# Dynamics, Entropy Production & Defects in Active Matter

Sriram Ramaswamy

Centre for Condensed Matter Theory
Department of Physics
Indian Institute of Science
Bengaluru





#### Outline

Systems & phenomena

Framework

Entropy production

Flocking, condensation, trapping

Defect unbinding: an energy—entropy story

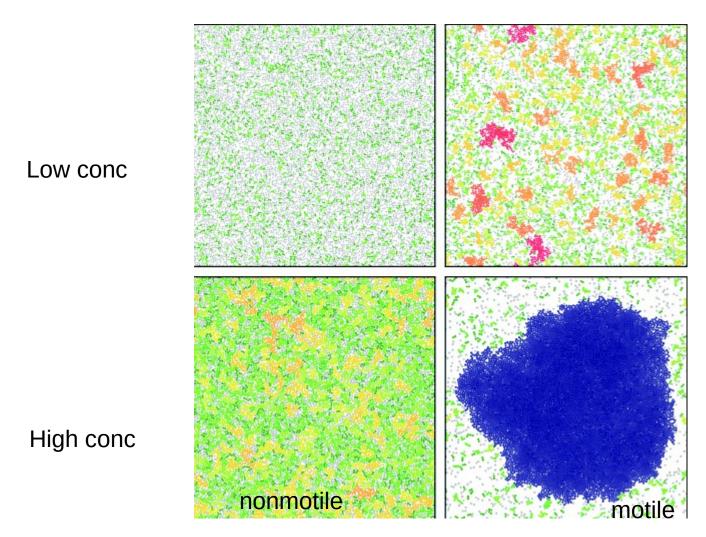
Summary

## Systems and phenomema



Millipede Flock (S Dhara, U of Hyderabad)

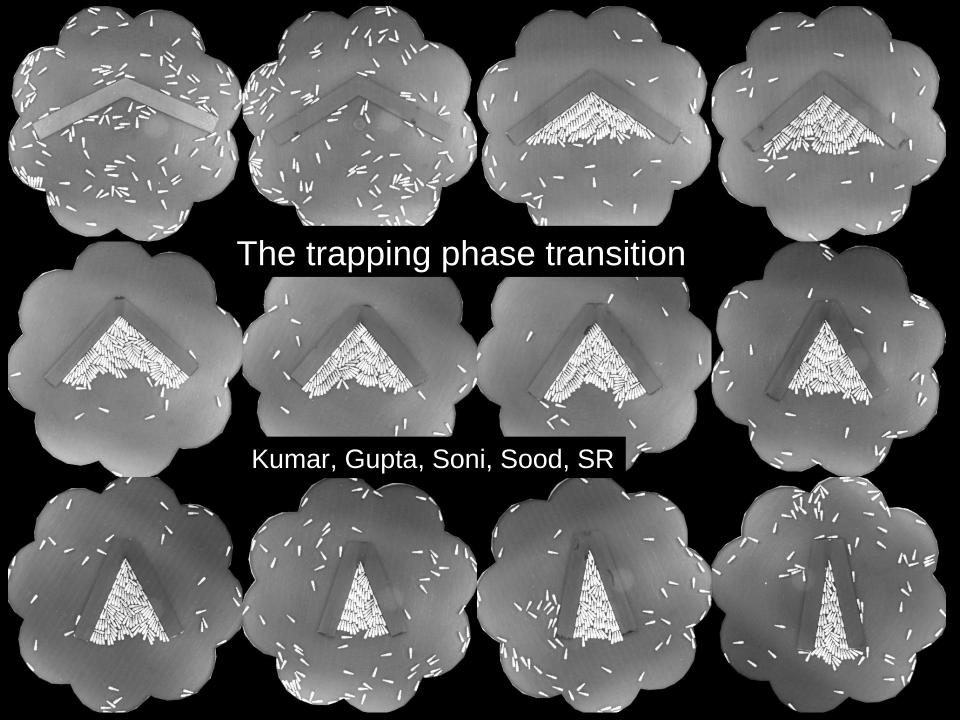
#### Persistent motion → condensation without attraction



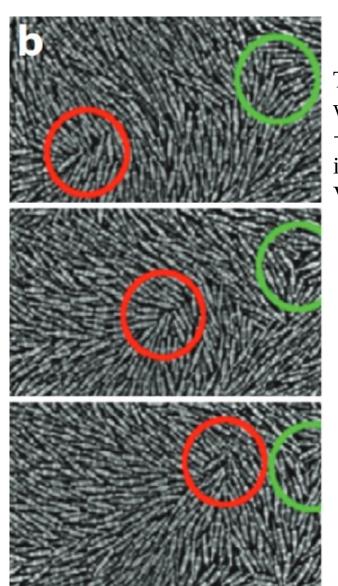
Motility-induced phase separation

Non-aligning SPPs: Fily & Marchetti; Redner, Hagan, Baskaran; Tailleur & Cates;

SP rods: S Weitz, A Deutsch, F Peruani



## Self-propelled defects



The symmetry of the field around the strength -1/2 defect will result in no net motion, while the curvature around the +1/2 defect has a well-defined polarity and hence should move in the direction of its "nose" as shown in the figure.

V Narayan et al., Science **317** (2007) 105

motile +1/2 defect, static -1/2 defect

Defects as particles:

+1/2 motile, -1/2 not

+1/2 velocity ~ divQ

Giomi, Bowick, Ma, Marchetti PRL 2013

Thampi, Golestanian, Yeomans PRL 2014

DeCamp et al NMat 2015 ......

## Active matter: definition

- Active particles are alive, or "alive"
  - living systems and their components
  - each constituent has dissipative Time's Arrow
  - steadily transduces free energy to movement
  - detailed balance homogeneously broken
  - collectively: active matter
  - transient information: sensing and signalling
  - heritable information: self-replication

#### SR Ji Stat Mech 2017 on

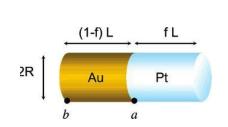
Marchetti, Joanny, SR, Liverpool, Prost, Rao, Simha, Rev. Mod. Phys. **85** (2013) 1143-1189
Prost, Jülicher, Joanny, Nat Phys Feb 2015
SR: Annu. Rev. Condens. Matt. Phys. **1** (2010) 323
Toner, Tu, SR: Ann. Phys. **318** (2005) 170

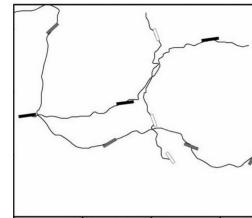
So: motile creatures living tissue membranes + pumps cytoskeleton + motors

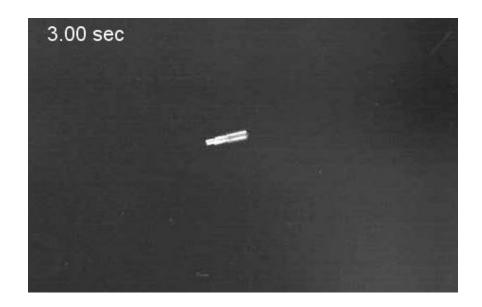
but also:

## Active matter: nonliving examples

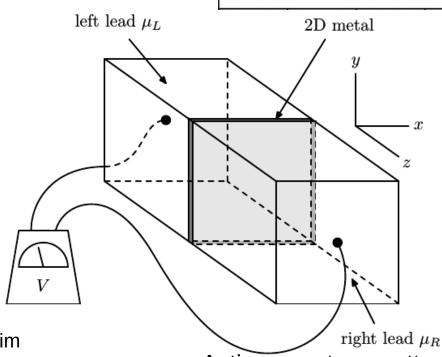
Catalytic particle in reactant bath Golestanian et al., Paxton et al., Saha et al.







Motile brass rod Kumar et al. PRL 2011

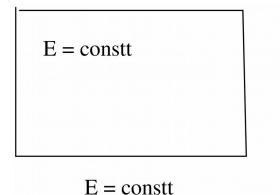


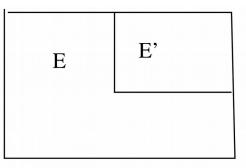
Takei and Kim Phys. Rev. B 76, 115304 (2007)

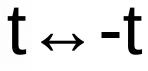
Active quantum matter?

## INTRODUCTION framework

#### Thermal equilibrium: "closed" systems



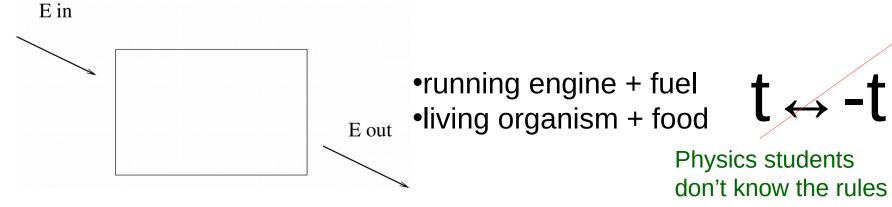




Physics students

E + E' = consttTemperature of subsystem = constt

Active matter: open systems (& questions)



## INTRODUCTION framework GROOVES: NONDIAGONAL **MOBILITY** chemical Velocity = rdirection SR JSTAT 2017 Jülicher, Ajdari, Prost RMP Collog 1993 Marchetti et al. RMP 2013 spatial direction

Motor: catalyst for fuel breakdown; 2d configuration space

Velocity = v

Driving force  $Dm = m_{reactant} - m_{product}$  in *chemical* direction

Mobility nondiagonal: vel = Mob\*Force has *spatial* component

Use this to understand "new" terms, ruled out in equilibrium dynamics?

## Temperature T; effective Hamiltonian $H(q,p,X,\Pi)$

q (time-rev even), p (odd); X,  $\Pi$ : extra coord, momentum

Off-diagonal a-dependent Onsager coefficients  $\dot{q}=\partial_p H$ 

$$\dot{p} + \Gamma_{11}\partial_p H + \Gamma_{12}(q)\partial_{\Pi} H = -\partial_q H + \eta$$

$$\Pi + \Gamma_{21}(q)\partial_p H + \Gamma_{22}\partial_\Pi H = -\partial_X H + \xi$$

eliminate  $\dot{X}$  from the p equation

$$\dot{X} = \partial_{\Pi} H$$

noises 
$$\eta, \xi \quad \langle \eta(0)\xi(t)\rangle = 2k_BT\Gamma_{12}(q)\delta(t)$$

## Temperature T; effective Hamiltonian $H(q,p,X,\Pi)$

q (time-rev even), p (odd); X,  $\Pi$ : extra coord, momentum

Off-diagonal *q*-dependent Onsager coefficients  $\dot{q} = \partial_n H$ 

$$\dot{p} + \Gamma_{11}\partial_p H + \Gamma_{12}(q)\partial_\Pi H = -\partial_q H + \eta$$

$$\dot{p} + \Gamma_{11}\partial_p H + \Gamma_{12}(q)\partial_\Pi H = -\partial_q H + \eta$$
 $\dot{\Pi} + \Gamma_{21}(q)\partial_p H + \Gamma_{22}\partial_\Pi H = -\partial_X H + \xi$ 
minate  $\dot{X}$  from the  $p$  equation  $\dot{X} = \partial_\Pi H$ 

eliminate  $\hat{X}$  from the p equation

$$\dot{X} = \partial_{\Pi} H$$

noises 
$$\eta, \xi \quad \langle \eta(0)\xi(t)\rangle = 2k_BT\Gamma_{12}(q)\delta(t)$$

$$\dot{q} = \partial_p H$$

$$\dot{p} + \Gamma \partial_p H - \frac{\Gamma_{12}(q)}{\Gamma_{22}} \partial_X H = -\partial_q H + f$$

$$\dot{X} + \frac{\Gamma_{12}(q)}{\Gamma_{22}} \partial_p H = -\frac{1}{\Gamma_{22}} \partial_X H + \frac{\xi}{\Gamma_{22}}$$

$$f \equiv \eta - (\Gamma_{12}/\Gamma_{22})\xi$$
 has variance  $\propto \Gamma \equiv \Gamma_{11} - \Gamma_{12}^2(q)/\Gamma_{22}$ 

Active? Hold  $-\partial_X H \equiv -\Delta \mu \neq 0$  fixed

$$\dot{p} + \Gamma \partial_p H - \frac{\Gamma_{12}(q)}{\Gamma_{22}} \Delta \mu = -\partial_q H + f$$

"New" terms, ruled out in equilibrium dynamics. In general can't hide by redefining H, temperature....

$$\dot{q} + \Gamma^{-1} \partial_q H = \frac{\Delta \mu}{\Gamma_{22} \Gamma} \Gamma_{12}(q) + \Gamma^{-1} f$$

No inertia: q-only equation of motion

## Framework

example: active interface

$$q \to h(\mathbf{x}, t) = \text{height field of interface}$$

Invariance:  $h \to h + \text{constant but not } h \to -h$ 

$$\dot{h} + \frac{1}{\zeta} \frac{\delta H}{\delta h} = \frac{\Delta \mu}{\Gamma_{22} \Gamma} \underline{\Gamma_{12}}(h, \nabla h, \dots) + \sqrt{\frac{2k_B T}{\zeta}} f$$

Symmetries 
$$\to \Gamma_{12} = \text{constt} + (\nabla h)^2$$

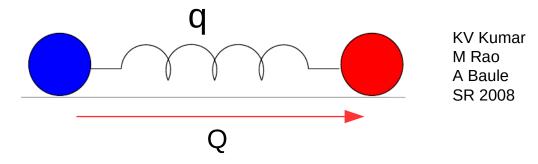
## **KPZ** equation

## ABP or AOUP from dimer + chemistry





LP Dadhichi A Maitra SR 2018



Joint & relative (q,p) & (Q,P); "chemical"  $(X,\Pi)$ 

$$\dot{p} + \gamma_{11}\partial_{p}H + \boxed{\gamma_{12}(Q)}\partial_{\Pi}H = -\partial_{q}H + \eta$$

$$\dot{H} + \boxed{\gamma_{21}(Q)}\partial_{p}H + \gamma_{22}\partial_{\Pi}H = -\partial_{X}H + \xi$$

$$\dot{P} + \Gamma_{11}\partial_{P}H = -\partial_{Q}H + \bar{\eta}$$

ABP or AOUP from dimer + chemistry

$$\dot{q} + \frac{\gamma_{22}}{\mathcal{D}} \partial_q H = \boxed{\frac{\gamma_{12}(Q)}{\mathcal{D}}} \Delta \mu + \frac{\gamma_{22}}{\mathcal{D}} \eta - \frac{\gamma_{12}(Q)}{\mathcal{D}} \xi$$

$$\dot{Q} + \frac{1}{\Gamma_{11}} \partial_Q H = \bar{\eta}/\Gamma_{11} \qquad \mathcal{D} = \gamma_{11}\gamma_{22} - \gamma_{12}(Q)^2$$

Choosing  $\gamma_{12}/\mathcal{D} \propto Q + \text{h.o.}$  propels particle along Q

$$H \sim -Q \cdot Q + (Q \cdot Q)^2$$

Propulsion speed  $\sim |q| \simeq \text{const}$ : Active Brownian Particle ABP

H harmonically binds Q

 $\Delta\mu$  term ~ coloured noise: Active Ornstein-Uhlenbeck Particle AOUP Notice translation diffusion in q equation.

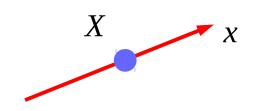
## Brownian inchworm

K Vijay Kumar M Rao SR 2008



many animals

## Entropy production of active dimer



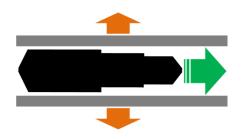
$$\upsilon = \gamma_{12} \Delta \mu / \gamma_{22}$$

For a potential harmonic in X,  $\partial H/\partial X = kX$ 

$$\sigma = \frac{\upsilon^2}{\gamma_{11} + \gamma_{33}k} \qquad \qquad \sigma = \frac{\upsilon^2 k \gamma_{33}}{\gamma_{11}(\gamma_{11} + \gamma_{33}k)}$$
 With x reversal

Dadhichi, Maitra, SR 2018: Harada-Sasa relates our nonzero  $\sigma$  to Fodor et al's 0

#### A single active particle



active, apolar, non-motile, in a groove

active, polar, motile, in a groove

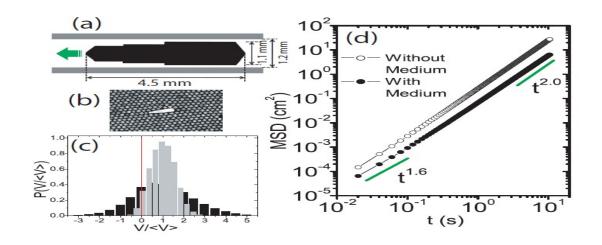
Vijay Narayan, PhD thesis, IISc 2008

one motile rod in a sea of bead s

Nitin Kumar, A K Sood, SR 2011

Vijay Narayan, Narayanan Menon, Nitin Kumar, Ajay Sood

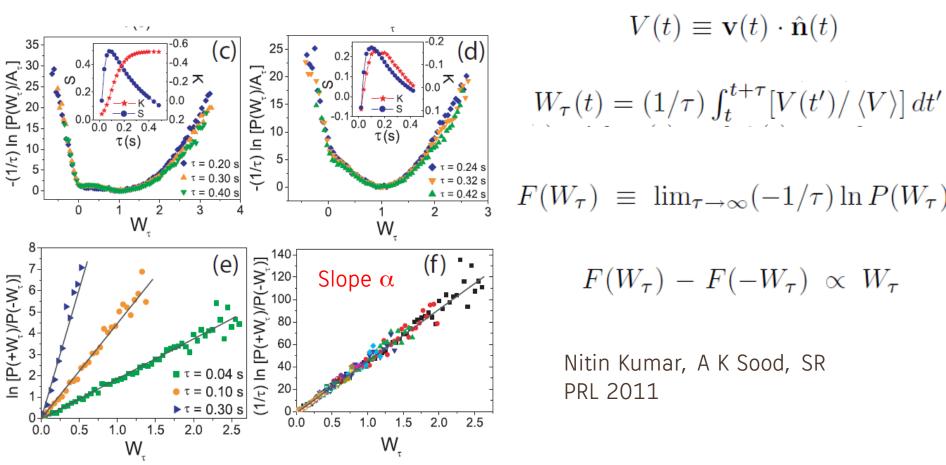
#### Fluctuation relations in active matter



Polar rod self-propelled through bead-bed Nitin Kumar, A K Sood, SR PRL 2011

An imitation self-propelled system: laboratory for exploring stat-mech of active matter

## Symmetry properties of the large-deviation function of the velocity: a new "fluctuation relation"



## Notable features

Large deviation function F: statistics of extremes Central Limit Theorem: behaviour near minimum of F

## **Experiments:**

- Strongly non-Gaussian
- Antisymmetric part linear
- kink at zero argument
- Slope a: relative persistence rates of + and - motion

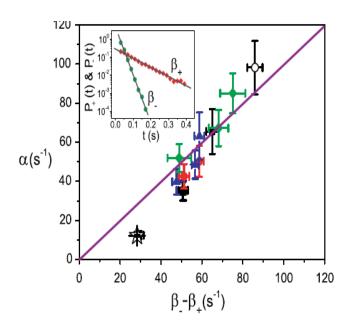
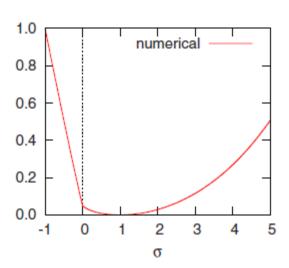


FIG. 4 (color online). Analogue of phase-space contraction rate  $\alpha$  vs  $\beta_- - \beta_+$ , the difference in persistence rates of negative and positive velocities. Solid squares:  $\Phi = 0.83$  ( $\Gamma =$ 

## Large-deviation function: theory

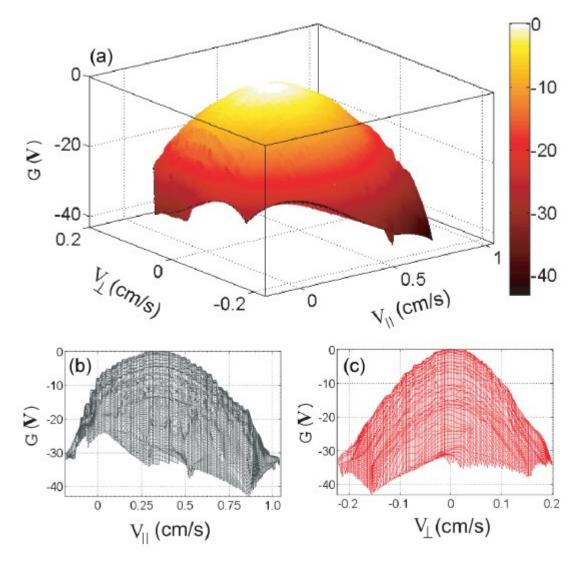
Mehl et al. Phys Rev E **78** (2008) 011123

- ·Brownian particle: periodic potential + constant force
- pronounced deviations from Gaussian behavior
- ·characteristic kink at zero entropy production



## Large-deviation function for velocity vector V

Kumar, Soni, SR, Sood PRE 2015



Non-paraboloid Strong asymmetry along  $V_{_{||}}$ 

## Anisotropically isometric fluctuation relation

Kumar, Soni, SR, Sood PRE 2015

**D** = diffusivity tensor

Velocity vectors V, V' with

$$\mathbf{V}^T \mathbf{D}^{-1} \mathbf{V} = \mathbf{V}^{\prime T} \mathbf{D}^{-1} \mathbf{V}^{\prime}$$

$$\lim_{\tau \to \infty} \frac{1}{\tau} \ln \frac{P_{\tau}(\mathbf{V}_{\tau} = \mathbf{V})}{P_{\tau}(\mathbf{V}_{\tau} = \mathbf{V}')} = \epsilon \cdot (\mathbf{V} - \mathbf{V}')$$

Hurtado et al. PNAS 2011, Villavicencio-Sanchez et al. EPL 2014

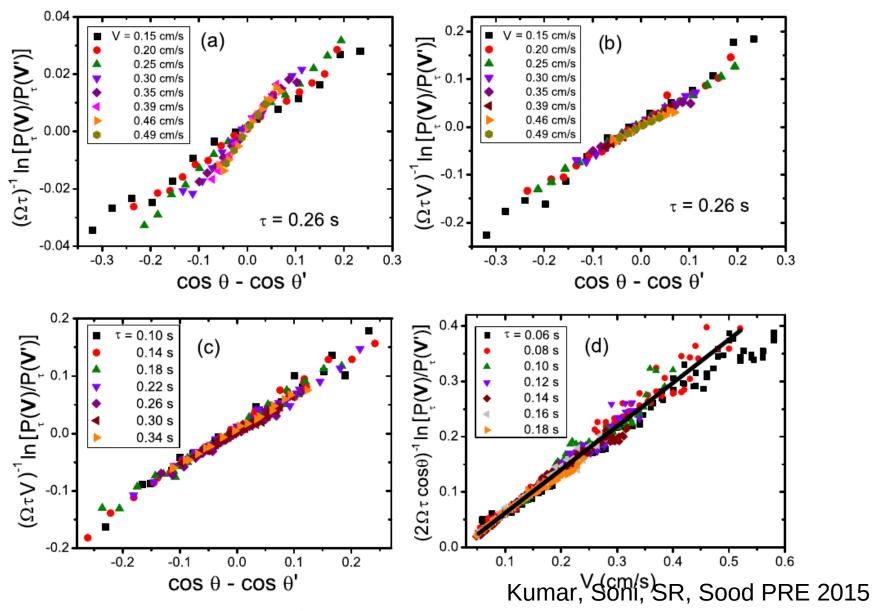


FIG. 2. (Color online) (a) A typical plot of  $(\Omega \tau)^{-1} \ln [P_{\tau}(\mathbf{V})/P_{\tau}(\mathbf{V}')]$  vs  $\cos \theta - \cos \theta'$  over various constant-velocity contours for  $\tau = 0.26$  s showing a linear trend for all V. (b) Data scaling of  $(\Omega \tau V)^{-1} \ln [P_{\tau}(\mathbf{V})/P_{\tau}(\mathbf{V}')]$  vs  $\cos \theta - \cos \theta'$ . (c) Scaling of  $(\Omega \tau V)^{-1} \ln [P_{\tau}(\mathbf{V})/P_{\tau}(\mathbf{V}')]$  with  $\tau$  variation. Here each  $\tau$  line contains all the V values as in (b). (d) Plot of  $(2\Omega \tau \cos \theta)^{-1} \ln [P_{\tau}(\mathbf{V})/P_{\tau}(\mathbf{V}')]$  vs V for various  $\tau$  for the special case when  $\theta - \theta' = 180^{\circ}$ . Here  $\theta$  varies between  $-30^{\circ}$  to  $30^{\circ}$  in steps of  $10^{\circ}$  for all  $\tau$ .

## Nonliving dry active matter

apolar medium, motile topological defect



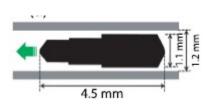
Vijay Narayan

Narayanan Menon



Nitin Kumar





Granular dynamics simulations: Harsh Soni

Confined quasi-2d geometry active, polar, motile, in a groove

active, apolar, non-motile, in a groove
+ aluminium beads 0.8 diameter
one motile rod in a sea of bead

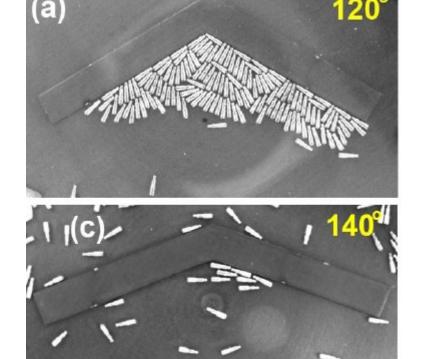
Active nematic: Narayan, SR, Menon Science 2007

Large deviations, flocking: Kumar, Soni, Sood, SR PRL 2011, PRE 2014, Nat Comm 2014 & in prep

Trapping: Kumar, Gupta, Soni, SR, Sood arXiv 2018

#### Trapping active liquid crystals

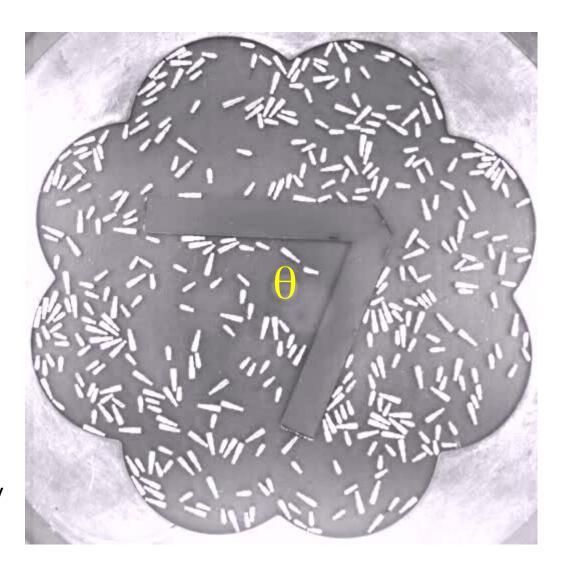
N Kumar, R K Gupta, H Soni, S Ramaswamy, A.K. Sood arXiv:1803.02278





Rahul Gupta TCIS, TIFR Hyderabad

## The trap



Flower geometry Dauchot group

 $L=10\ell \simeq 4.5$  cm with  $20^{\circ} \leq \theta \leq 160^{\circ}$  in steps of  $10^{\circ}$ 

## Mechanically faithful simulations

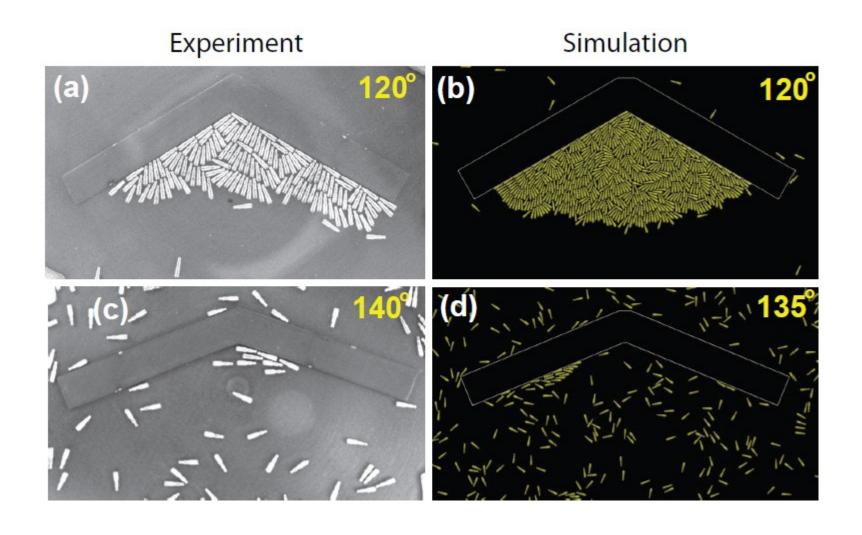
Rahul Gupta & Harsh Soni
Rod = tapered sphere array
Newtonian rigid body dynamics
Friction µ restitution e
Base, lid vertically vibrated

Rotational diffusion: random angular velocity,  $\omega = \epsilon v_{rel}$   $\epsilon = \pm 0.01$  (prob 1/2), at each rod-base or rod-lid collision (reproduces experimental angular diffusion)

```
μ & e
```

- 0.05 & 0.3 particle-particle 0.03 & 0.1 rod-base
- 0.01 & 0.1 rod-lid
- 0.03 & 0.65 particle-V

## Trapped and untrapped states



## Trapping kinetics: experiments

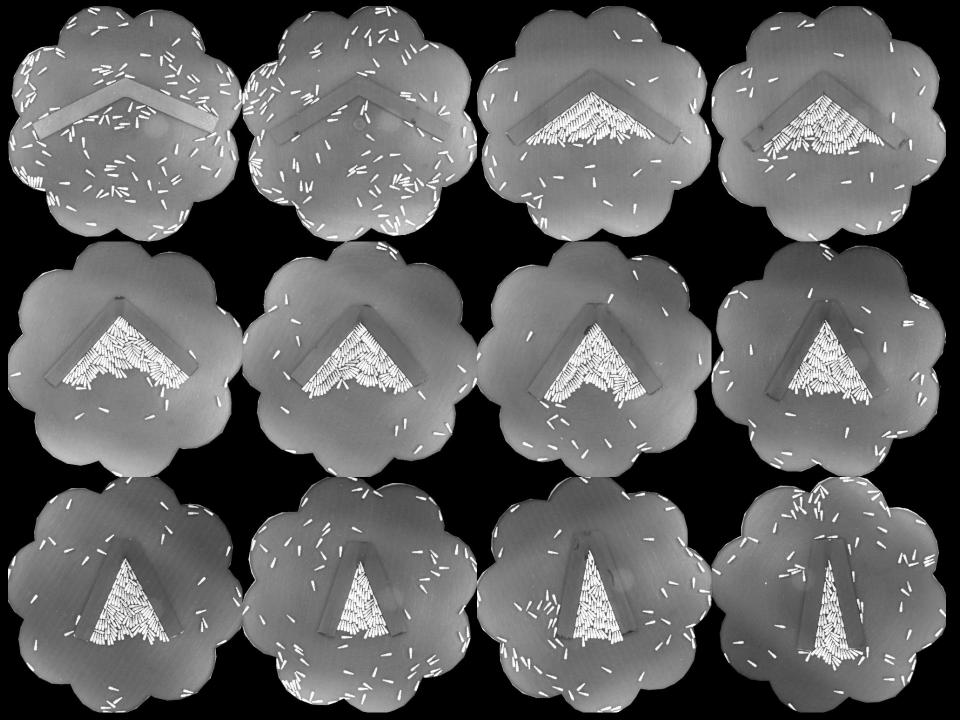
Single particle

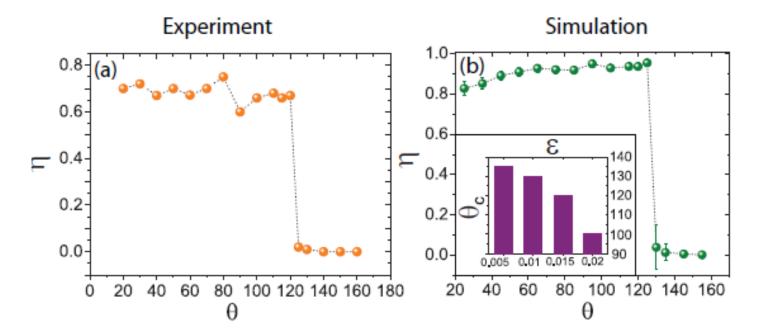
/home/sriram/talks/activemattertalks/current/aps2016/nitin15Mar16/SM 6.avi

Collective

trapped and untrapped states

transient trapping

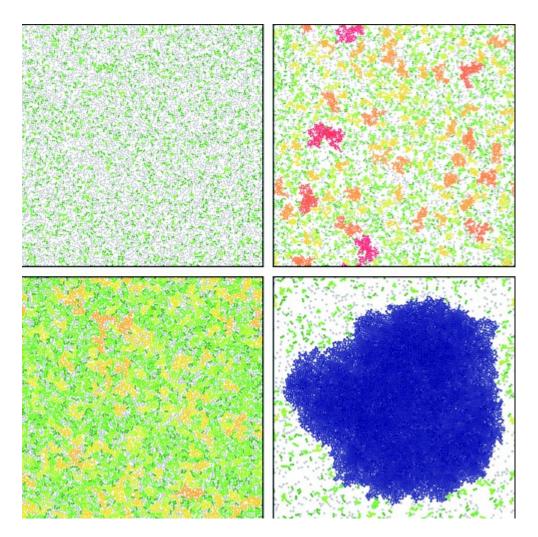




Trapping efficiency  $\eta = N_0 a/A_t$   $N_0 = \#$  at zero velocity a = projected area of particle $A_{t=}$  area of trap

INSET: trapping threshold angle decreases as noise increases

#### Persistent motion → condensation without attraction

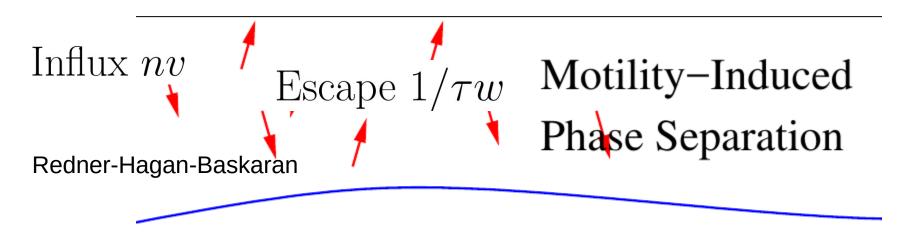


Motility-induced phase separation

Non-aligning SPPs: Fily & Marchetti; Redner, Hagan, Baskaran; Tailleur & Cates;

SP rods: S Weitz, A Deutsch, F Peruani

#### Theory of trapping

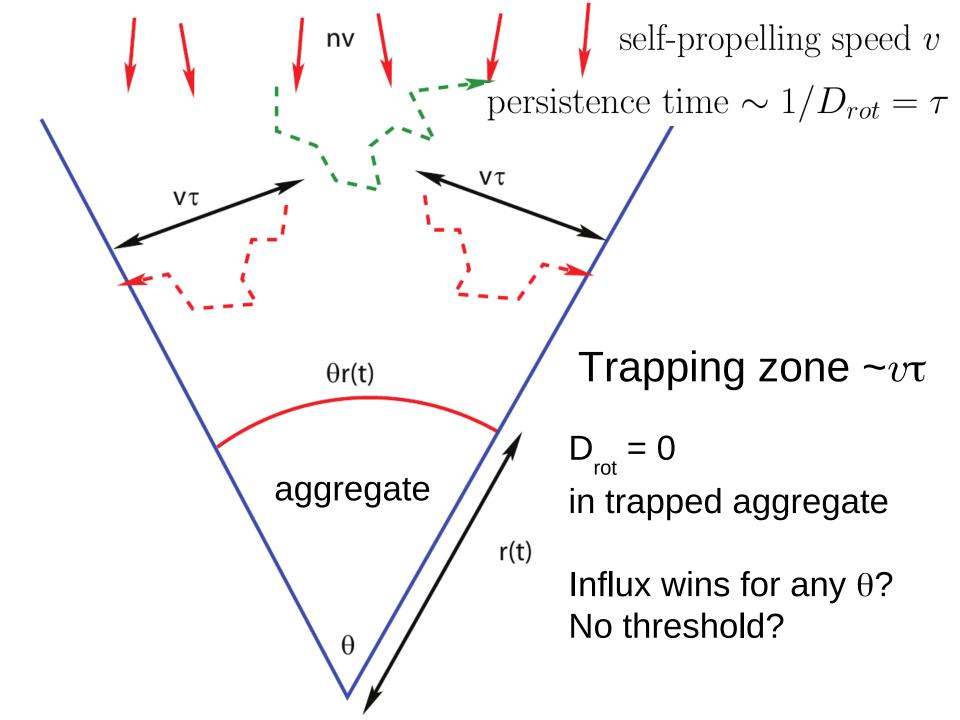


self-propelling speed vpersistence time  $\sim 1/D_{rot} = \tau$ concentration n

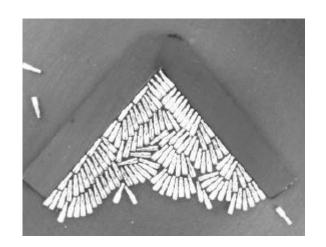
particle dimensions  $\ell \times w$ particle area fraction  $\phi = n\ell w$ 

Bulk, no MIPS:  $\phi v \tau / \ell \ll 1$ 

No condensation without traps
Clearly no bulk MIPS
What do traps do?



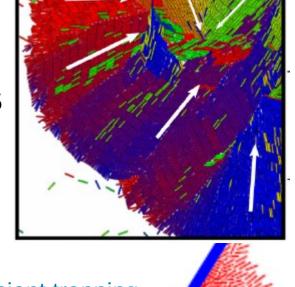
#### Resistance to growth: defects?

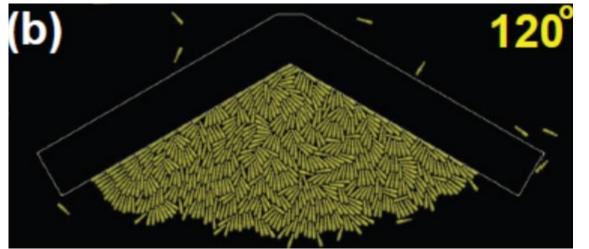


Single disclination fragment? "energy"  $\sim \theta \log r$ 

Tilt wall  $\sim \theta$  r

S Weitz et al 2015 SP-rods

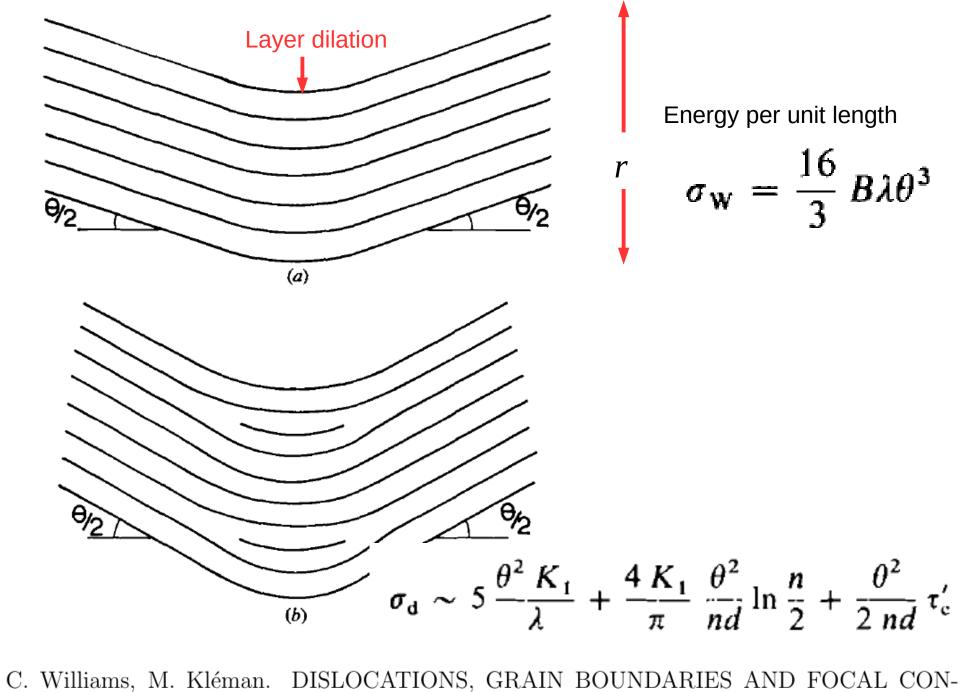




transient trapping

Kaiser et al

Gowrishankar & Rao asters



ICS IN SMECTICS A. Journal de Physique Colloques, 1975, 36 (C1), pp.C1-315-C1-320.

#### Dynamics of collective coordinate r

Effective flux:  $nv - 1/\ell\tau \to nv$ Capture zone width:  $W_{\tau} = v\tau$ Wedge "energy"  $\sim \theta^{\alpha} r$ Free edge length  $r\theta \to \text{mobility } M \sim 1/r\theta$  $\alpha = 2 \text{ or } 3$ 

$$\frac{dr}{dt} = \phi v \frac{v\tau}{r\theta} - D_{eff} \frac{\theta^{\alpha}}{r} \qquad D_{\text{eff}} \sim MB$$

B = elastic constant for layered structure

#### **Predictions**

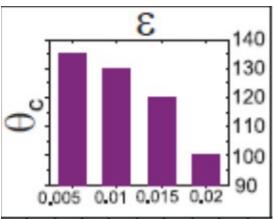
$$\frac{dr}{dt} = \phi v \frac{W_{\tau}}{r\theta} - D \frac{\theta^{\alpha - 1}}{r} \qquad D \sim MB$$
 
$$B = \text{effective smectic elastic constant}$$

Trapping: all or nothing ✓

t<sup>1/2</sup> growth?

Threshold  $\theta \downarrow$  as rotational noise  $\uparrow \checkmark$ 

#### Simulation confirms

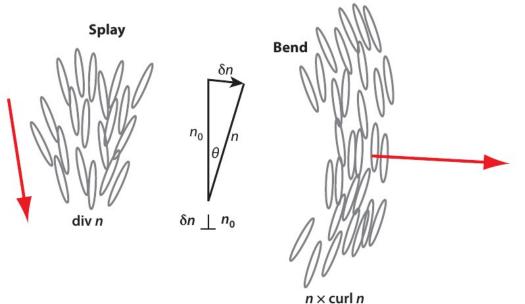


### ACTIVE NEMATICS II topological defects

Nematic: apolar, goes nowhere on average

But curvature → current

Shankar, Marchetti, SR, Bowick, arXiv 2018



**Q** = local alignment tensor

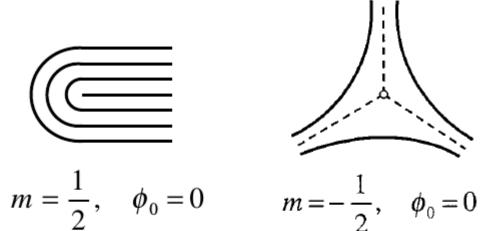
Gradients of **Q**; curvature

Div Q: vector

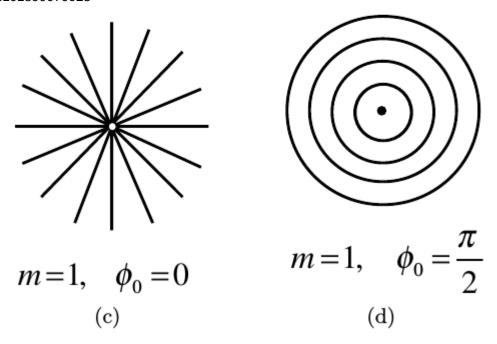
Active: local current ~ div Q

SR, Simha, Toner 2003

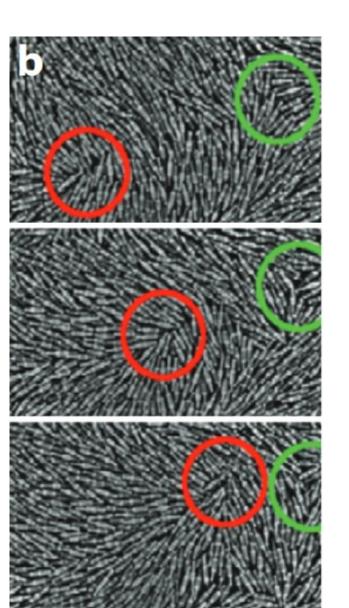
#### Topological defects in a nematic



(a) Kemkemer, R., Teichgräber, V., Schrank-Kaufmann, S. et al. Eur. Phys. J. E (2000) 3: 101. https://doi.org/10.1007/s101890070023



#### Defect unbinding in active nematics



Suraj Shankar, M C Marchetti, SR, MJ Bowick

The symmetry of the field around the strength -1/2 defect will result in no net motion, while the curvature around the +1/2 defect has a well-defined polarity and hence should move in the direction of its "nose" as shown in the figure.

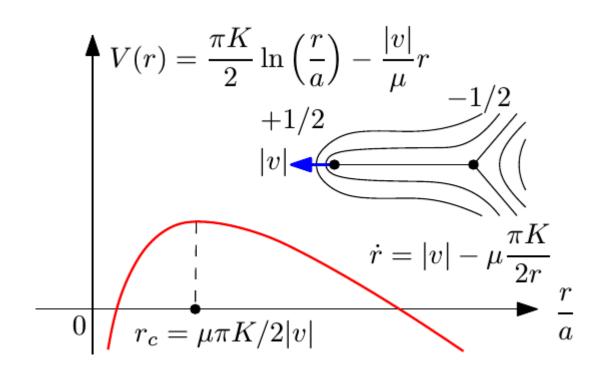
V Narayan et al., Science **317** (2007) 105

motile +1/2 defect, static -1/2 defect

Defects as particles: +1/2 motile, -1/2 not +1/2 velocity ~ divQ Giomi, Bowick, Ma, Marchetti PRL 2013 Thampi, Golestanian, Yeomans PRL 2014 DeCamp et al NMat 2015 ......

#### Defect unbinding in active nematics

Shankar et al. arXiv 2018



Recall equil BKT transition: but +1/2 defect is motile!

Like insulator in a field? Finite barrier?

Active nematic order always destroyed?

But active nematics exist!

Bertin et al., NJP **15**(8), 2013; Ngo et al., PRL **113**(3), 2014 Shi et al., NJP **16**(3), 2014 ···

Shankar et al. arXiv 2018:

From active nematic dynamics

+1/2 self-velocity ∝ polarization

$$\dot{\mathbf{r}}_{i}^{+} = v\mathbf{e}_{i} - \mu\nabla_{\mathbf{r}_{i}}\mathcal{U} + \sqrt{2\mu T}\boldsymbol{\xi}_{i}(t)$$

$$\dot{\mathbf{r}}_{i}^{-} = -\mu \nabla_{\mathbf{r}_{i}} \mathcal{U} + \sqrt{2\mu T} \boldsymbol{\xi}_{i}(t)$$

$$\mathcal{U} = -2\pi K \sum_{i \neq j} q_i q_j \ln \left| \frac{\mathbf{r}_i - \mathbf{r}_j}{a} \right|$$

Shankar et al. arXiv 2018:

$$\begin{split} \dot{\mathbf{e}}_{i} &= -\frac{\mu\gamma}{8\mathcal{K}} \left(\mathbf{1} + 4\hat{\mathbf{e}}_{i}\hat{\mathbf{e}}_{i}\right) \cdot \left[\mu\mathbf{e}_{i}|\nabla_{i}\mathcal{U}|^{2} - v|\mathbf{e}_{i}|^{2}\nabla_{i}\mathcal{U}\right] \\ &+ \sqrt{2D_{R}}\epsilon \cdot \mathbf{e}_{i}\eta_{i}(t) + \boldsymbol{\nu}_{i}(t) \\ &+ \mathbf{Angular \ white \ noise \ } \ \ \mathbf{polarization \ noise} \\ \mathbf{e}_{i} &= |\mathbf{e}_{i}|(\cos\theta_{i},\sin\theta_{i}) \\ \mathbf{F}_{i} &\equiv -\nabla_{i}\mathcal{U} = |\mathbf{F}_{i}|(\cos\psi_{i},\sin\psi_{i}) \\ \partial_{t}\theta_{i} &= v|\mathbf{F}_{i}| \times \mathrm{const.} \ \sin(\theta_{i} - \psi_{i}) \end{split}$$

Alignment torque: v<0: alignment; v>0: anti-alignment

Shankar et al. arXiv 2018:

Fokker-Planck steady state, single +/- 1/2 pair, small-activity expansion

$$ho_{ss}(r) \propto e^{-\mathcal{U}_{ ext{eff}}(r)/T}$$

$$\mathcal{U}_{\text{eff}}(r) = \frac{\pi K}{2} \ln \left(\frac{r}{a}\right) - \frac{\bar{v}^2}{2} \ln \left(1 + \frac{r^2}{r_*^2}\right) + \mathcal{O}(v^4)$$

$$r_* \sim \sqrt{\mu K/D_R}$$
  $|v|/D_R \ll \mu K/|v|$  Rotational diffusion dominates  $v_* \sim v_*/(\mu D_R)$  Active nematic survives

Shankar et al. arXiv 2018:

$$\mathcal{U}_{\mathrm{eff}}(\mathbf{r}) \simeq (\pi K_{\mathrm{eff}}/2) \ln(r/a)$$
 $K_{\mathrm{eff}}(v) = K - (2\bar{v}^2/\pi)$ 
 $\Rightarrow \mathsf{T}_{\mathrm{BKT}}(\mathsf{v}) < \mathsf{T}_{\mathrm{BKT}}(\mathsf{v=0})$ 

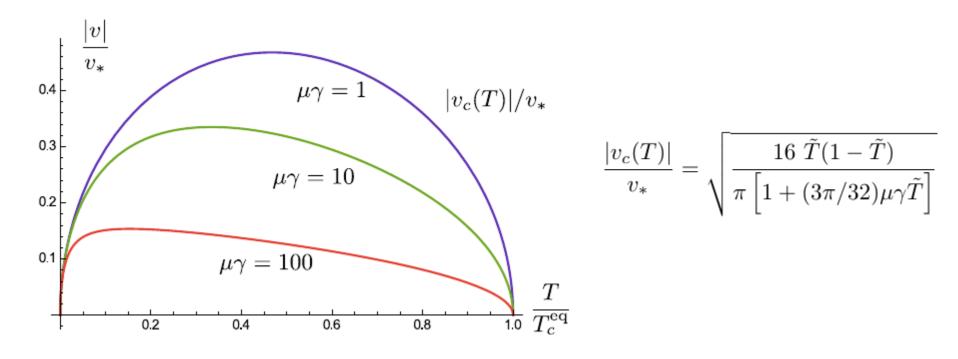
 $K_{off} = 0 \Leftrightarrow persistence length of +1/2 motion = location of barrier$ 

Threshold activity 
$$|v_c| = \sqrt{\frac{2\mu K D_R}{[1+\mu\gamma(3T/4K)]}}$$

#### Re-entrance!

Shankar et al. arXiv 2018:

Threshold activity



At high T: conventional defect unbinding wins At low enough T,  $D_R$  goes to zero, i.e., persistence length grows Directed motion of +1/2 wins, defects liberated, order destroyed (A Maitra)

#### Summary

- Unified picture of fluctuating active dynamics
  - natural language to describe living materials
- Confined active fluids

Maitra et al arXiv:1711.02407

- new force density: stable nematics
- polar: super-stable / -unstable
- Artificial motile systems a great test-bed

Kumar, Soni, Sood, SR NComm 2014 & in prep

- a few motile particles can mobilize a big group
- trapping: motility-induced condensation vs defection vs
- Pair sedimentation of discs
  - analogies with self— Shajwall Meneny & Bark Siv: 1803.10269