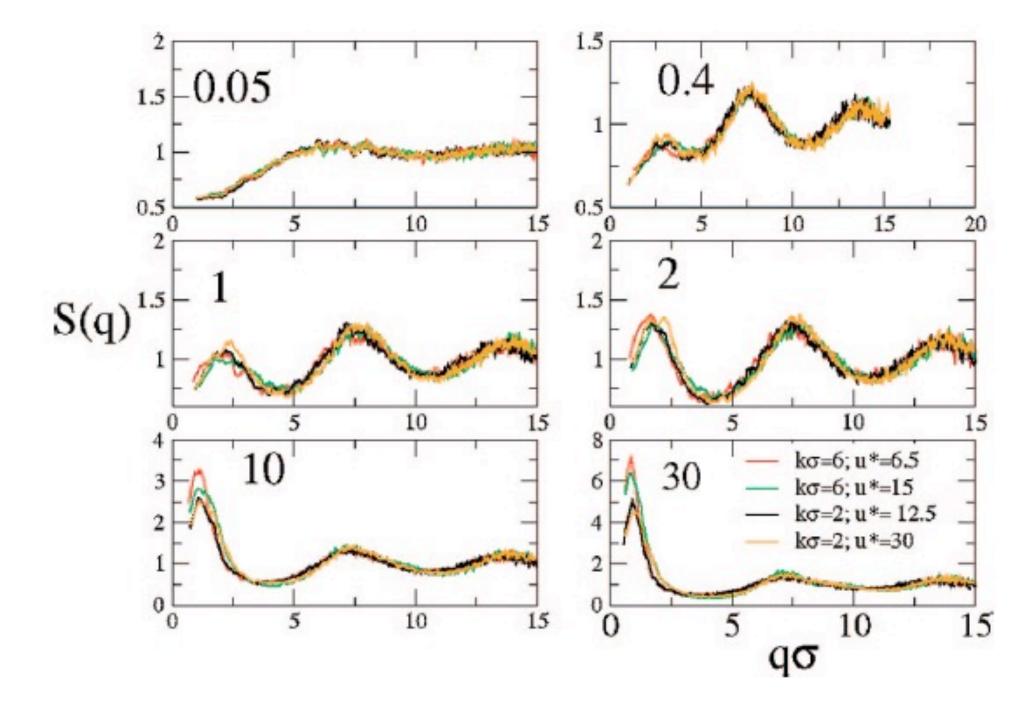
- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

Gel Formation in Suspensions of Oppositely Charged Colloids: Mechanism and Relation to the Equilibrium Phase Diagram

Eduardo Sanz, Mirjam E. Leunissen, Andrea Fortini, Alfons van Blaaderen, and Marjolein Dijkstra *J. Phys. Chem. B*, **2008**, 112 (35), 10861-10872 • DOI: 10.1021/jp801440v • Publication Date (Web): 08 August 2008

Experiments:





$\frac{\partial S(k; t_w)}{\partial t_w} = ?$

Onsager's Linear Irreversible Thermodynamics

$$\frac{d\Delta a(t)}{dt} = -L \cdot \Delta F(t)$$

1968 Chemistry Nobel Laureate

Onsager's Linear Irreversible Thermodynamics

$$\frac{d\Delta a(t)}{dt} = -L \cdot \Delta F(t)$$

iProvides universal and fundamental basis

$$\frac{d\Delta a(t)}{dt} = -L \cdot \Delta F(t)$$

Stationary solutions:

$$\frac{d\Delta a(t)}{dt} = -L \cdot \Delta F(t)$$

Stationary solutions:

Thermodynamic Equilibrium states:

$$\Delta F(t) = 0$$

$$\frac{d\Delta a(t)}{dt} = -L \cdot \Delta F(t)$$

Stationary solutions:

Thermodynamic Equilibrium states:

$$\Delta F(t) = 0$$

Dynamically arrested states:

$$L = 0$$

WE EXTENDED ONSAGER'S THEORY OF THERMAL FLUCTUATIONS TO

NON-STATIONARY AND NON-EQUILIBRIUM CONDITIONS

THE RESULTING NON-EQUILIBRIUM THEORY:

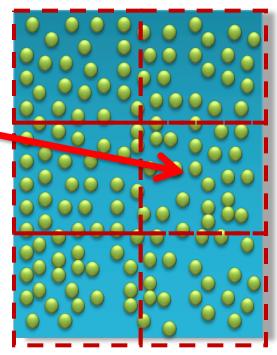
TIME-EVOLUTION EQUATIONS FOR

(I) THE MEAN VALUE

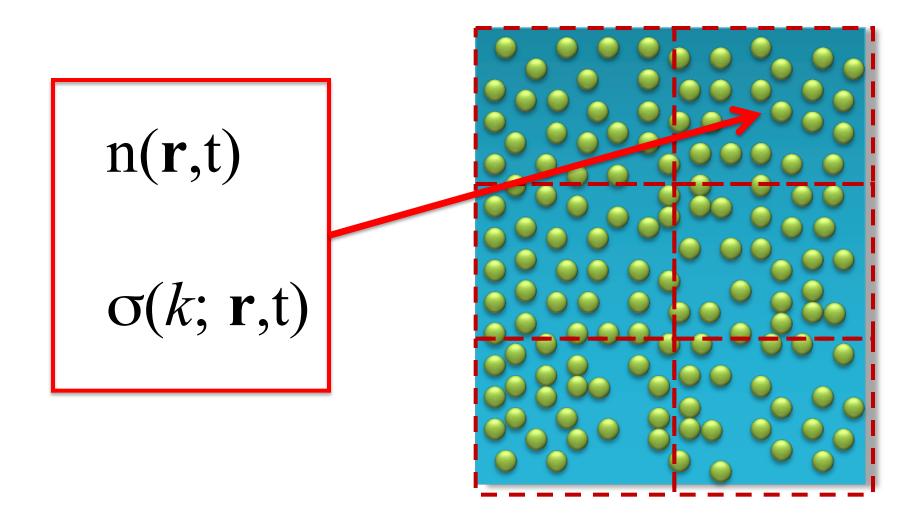
(II) THE COVARIANCE

APPLIED TO THE VARIABLE

n(r,t) = Local number density OF A LIQUID, ...



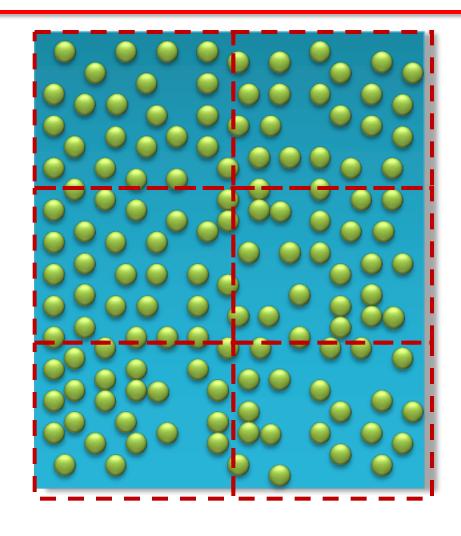
...IT BECOMES A GENERIC THEORY OF LIQUIDS



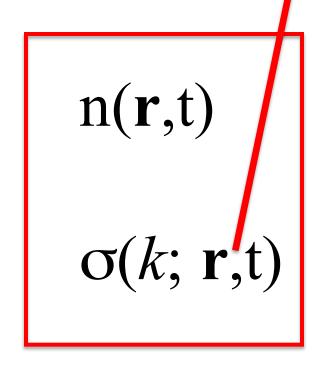
$$\frac{\partial \overline{n}(\mathbf{r},t)}{\partial t} = D^0 \nabla \cdot b(\mathbf{r},t) \overline{n}(\mathbf{r},t) \nabla \beta \mu[\mathbf{r}; \overline{n}(t)]$$

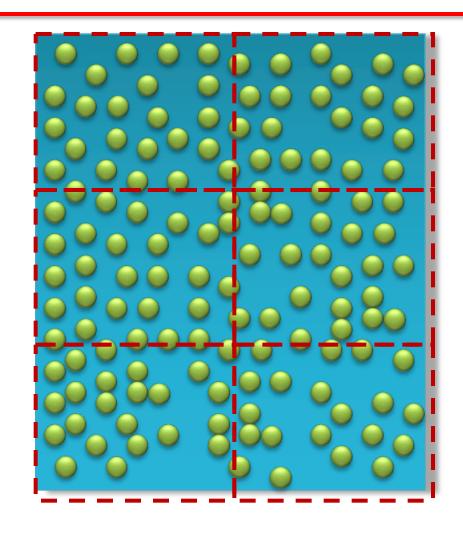
 $n(\mathbf{r},t)$

 $\sigma(k; \mathbf{r}, t)$



$$\begin{split} \frac{\partial \sigma(k;\mathbf{r},t)}{\partial t} &= -2k^2 D^0 \overline{n}(\mathbf{r},t) b(\mathbf{r},t) \mathcal{E}(k;\overline{n}(\mathbf{r},t)) \sigma(k;\mathbf{r},t) \\ &+ 2k^2 D^0 \overline{n}(\mathbf{r},t) \ b(\mathbf{r},t), \end{split}$$





$$\frac{\partial \overline{n}(\mathbf{r},t)}{\partial t} = D^0 \nabla \cdot b(\mathbf{r},t) \overline{n}(\mathbf{r},t) \nabla \beta \mu[\mathbf{r}; \overline{n}(t)]$$

$$\frac{\partial \sigma(k; \mathbf{r}, t)}{\partial t} = -2k^2 D^0 \overline{n}(\mathbf{r}, t) b(\mathbf{r}, t) \mathcal{E}(k; \overline{n}(\mathbf{r}, t)) \sigma(k; \mathbf{r}, t) + 2k^2 D^0 \overline{n}(\mathbf{r}, t) b(\mathbf{r}, t),$$

Estrategy: write

$$n(r,t)=n+\Delta n(r,t),$$
 $b(r,t)=b(t)+\Delta b(r,t),$
and start by neglecting
 $\Delta n(r,t) \ y \ \Delta b(r,t)$

FOR UNIFORM SYSTEM ONLY THE EQUATION FOR THE COVARIANCE REMAINS

$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathscr{E}^{(f)}(k) \left[S(k;t) - 1/\overline{n} \mathscr{E}^{(f)}(k) \right]$$

FOR UNIFORM SYSTEM ONLY THE EQUATION FOR THE COVARIANCE REMAINS

$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathscr{E}^{(f)}(k) \Big[S(k;t) - 1/\overline{n} \mathscr{E}^{(f)}(k) \Big]$$

$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathscr{E}^{(f)}(k) \left[S(k;t) - 1/\overline{n} \mathscr{E}^{(f)}(k) \right]$$

TWO KINDS OF STATIONARY STATES:

$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathscr{E}^{(f)}(k) \left[S(k;t) - 1/\overline{n} \mathscr{E}^{(f)}(k) \right]$$

TWO KINDS OF STATIONARY STATES:

(I). EQUILIBRIUM STATES:

$$\lim_{t\to\infty} \left[S(k;t) - 1/\overline{n}\mathcal{E}^{(f)}(k) \right] = 0$$

$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathscr{E}^{(f)}(k) \left[S(k;t) - 1/\overline{n} \mathscr{E}^{(f)}(k) \right]$$

TWO KINDS OF STATIONARY STATES:

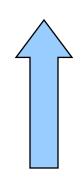
(I). EQUILIBRIUM STATES:

$$\lim_{t\to\infty} \left[S(k;t) - 1/\overline{n}\mathcal{E}^{(f)}(k) \right] = 0$$

(II). ARRESTED STATES:

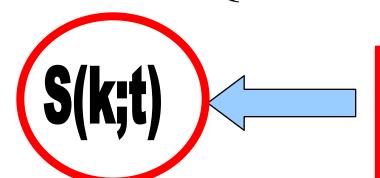
$$b(t) \longrightarrow 0$$

$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathcal{E}^{(f)}(k) \left[S(k;t) - 1/\overline{n} \mathcal{E}^{(f)}(k) \right]$$

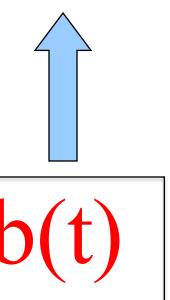


b(t)

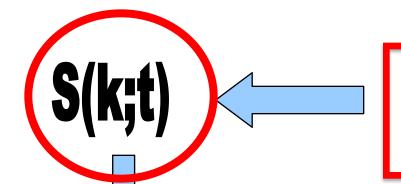
NON-EQUILIBRIUM SCGLE THEORY



$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathcal{E}^{(f)}(k) \left[S(k;t) - 1/\overline{n} \mathcal{E}^{(f)}(k) \right]$$



NON-EQUILIBRIUM SCGLE THEORY

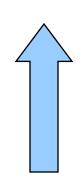


$$\frac{\partial S(k;t)}{\partial t} = -2k^2 D^0 b(t) \overline{n} \mathcal{E}^{(f)}(k) \left[S(k;t) - 1/\overline{n} \mathcal{E}^{(f)}(k) \right]$$

$$\hat{F}(k,z;t) = \frac{S(k;t)}{z + \frac{k^2 D^0 S^{-1}(k;t)}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\hat{F}_S(k,z;t) = \frac{1}{z + \frac{k^2 D^0}{1 + \lambda(k) \Delta \hat{\zeta}^*(z;t)}}.$$

$$\Delta \zeta^*(\tau;t) = \frac{D_0}{3(2\pi)^3 \overline{n}^{(f)}} \int d\mathbf{k} \ k^2 \left[\frac{S(k;t) - 1}{S(k;t)} \right]^2 F(k,\tau;t) F_S(k,\tau;t).$$

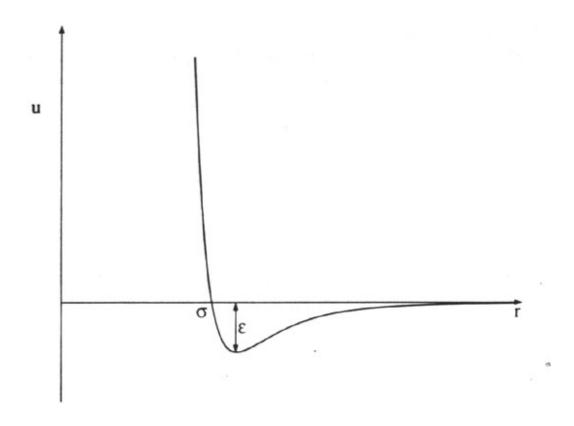


CONTENT

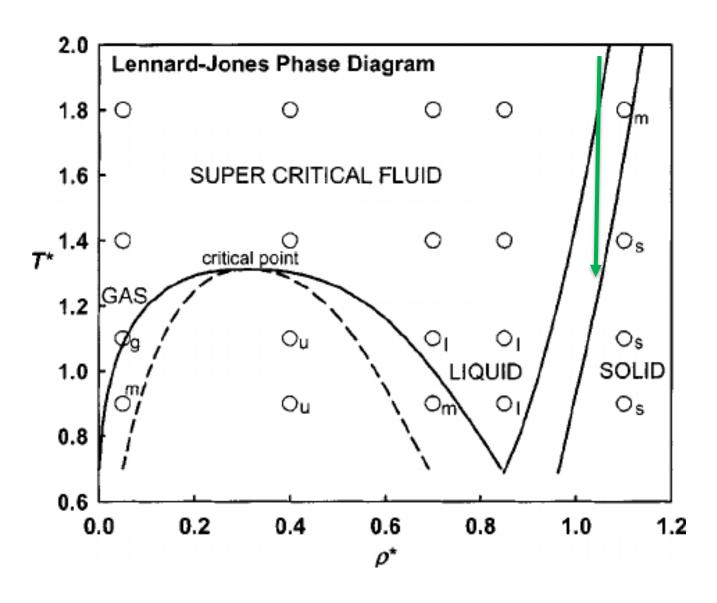
- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

FLUIDO DE LENNARD-JONES

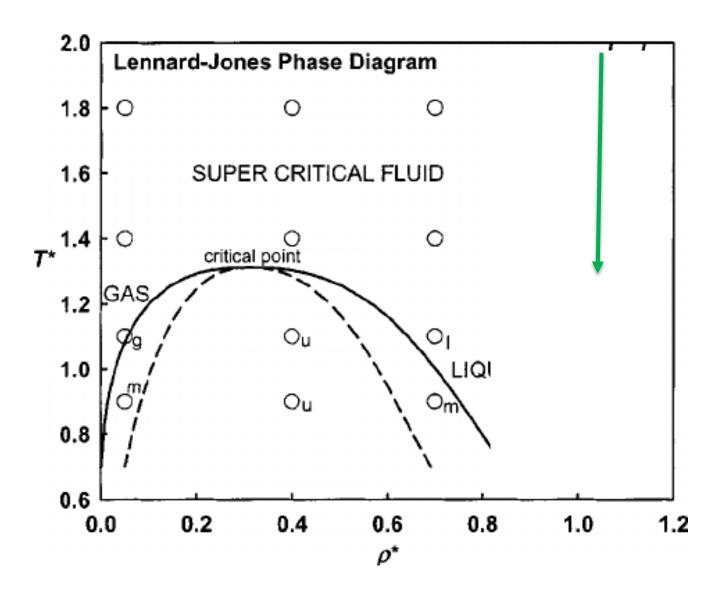
$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

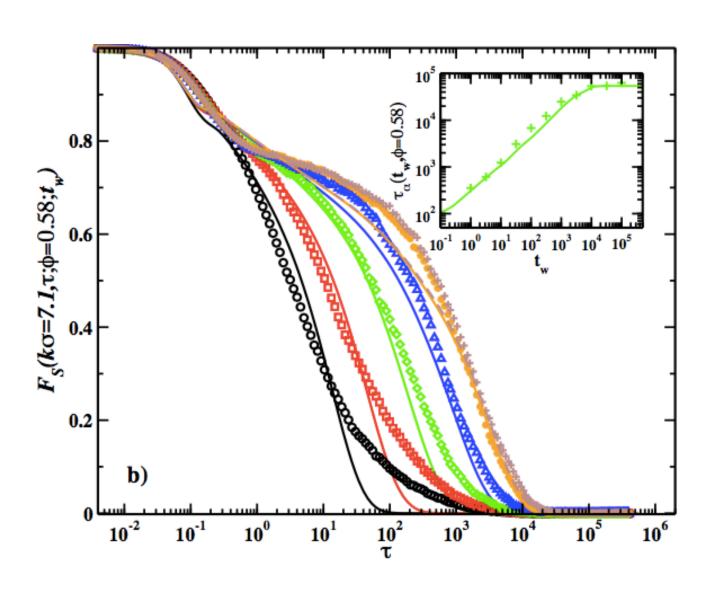


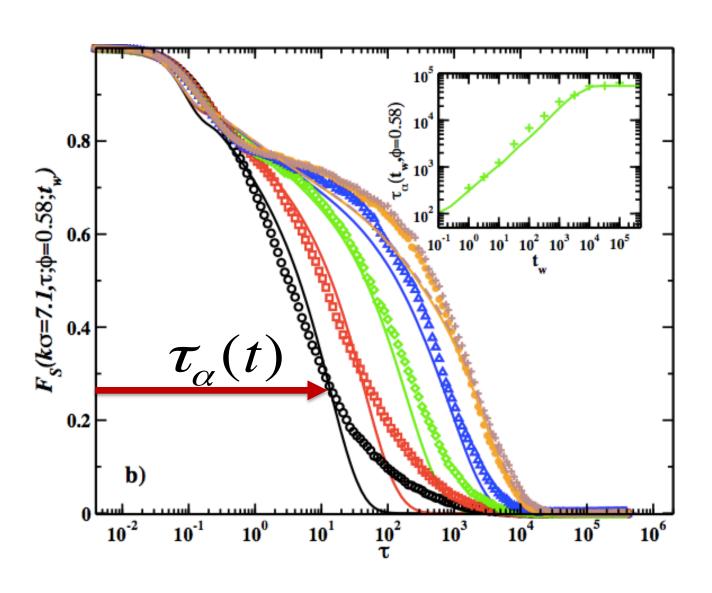
Quenching a dense LJ liquid:

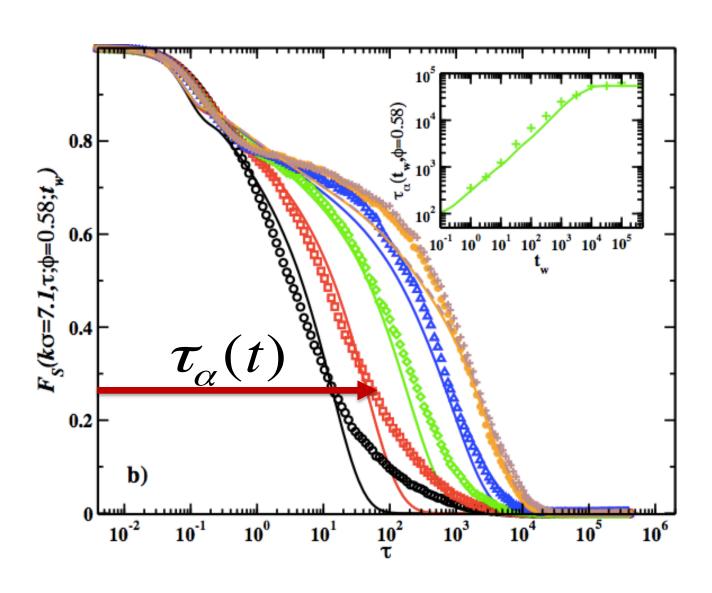


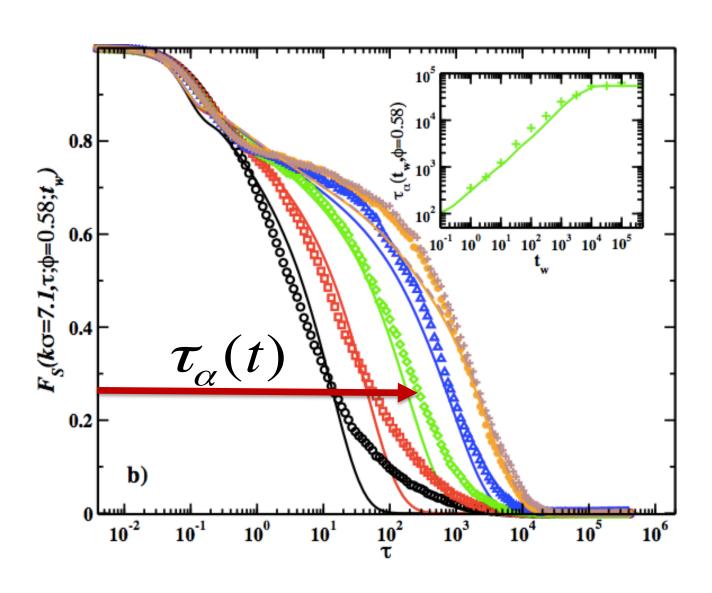
Quenching a dense LJ liquid:

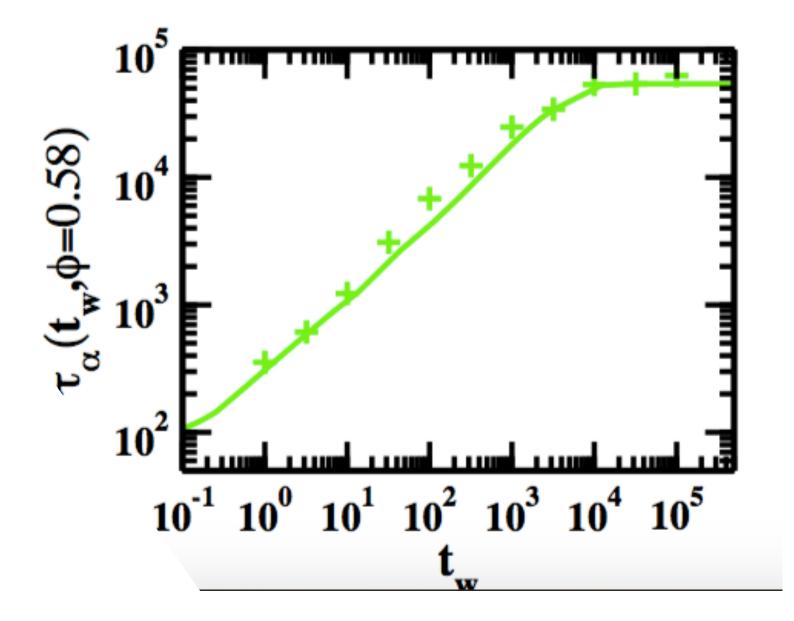




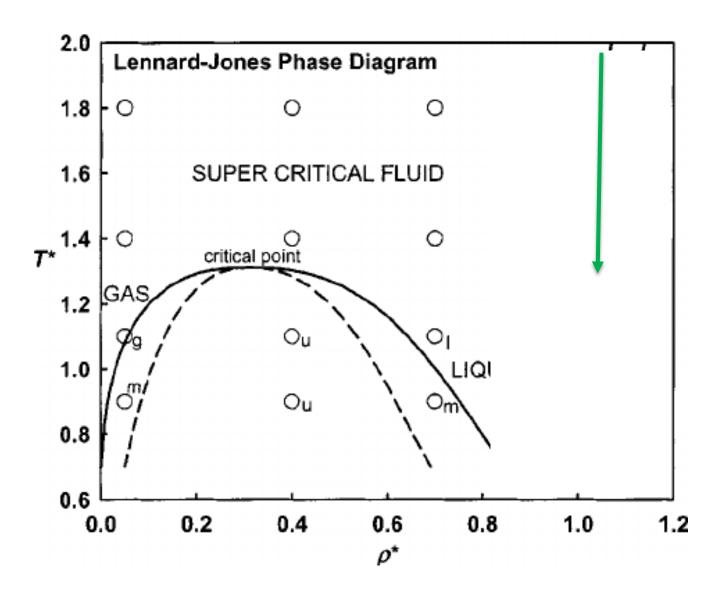




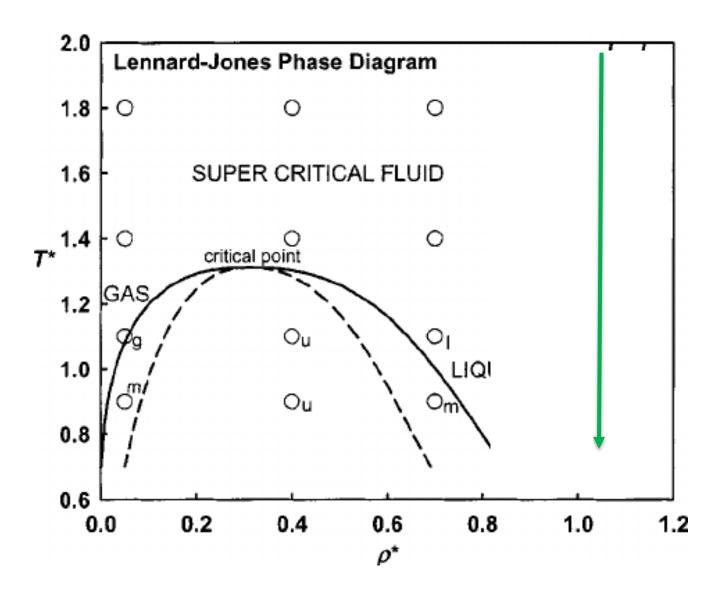




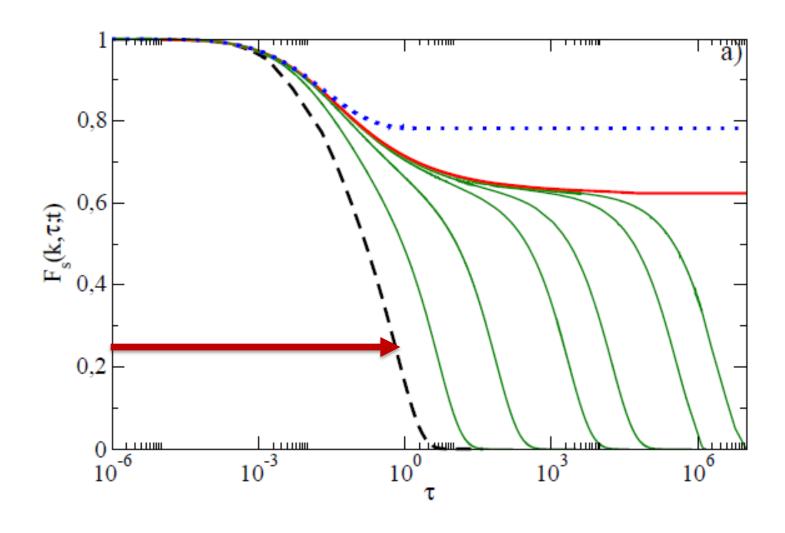
Quenching a dense LJ liquid:



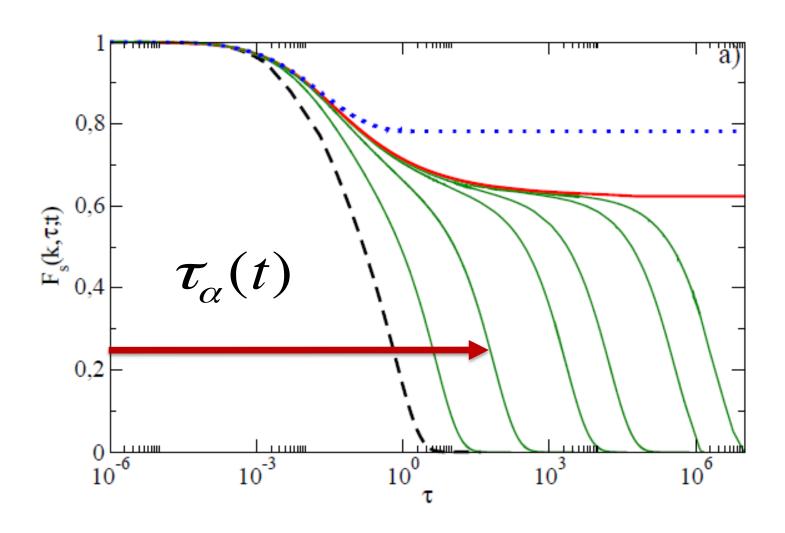
Quenching a dense LJ liquid:



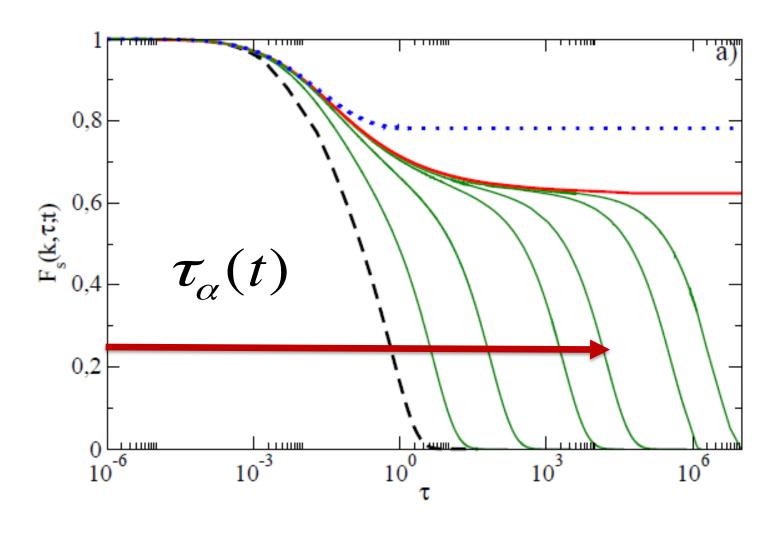
Aging of time-dependent correlations



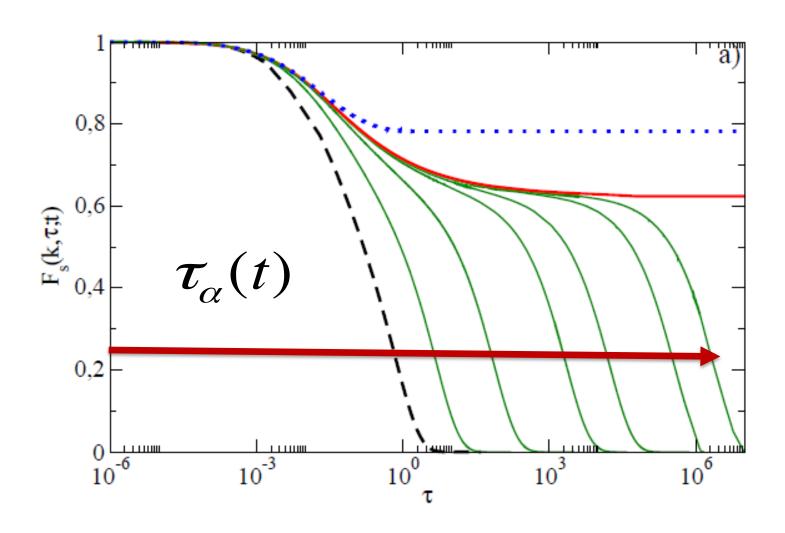
Aging of time-dependent correlations



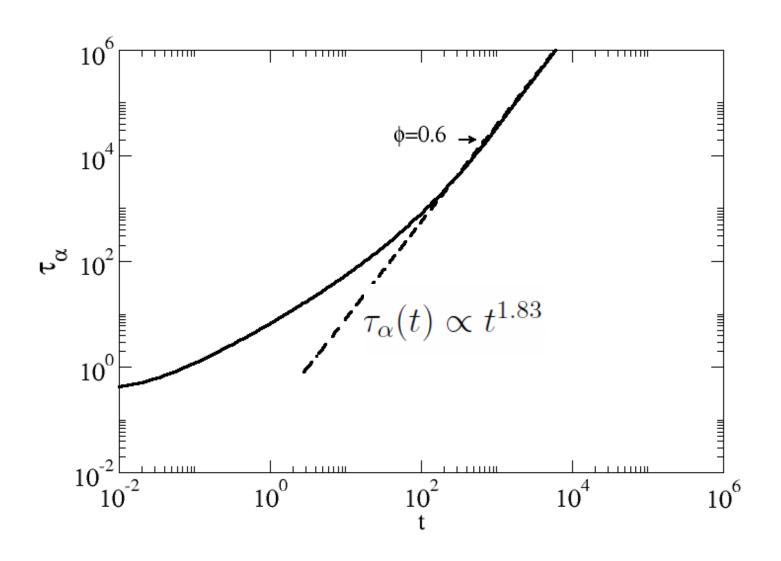
Aging of time-dependent correlations

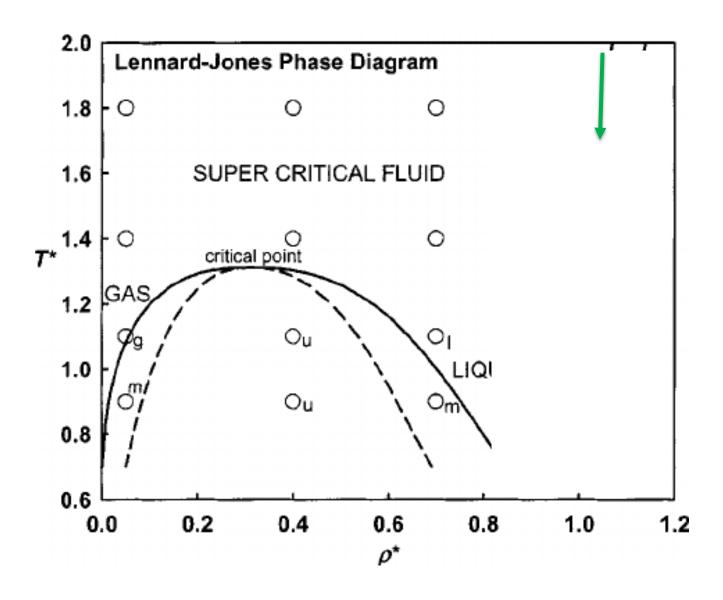


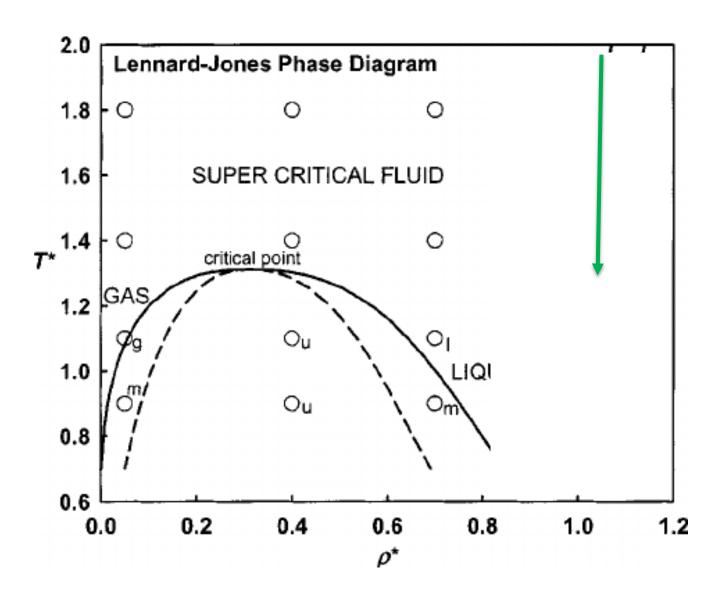
Aging of time-dependent correlations

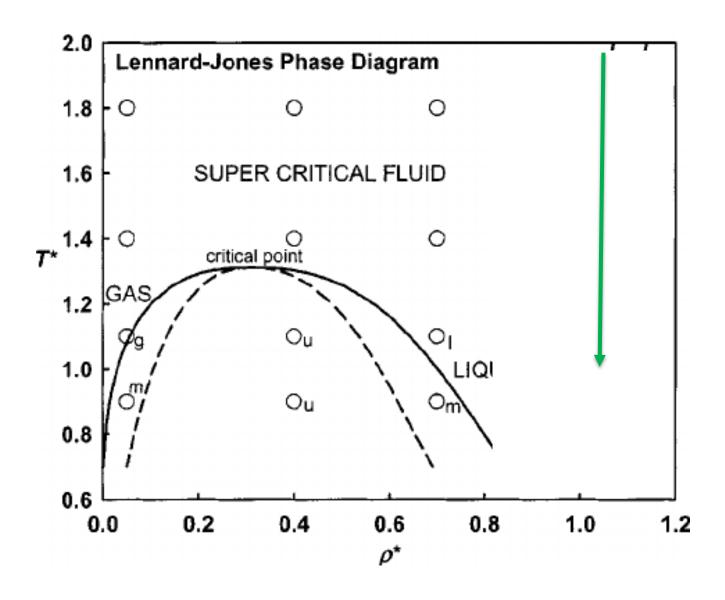


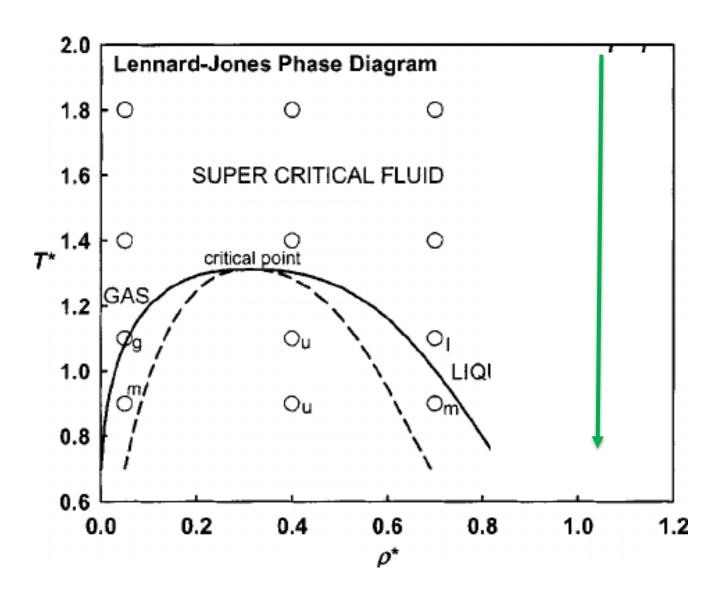
Alpha-Relaxation Time as a Function of Waiting Time



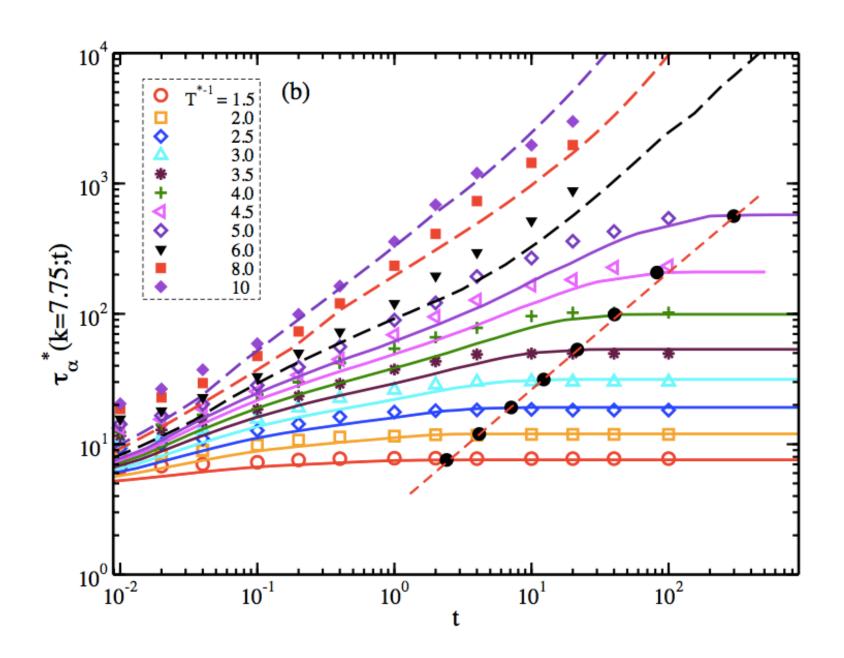




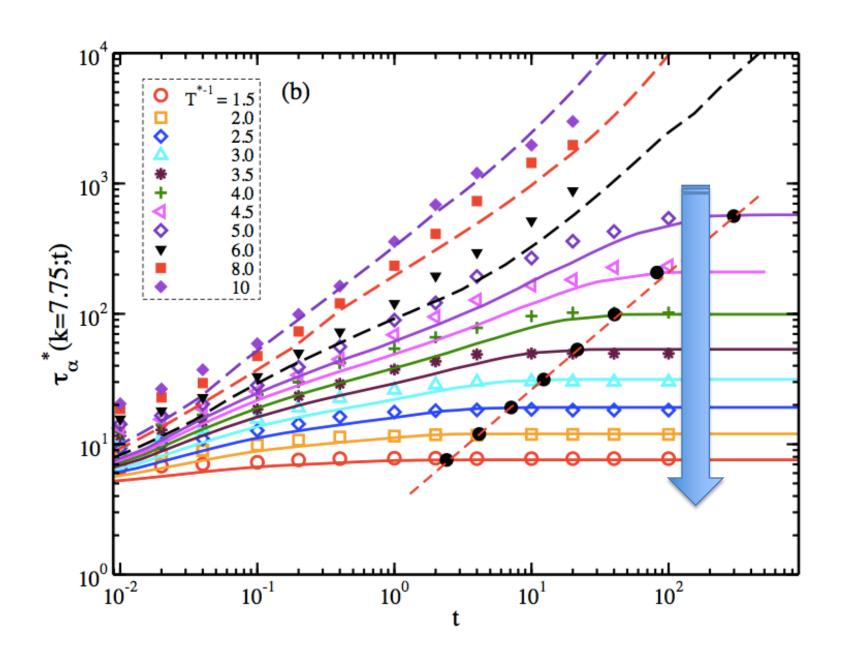




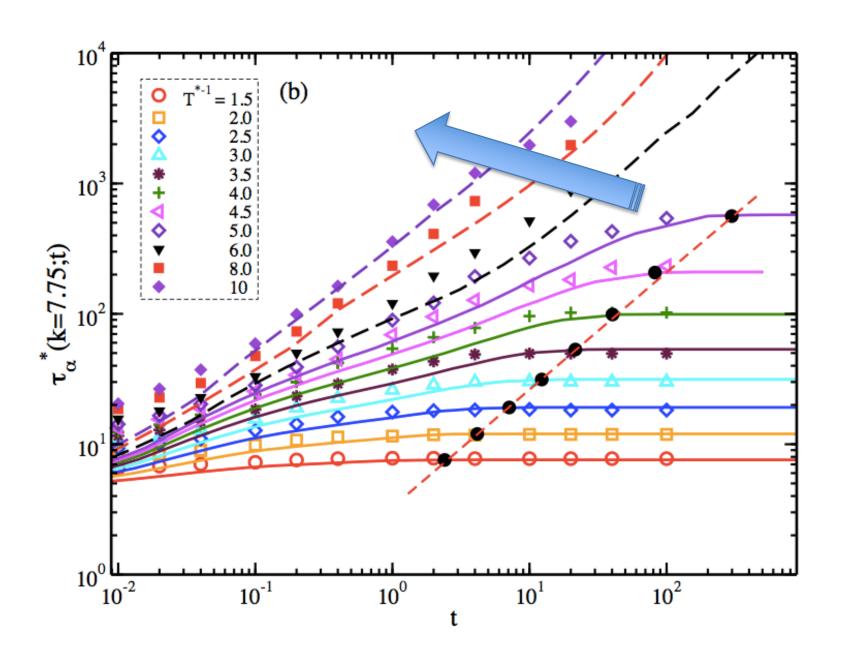
Tiempo de relajación (o viscosidad)



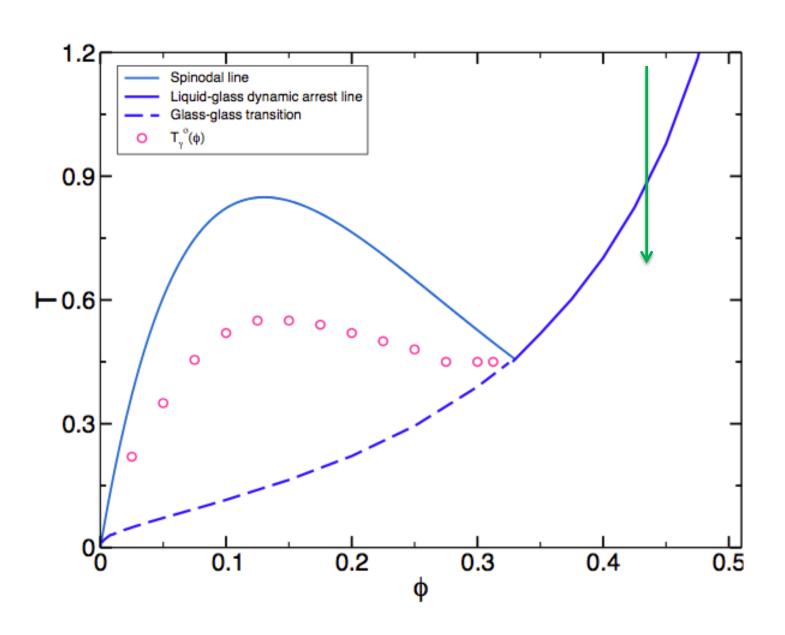
Two regimes: Equilibration



Two regimes: Aging



PREDICTED SCENARIO:



THE JOURNAL OF CHEMICAL PHYSICS 143, 174505 (2015)

Non-equilibrium theory of arrested spinodal decomposition

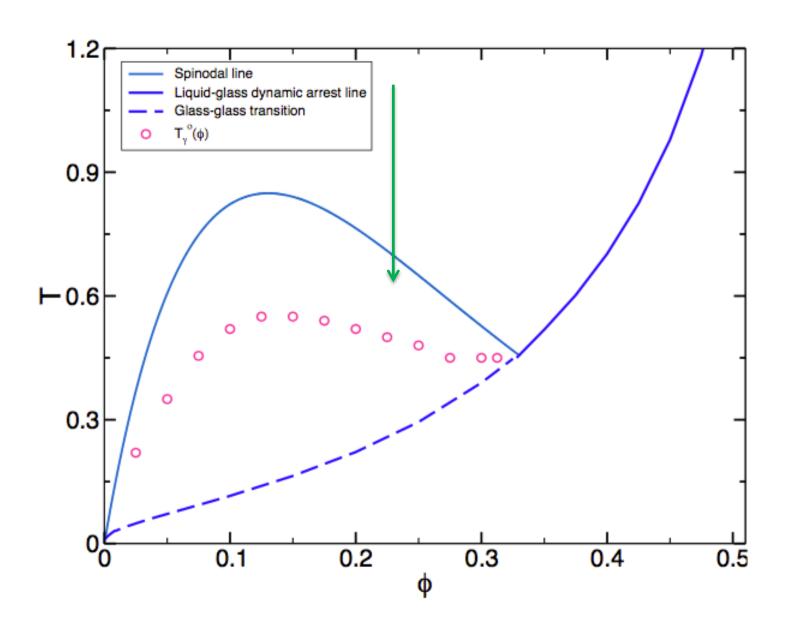
José Manuel Olais-Govea, Leticia López-Flores, and Magdaleno Medina-Noyola Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP, Mexico

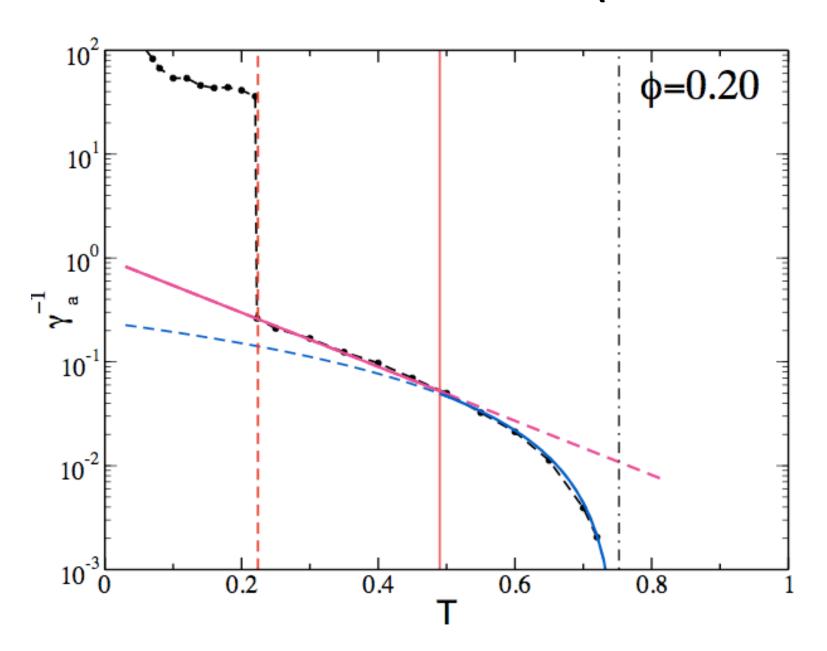
(Received 3 May 2015; accepted 19 October 2015; published online 6 November 2015)

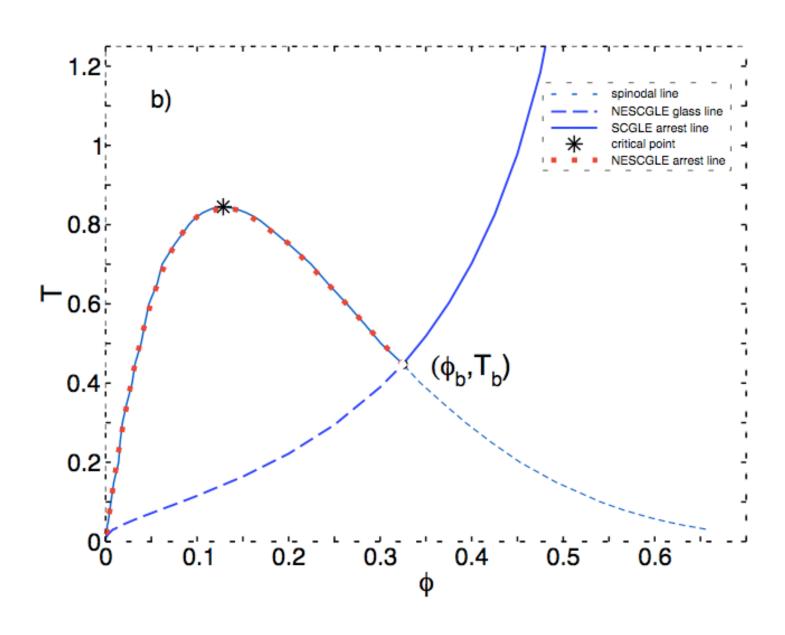
Non-equilibrium Kinetics of the Transformation of Liquids into Physical Gels

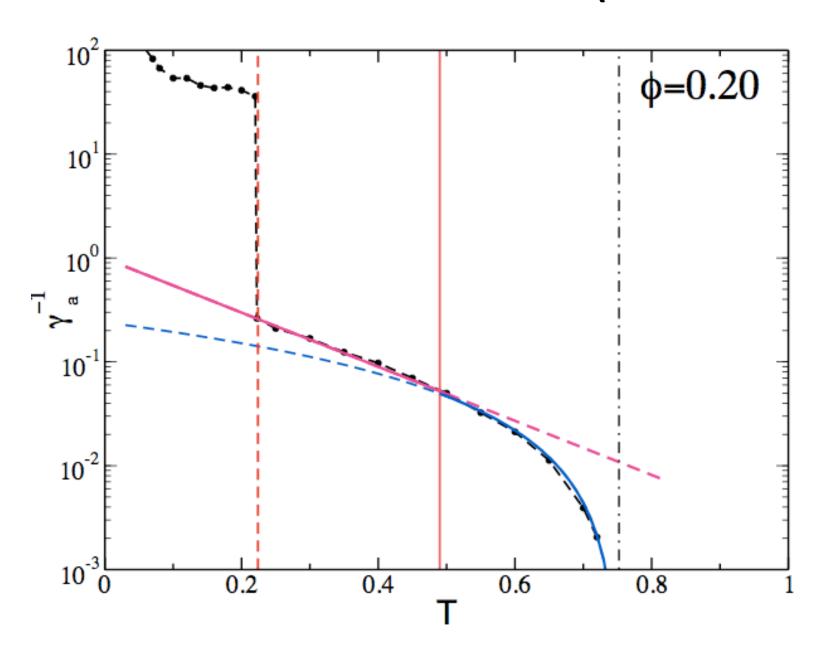
José Manuel Olais-Govea, Leticia López-Flores*, Martín Chávez-Páez, and Magdaleno Medina-Noyola Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP, México (Dated: May 3, 2018)

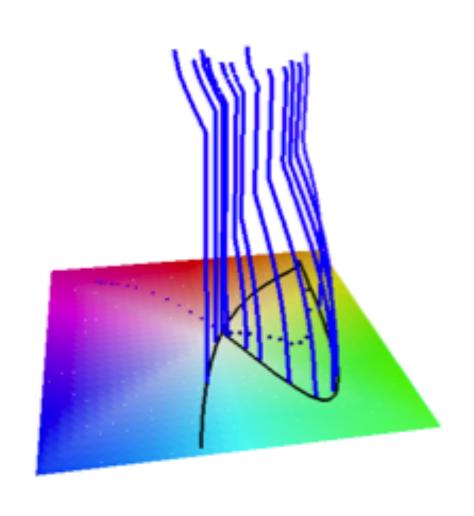
PREDICTED SCENARIO:



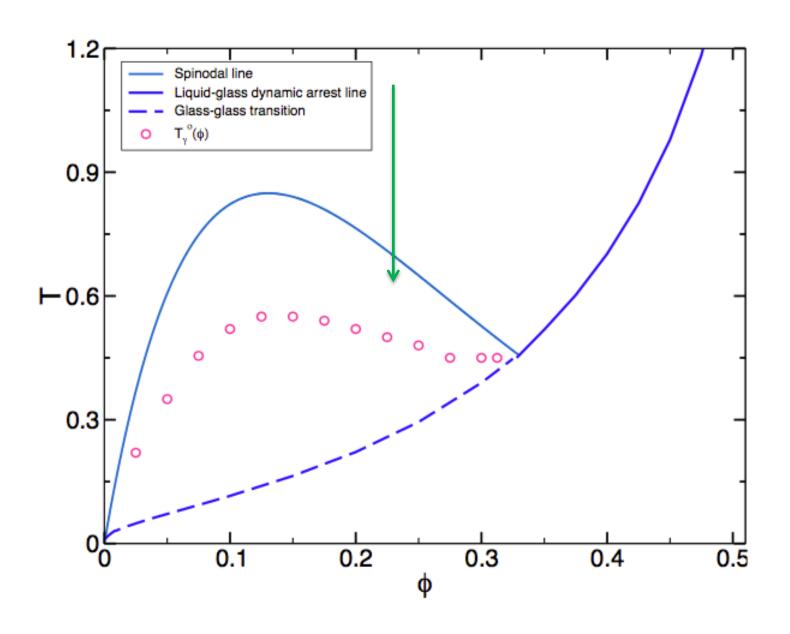






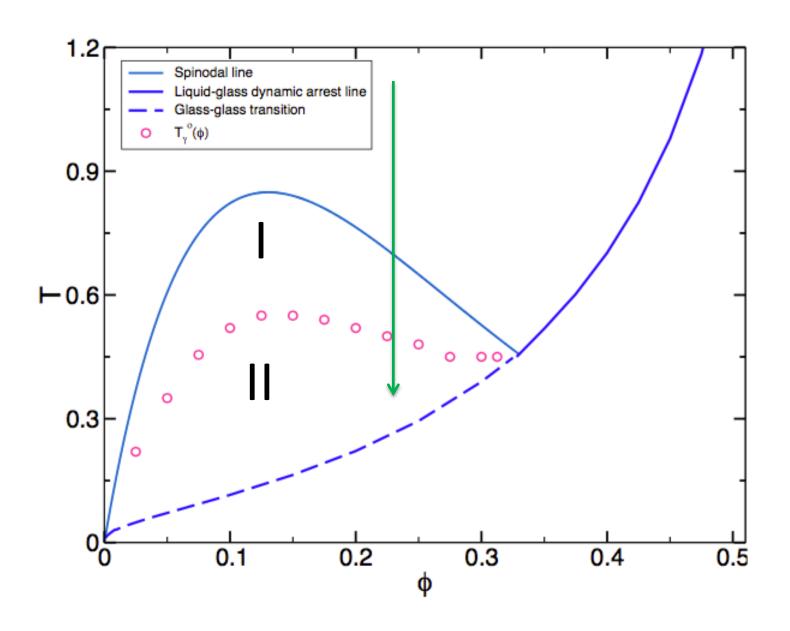


PREDICTED SCENARIO:

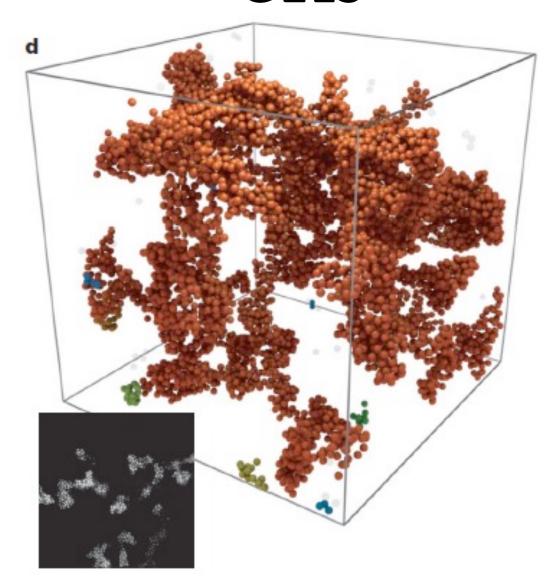


Separación Gas-Líquido:

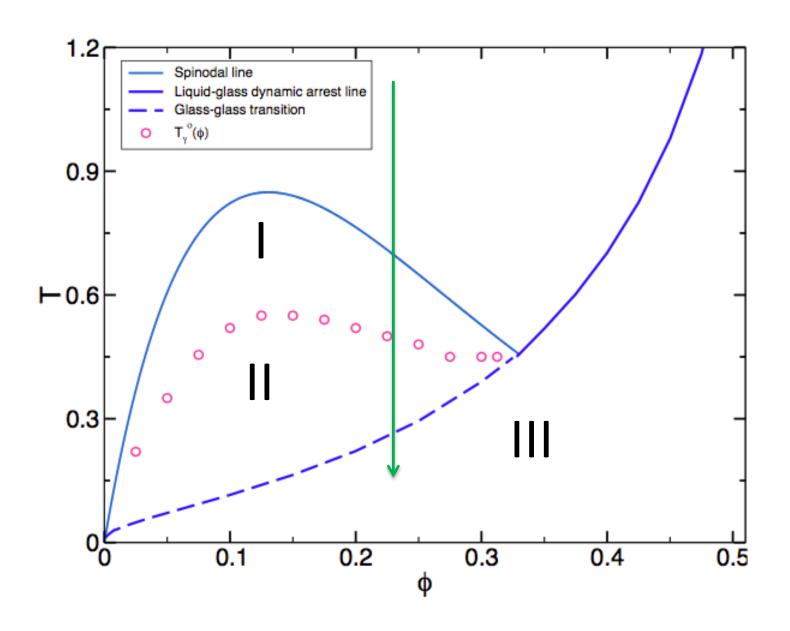
ESCENARIO PREDICHO:



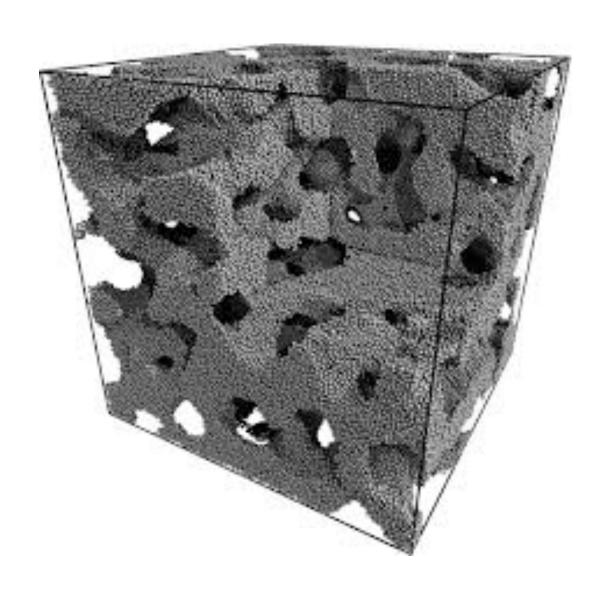
GELS

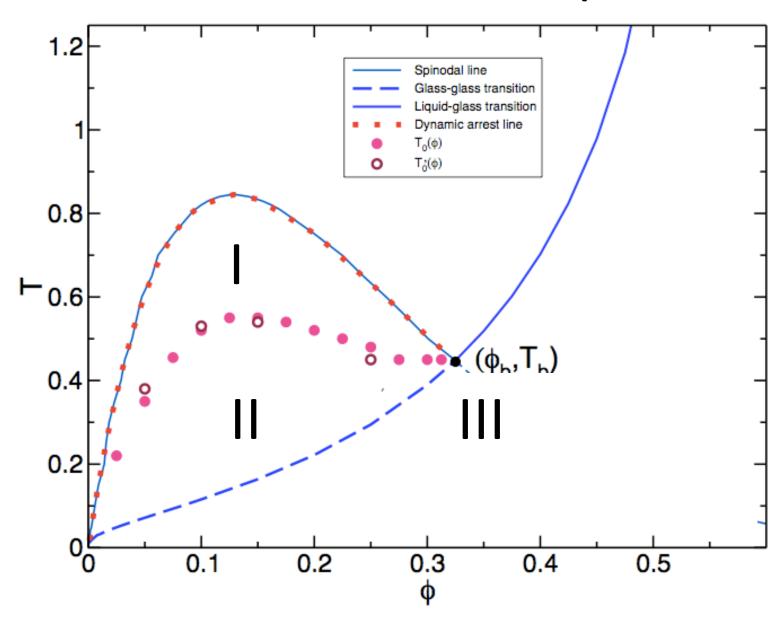


ESCENARIO PREDICHO:



POROUS GLASSES





OBSERVED SCENARIO:

Cite this: Soft Matter, 2011, 7, 857

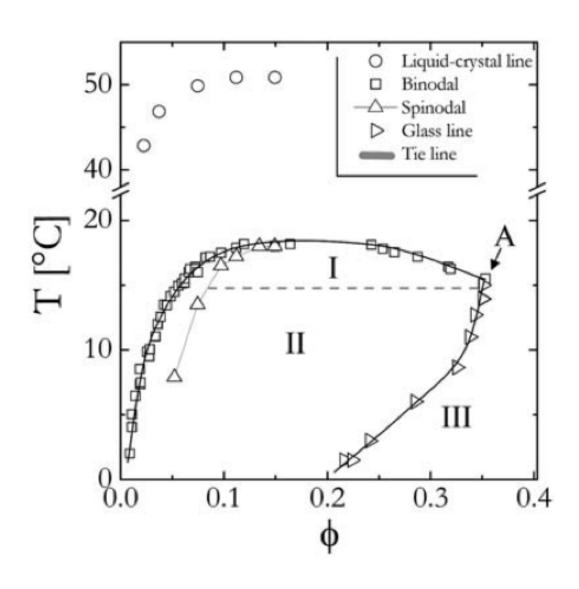
www.softmatter.org

COMMUNICATION

Phase separation and dynamical arrest for particles interacting with mixed potentials—the case of globular proteins revisited†

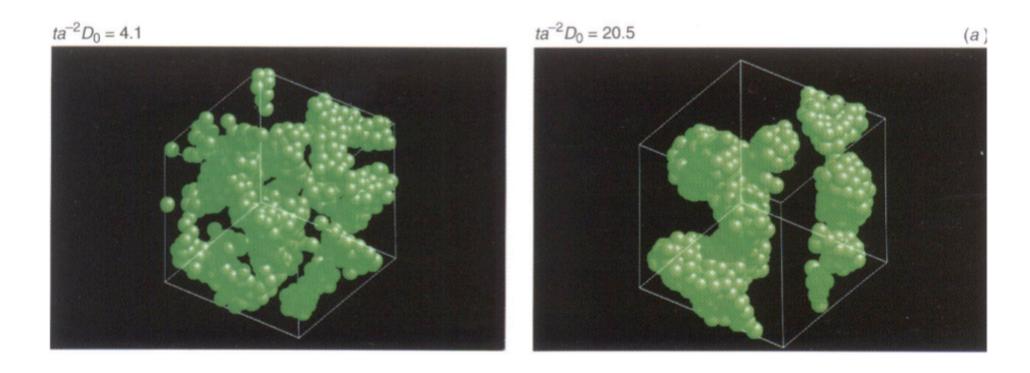
Thomas Gibaud,‡^a Frédéric Cardinaux,^a Johan Bergenholtz,^b Anna Stradner^c and Peter Schurtenberger*^d

OBSERVED SCENARIO:



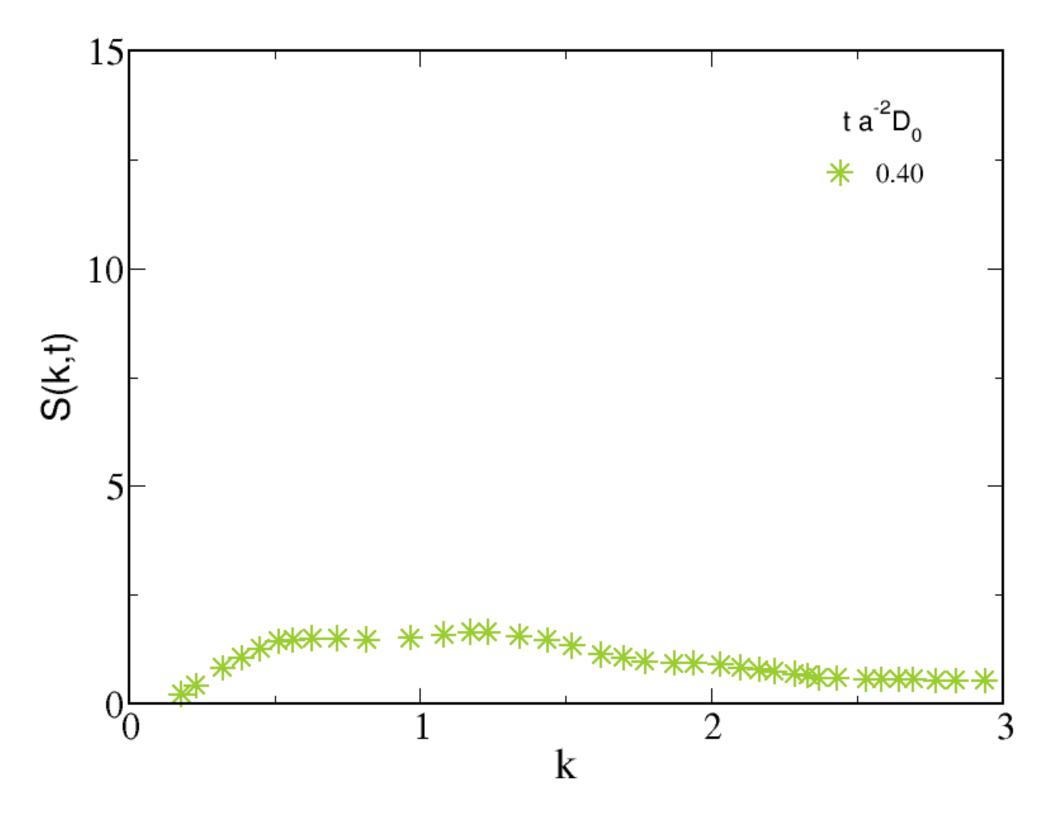
AND HOW ABOUT KINETICS?

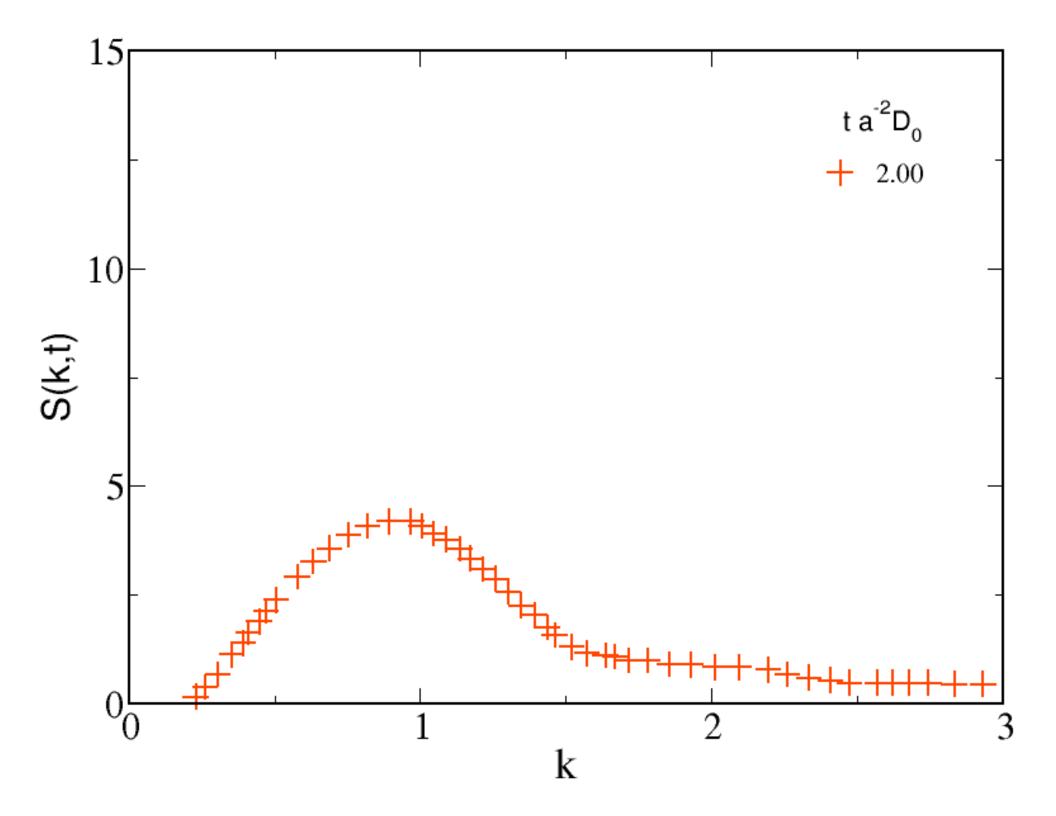
Separación Gas-Líquido en el Fluido de Lennard-Jones

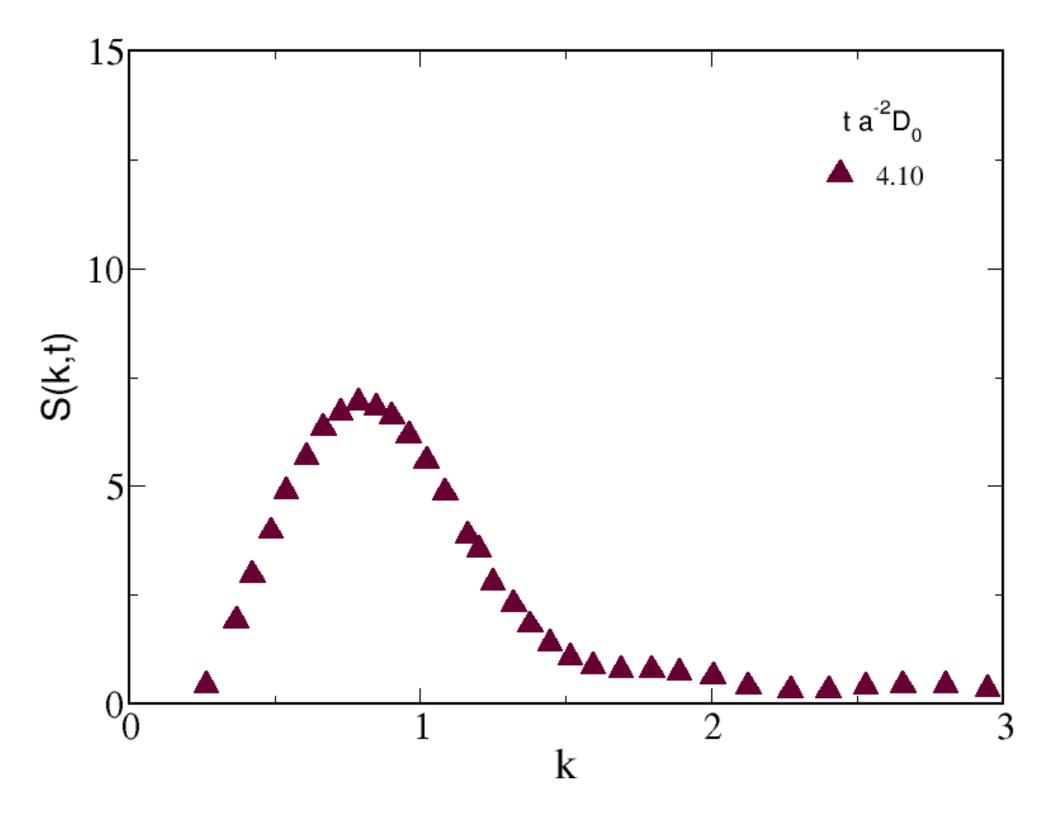


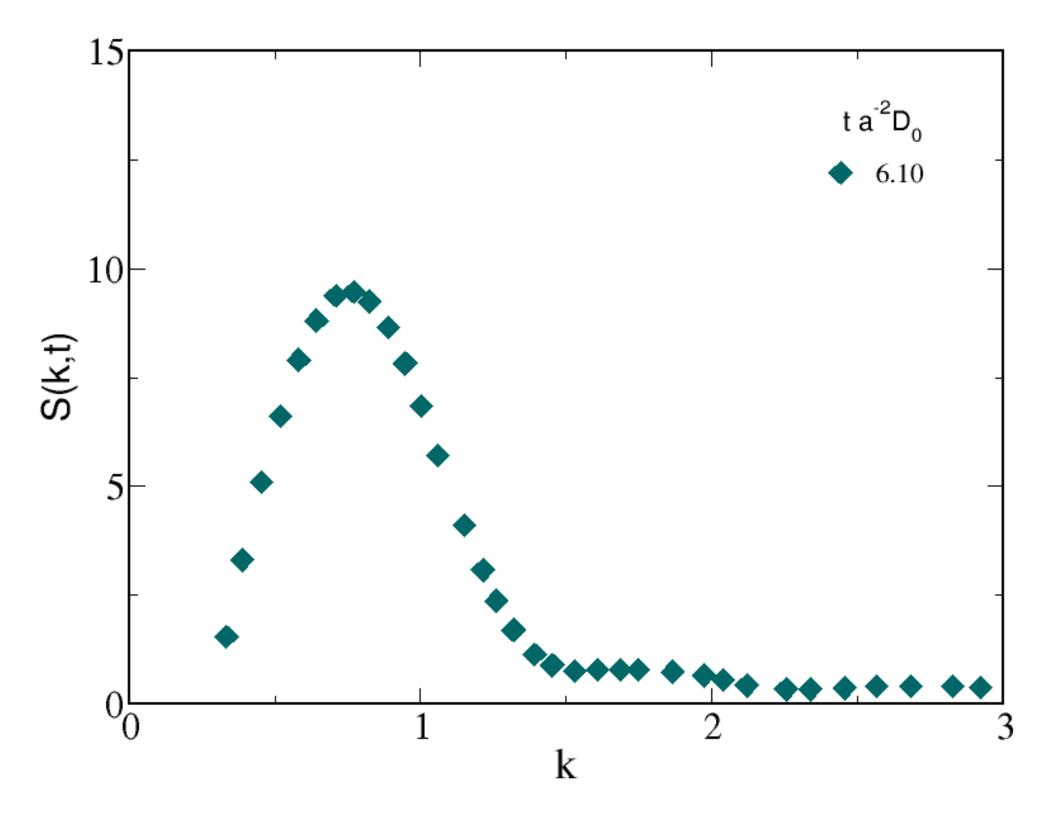
J. Felicity M. Lodge and David M. Heyes

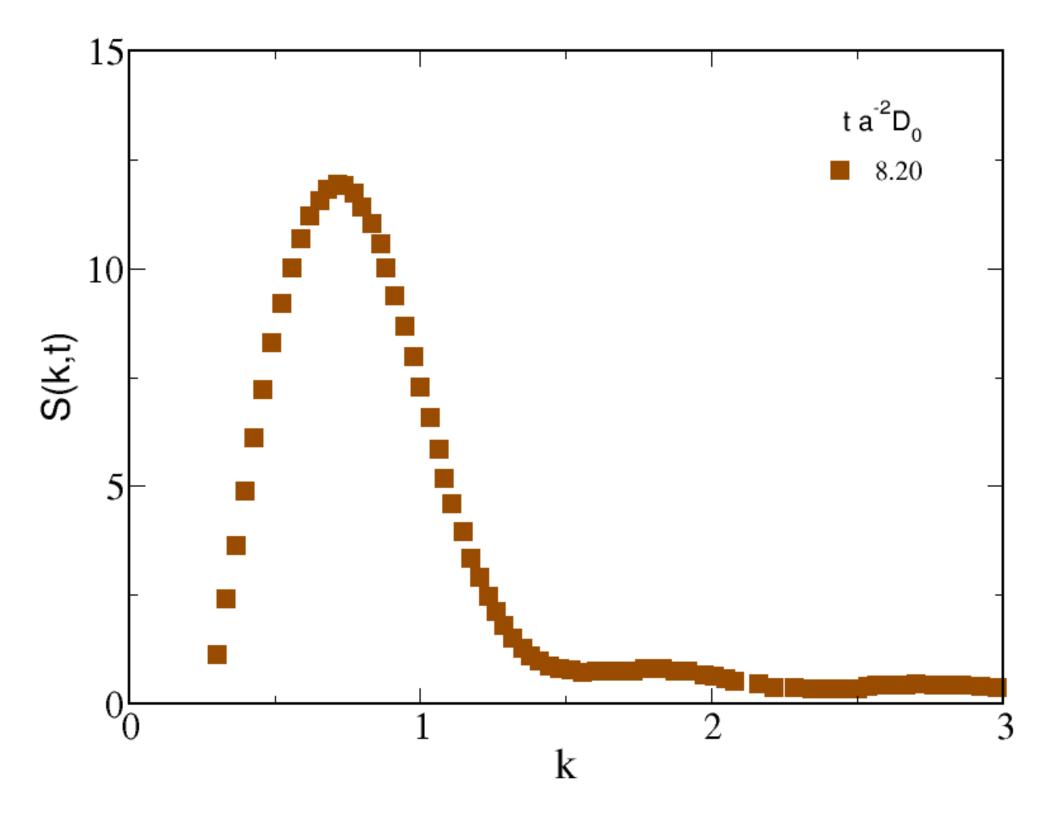
J. Chem. Soc., Faraday Trans., 1997, 93(3), 437

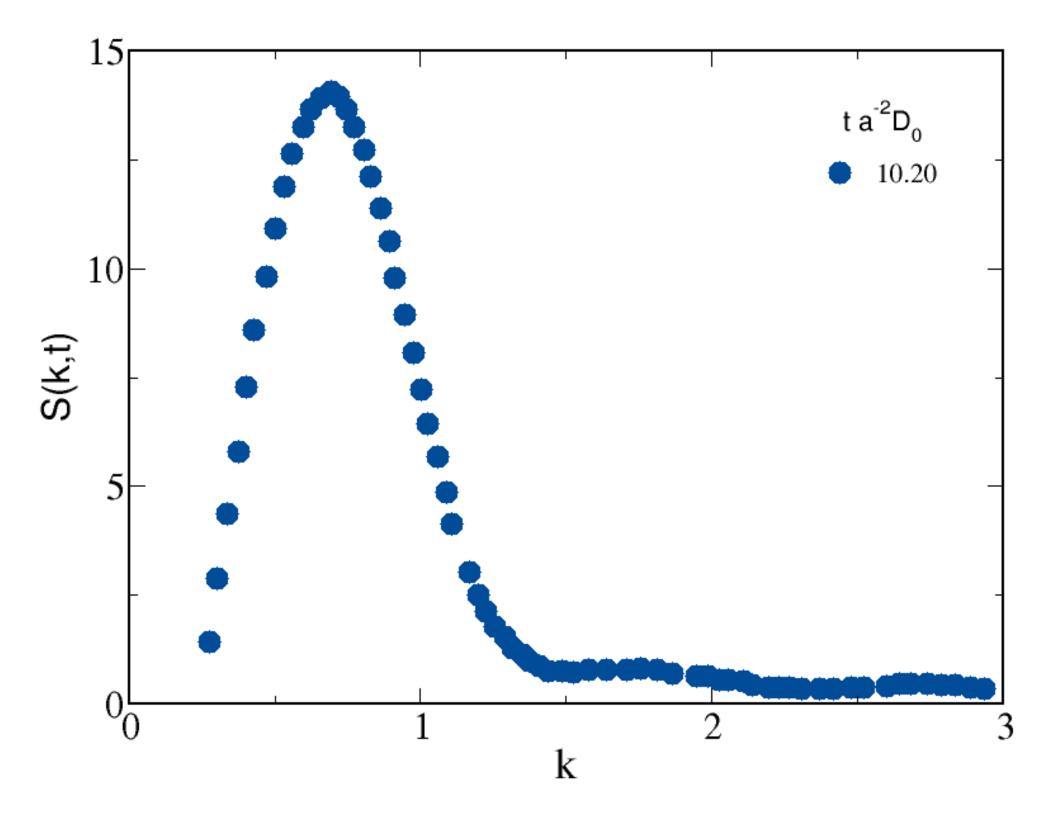




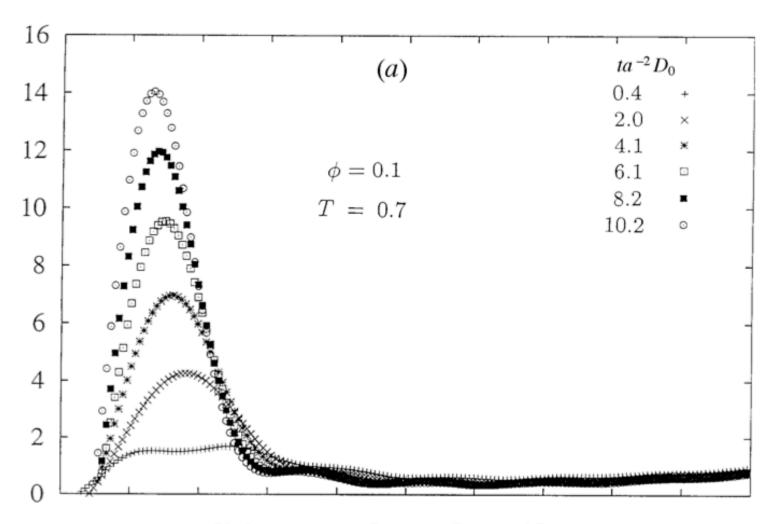






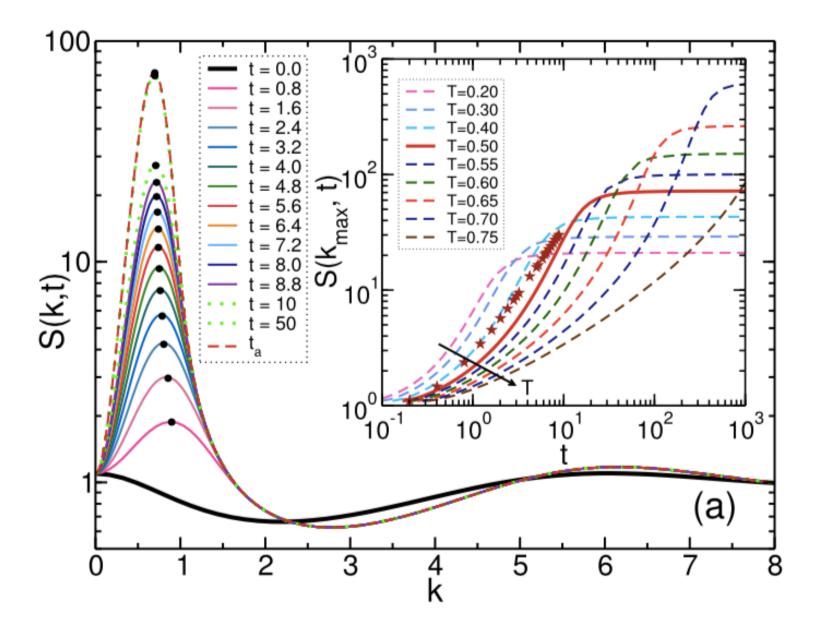


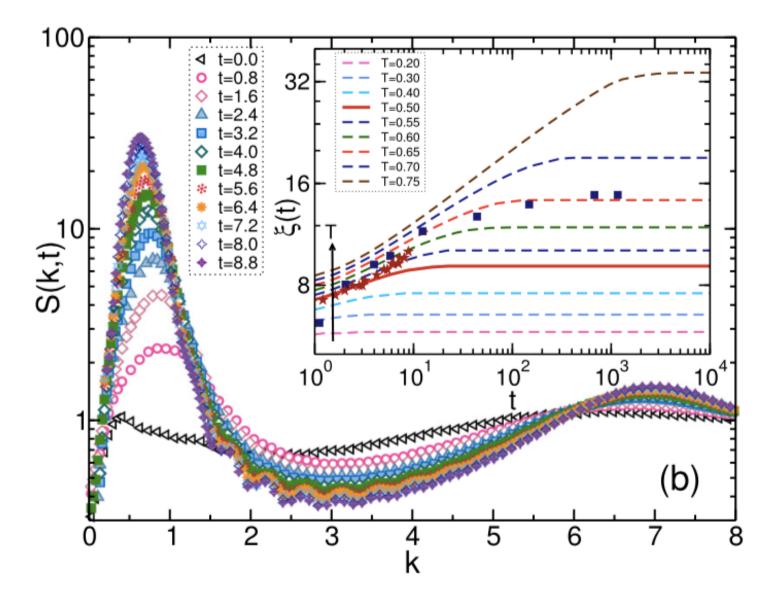
Separación Gas-Líquido en el Fluido de Lennard-Jones

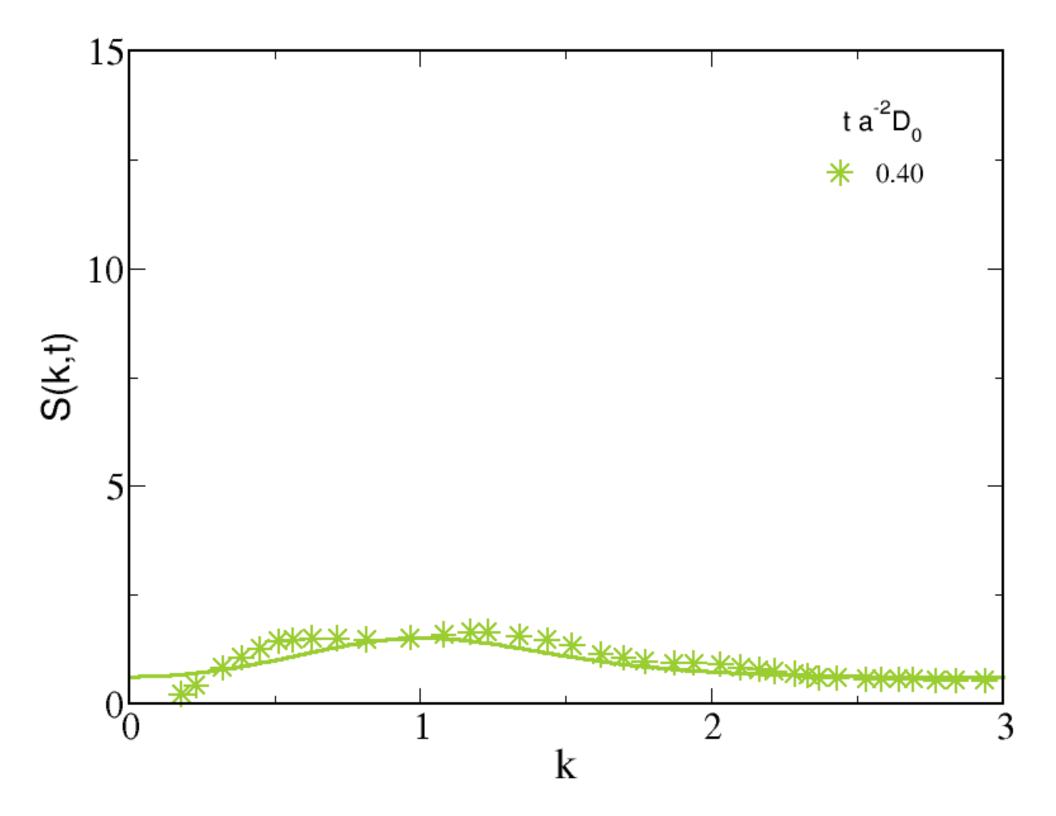


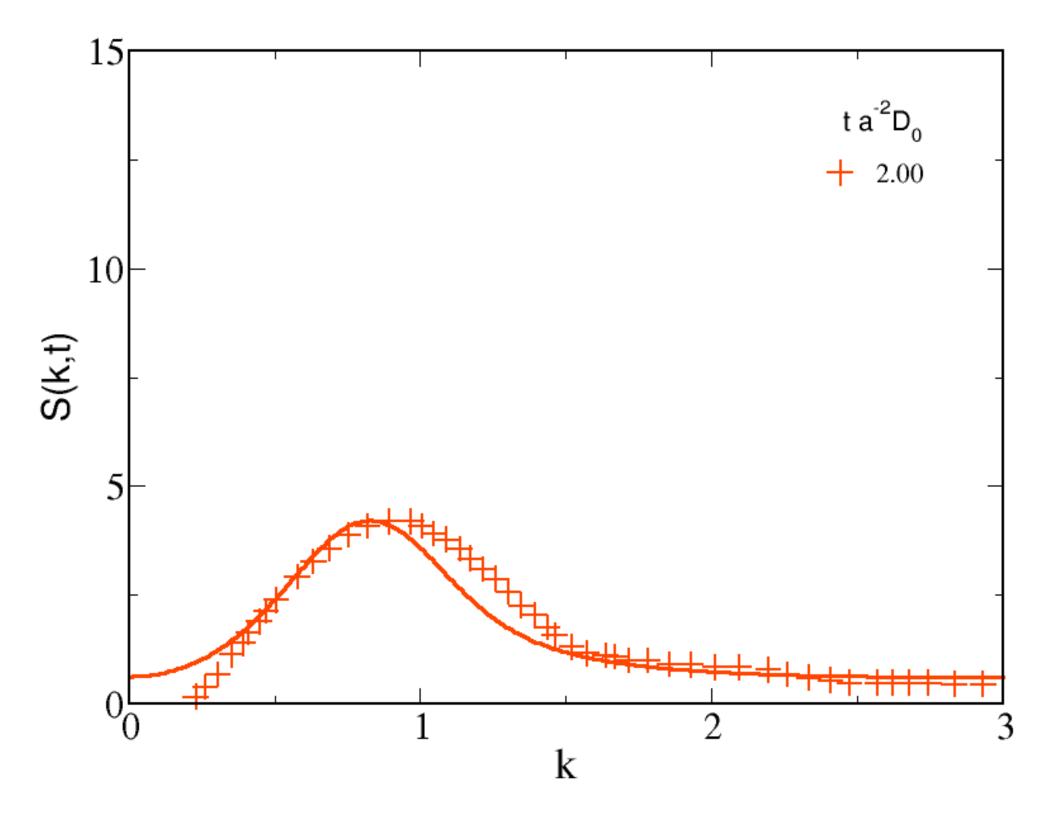
J. Felicity M. Lodge and David M. Heyes

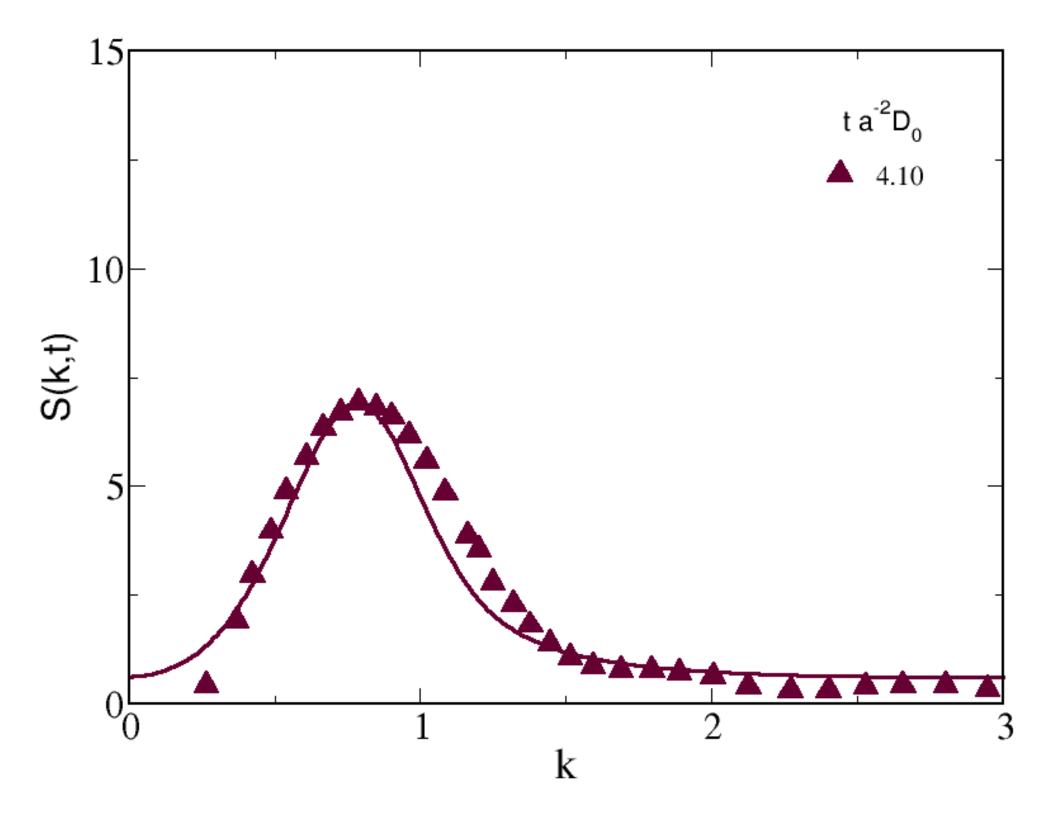
J. Chem. Soc., Faraday Trans., 1997, 93(3), 437

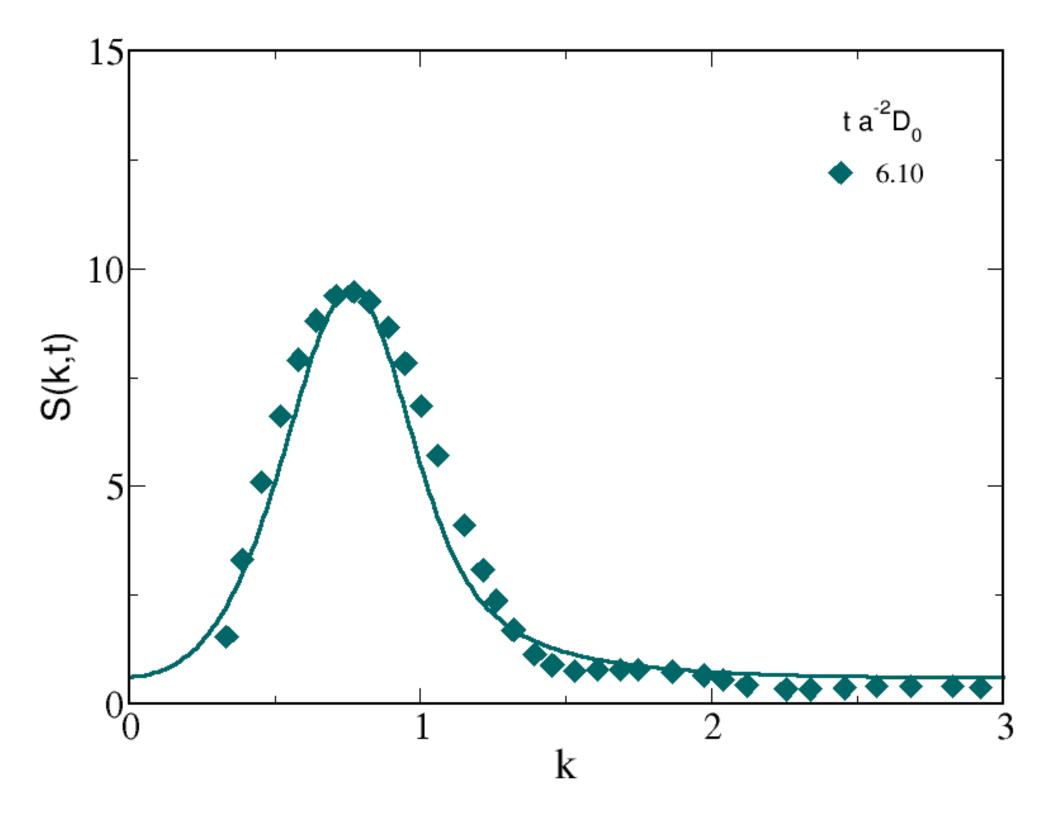


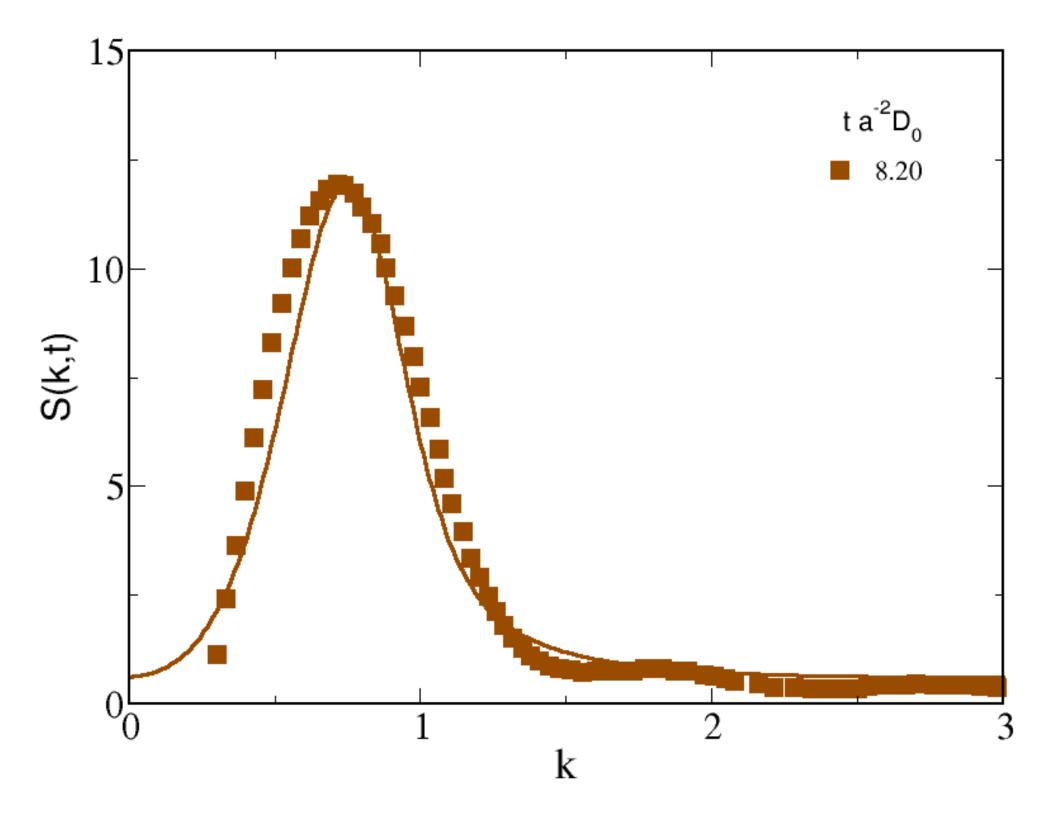


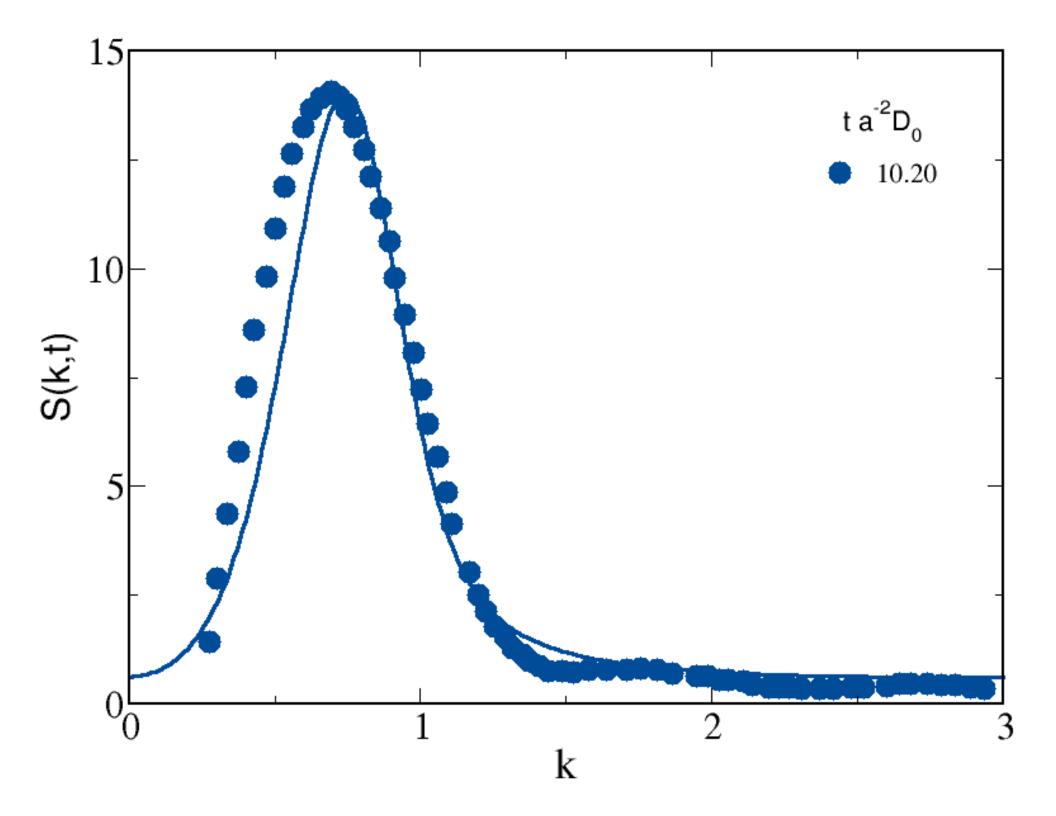


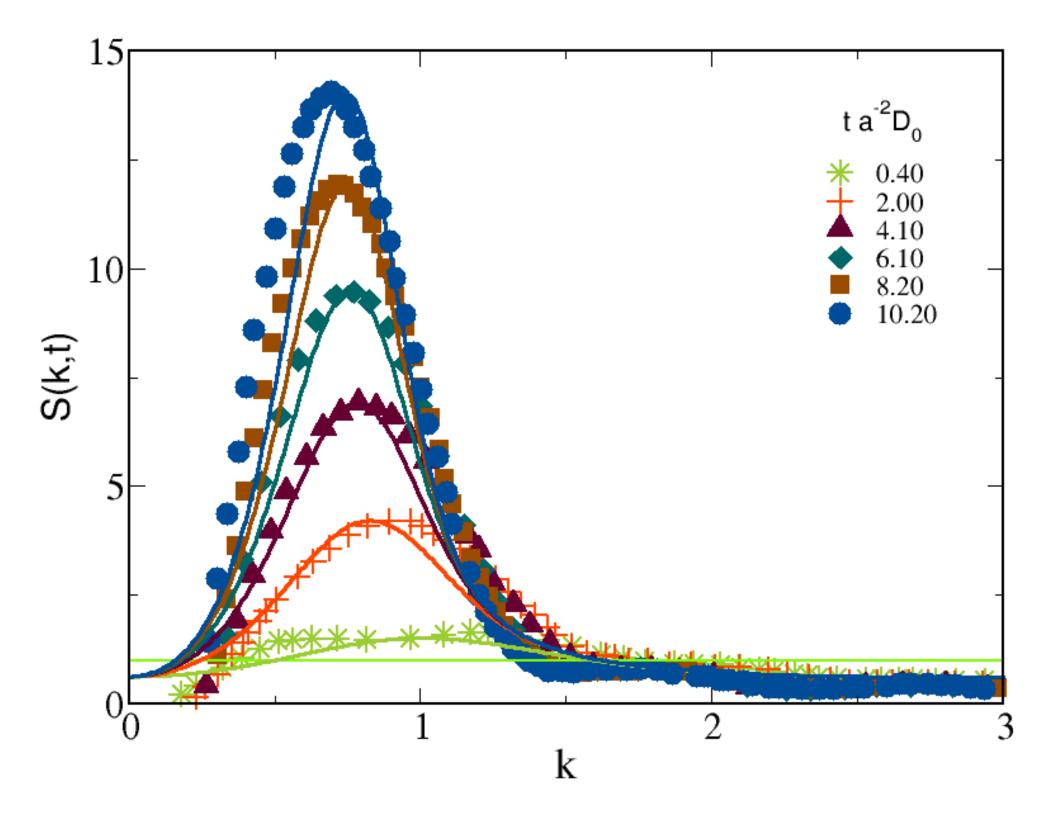












CONTENT

- Introduction and advanced summary.
- Fundamental principles: (molecular) thermodynamics.
- Fundamental principles: (molecular) Irreversible thermodynamics.
- Equilibrium Self-consistent generalized Langevin equation (SCGLE) theory.
- Aging and irreversibility: the NE-SCGLE theory.
- Full exercise: Lennard-Jones—like liquid.
- Perspectives.

Structural and Dynamical Heterogeneity

$$\frac{\partial \overline{n}(\mathbf{r},t)}{\partial t} = D^0 \nabla \cdot b(\mathbf{r},t) \overline{n}(\mathbf{r},t) \nabla \beta \mu[\mathbf{r}; \overline{n}(t)]$$

$$\frac{\partial \sigma(k; \mathbf{r}, t)}{\partial t} = -2k^2 D^0 \overline{n}(\mathbf{r}, t) b(\mathbf{r}, t) \mathcal{E}(k; \overline{n}(\mathbf{r}, t)) \sigma(k; \mathbf{r}, t) + 2k^2 D^0 \overline{n}(\mathbf{r}, t) b(\mathbf{r}, t),$$

Strategy: write

$$n(r,t)=n+\Delta n(r,t),$$

and start by neglecting $\Delta n(\mathbf{r},t)$

Strategy: write

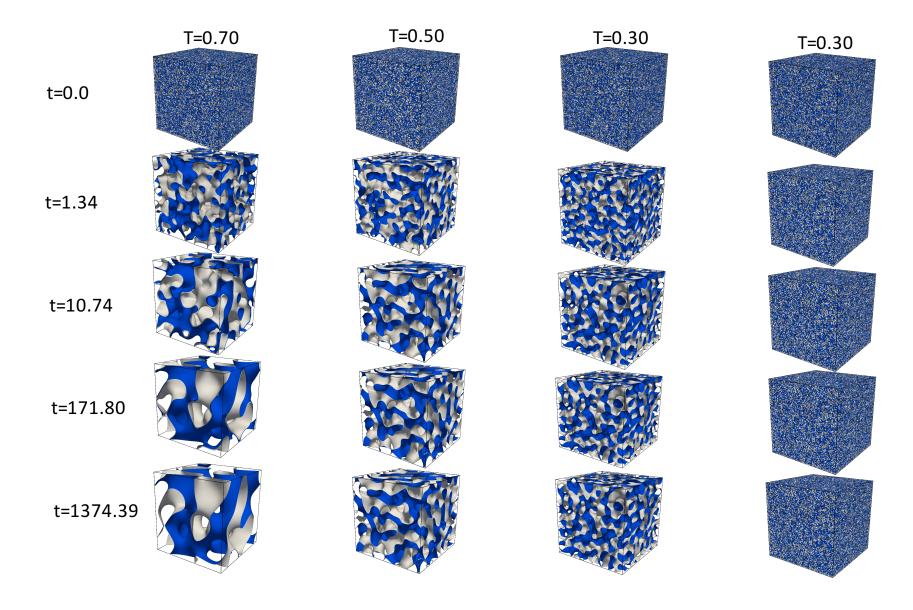
$$n(\mathbf{r},t)=n+\Delta n(\mathbf{r},t),$$

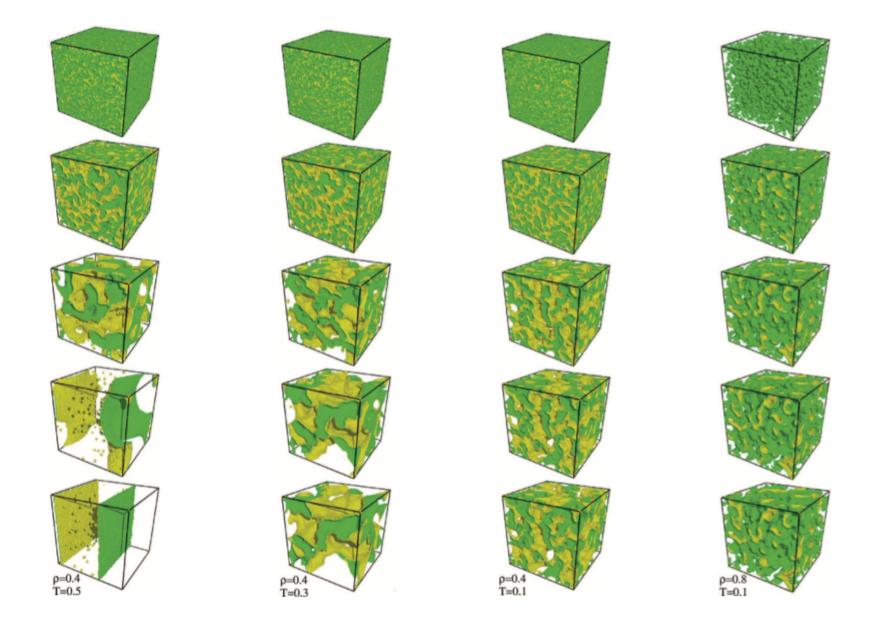
but now do not neglect $\Delta n(r,t)!...$

Instead, linearize this equation,

$$\frac{\partial \overline{n}(\mathbf{r},t)}{\partial t} = D^0 \nabla \cdot b(\mathbf{r},t) \overline{n}(\mathbf{r},t) \nabla \beta \mu[\mathbf{r}; \overline{n}(t)]$$

in $\Delta n(r,t)$





Dipolar Janus Particles

(HS + Dipolar) Interaction

$$u(1,2) = u_{HS}(r_{12}) + f(r_{12}) D(r,\mu_1, \mu_2)$$

with

$$D(\hat{r},\mu,\mu') = 3(\hat{r}\cdot\mu)(\hat{r}\cdot\mu') - (\mu\cdot\mu')$$

and

$$f(r) = 1/r^3$$

(HS + Shoulder) Interaction

$$u(1,2) = u_{HS}(r_{12}) + f(r_{12}) D(r,\mu_1, \mu_2)$$

with

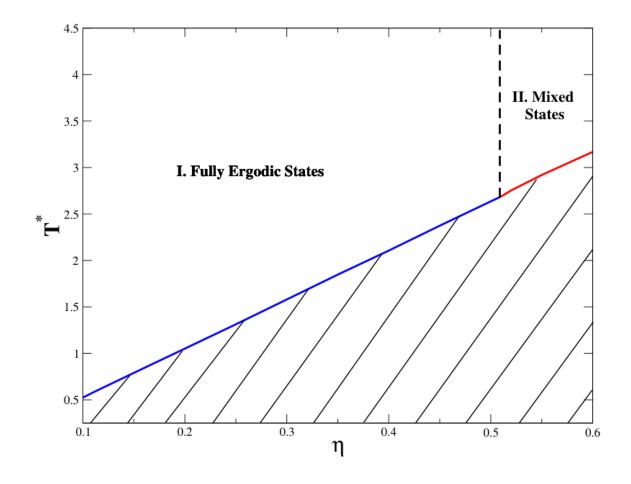
$$D(\hat{r},\mu,\mu') = 3(\hat{r}\cdot\mu)(\hat{r}\cdot\mu') - (\mu\cdot\mu')$$

and

$$f(r) = e^{-zr}/r$$

Anisotropic interaction: Yukawa-like potential

Dynamical Arrest Diagram: Equilibrium vs. Non equilibrium SCGLE



(HS + Well) Interaction

$$u(1,2) = u_{HS}(r_{12}) + f(r_{12}) D(r,\mu_1, \mu_2)$$

with

$$D(\hat{r},\mu,\mu')=3(\hat{r}\cdot\mu)(\hat{r}\cdot\mu')-(\mu\cdot\mu')$$

and

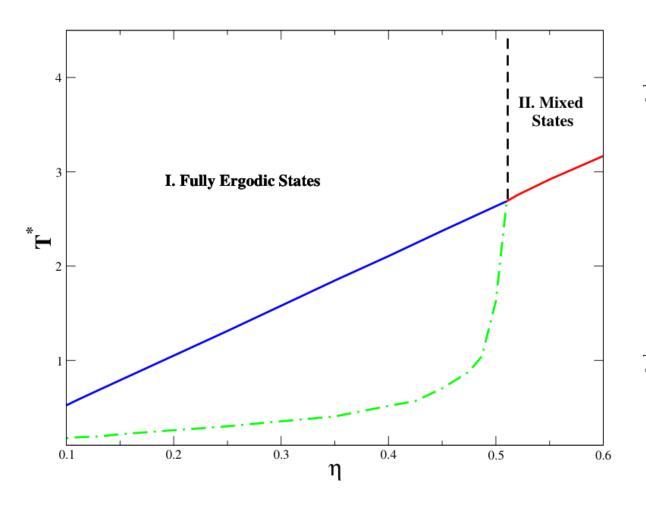
$$f(r) = -e^{-zr}/r$$

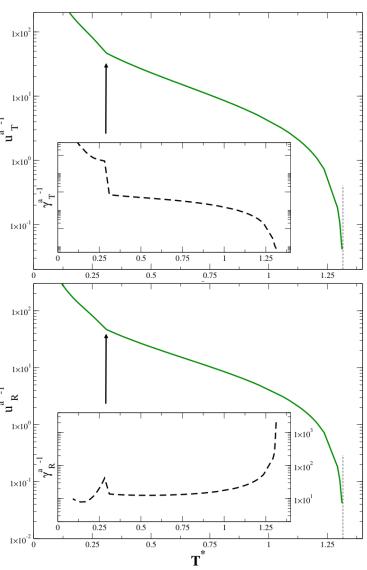
Anisotropic interaction: Yukawa-like

potential Diagram: Equilibrium Dynamical Arrest

VS.

equilibrium SCGLE





Soft matter group at Universidad Autónoma de San Luis Potosí

Pedro Ramírez-González

Lety López-Flores

Paty Mendoza-Méndez

José Manuel Olais-Govéa

Edilio Lázaro-Lázaro

Ernesto Cortés-Morales

J. Manuel Olais-Govea, Leticia López-Flores,

and

Martin Chávez-Páez

Instituto de Física 'Manuel Sandoval Vallarta', Universidad Autónoma de San Luis Potosí, México

Agradecimientos: CONACyT, SEP, UASLP

CONCLUSIONS

- The NE-SCGLE theory describes nonequilibrium processes from first principles.
- It describes a number of relevant well-known and relevant signatures of the glass and gel transitions.
- It is flexible enough to be extended in various other directions (molecular systems, heterogeneous conditions, arbitrary non-equilibrium protocols, etc.)