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All states are “jammed” 
these are static states
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Discontinuous Shear Thickening (DST)
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DST Phenomenology  (Simulations)

2D

fraction of 
frictional 
contacts
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Mean-field theory based on contacts (DST)



�J(�) = f(�/�⇤)�m + (1� f(�/�⇤)�J

�5

Viscosity:  Suspension Rheology
Boyer, Guazzelli, Pouliquen (2011) •A “universal” relationship between the 

macroscopic friction coefficient and the viscous 
number at constant pressure.
•When a suspension is sheared at constant volume, 
the shear and normal viscosities can be expressed 
in terms of the friction coefficient and the viscous 
number.

⌘s(�) / 1
(�J (�)��)2

� = ⌘s�̇

DST  is regime in which the 
viscosity scales linearly with stress

⌘ / �

DST  phase boundary: d�̇
d� = 0

rate-independent but viscosity 
depends on packing fraction



Shear Jamming Phenomenology (Experiments)

�min
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fraction of grains with at least two contacts



A similar argument for SJ:  f  is the fraction grains with 2 or more 
contacts 
�J(�,�) = f(�,�)�J(µ) + (1� f(�,�))�J

� = �J(�min,�)
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Mean-field theory based on contacts:  SJ
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Frictional Contacts & Stress Anisotropy (DST)
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Frictional Contacts & Stress Anisotropy (SJ)
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maximum stress anisotropy at transition from fragile to 
shear-jammed states
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Response to cyclic shear
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SJ:  Positional patterns

Shows large and small particles:  gaps are due to imaging 



DST Microstructure:  Pair Correlation Functions

Mari, Seto, Morris, Denn (JOR, 2014)

just above

just below
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The conditions of mechanical equilibrium ensure the uniqueness of the height 
representation

Ball & Blumenfeld, 2003

~hg,v2

~hg,v1

r · �̂ = 0 ! Vector potential

 Height Representation (2D)

External stresses determine difference in heights across the system



2D Systems:  Force Tilings

Forces at contacts can have normal and 
tangential components.  Impose force balance 
on every grain, and use Newton’s third law
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Applied to dry grains and theory of shear 
jamming



Position of vertices: height vectors 
starting from some arbitrary origin

Force space: height vectors are the “position vectors” of voids in force 
space

Changing shape of boundary by changing external stresses is the 
analog of straining:  Elastic solids should resist straining: respond 
affinely.

Do the point patterns in force space distort affinely in the SJ state?

Point Patterns in force space:

Macroscopic Stress Tensor
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Overlap Order Parameter

Lower packing fraction Higher  packing fraction 



Scalar order parameter: threshold the overlap > 0.5 
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DST:  theory based on stress anisotropy

µ(�,�)⌘ / µ
(µ�µc)2

⌘ = µ(I)
I

⌘ = µ
I(µ)

d�̇
d� = 0

The DST transition is identified by:  
Using the “new” constitutive relation, we can 
write this condition as

�
µ

dµ
d� = µ�µc

µ+µc

Characteristic decrease in anisotropy 
Boyer, Guazzelli, Pouliquen (2011)

from microscopic correlations
(arXiv: 1804.03155, to appear in PRL)

A theory for the macroscopic friction coefficient µ(�,�)

BUT
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Non-equilibrium steady states sampled in DST simulations: 
Instantaneously in mechanical equilibrium

•Unlike dry granular materials, these are flowing states: particles have 
velocities
•“Contact forces”: lubricated and solid-on-solid frictional
•“Body forces”:  Stokes drag
•Generalized force tilings using graph Laplacian of contact network 
• (Kabir Ramola & BC, Journal of Statistical Physics, 2017)
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 Body Forces:
Force Response of a network to a perturbation

Geometry of contact network 
represented by the network Laplacian

Matrix whose diagonal elements contain 
the number of contacts, otherwise the 
adjacency matrix 



Localization:  Diffusion on a disordered network
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Framework

Disorder of contact network represented by network Laplacian

⇤2 =
PN

i=1 �i|�iih�i|Eigenfunction expansion

One zero mode: �1 = 0 , |�1i = (1 1 1 . . . 1)

|~�i =
P

N
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1
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h�

i

|~f
body

i|�
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⇤2|~�i = �|~f
body

i Equation defining the auxiliary fields

Given a contact network and a set of body forces, solution is unique

If the solution violates torque balance/static friction condition, network will rearrange
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A = �2( 1
µ2 � 1)

For simplicity, let’s set normal 
stress difference to zero, then 
area of the box,  A,  is the 
single shape parameter.
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Fixed in stress-controlled simulations

Shape can FluctuateDST



DST:   Pair Correlation Functions 
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DST:   Pair Potentials



A = �2( 1
µ2 � 1)

DST:   Statistical Mechanics based on Edwards ensemble  
No assumption about 
equiprobability: measure obtained 
from pair potential



Results for stress anisotropy:  Based on a theory of probability 
distributions from an effective pair potential in force space

More importantly:  we show  that there is a definitive change 
in “microstructure” between the low and high viscosity states
                             in the pattern of heights

Get DST ~ 0.785-0.79 packing fraction:   at 0.785 (0.5-2) &  at 0.79 (1.5 - 6)


