Bacterial Chromosome Organization: crosslinks, confinement and crowders play the pivotal roles.

Apratim Chatterji

IISER-Pune, INDIA apratim@iiserpune.ac.in

MMM-Osaka, Nov-1, 2018

Acknowledgments

Ph.D. student: **Tejal Agarwal.**

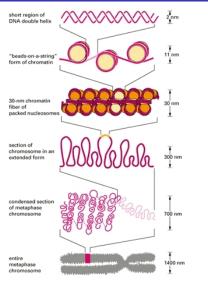
FUNDING: DST-India, DBT-India.

Bio-collaborators: Farhat Habib, G.P. Manjunath (NYU-USA, IISER-P)

CC: Tung Le, .. Laub, Science (2013) E. coli: Caglieri et.al., NAR (2013).

DNA: Basic facts.

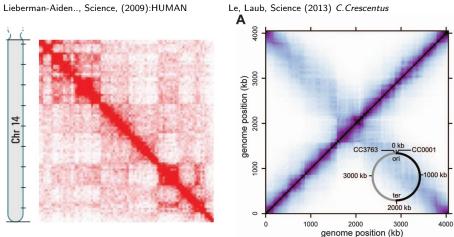
Human DNA has 6.4×10^9 base pairs.


Length 2m packed in nucleus $\sim (10\mu)^3$.

Some imp numbers:

Base pair : 3.3Å.

Helix pitch =3.4 nm OR 10.4 BP. Chain width \sim 2nm.


Kuhn Segment: 300 BP or 100nm.

DNA packed in nucleus by organizing into hierarchy of Mesoscale structures.

Single Chromosome: Chromosmal Contact Maps.

Single chromosome is not organized Randomly: TADs

Higher probabilities to find certain segments of chain in contact with specific other segments. How is the organization achieved?

What causes large scale organization of DNA?

• Can we predict the 3d organization of DNA?: Experimentally verify. Mirny (MIT), Marenduzzo (UK), Nicodemi (Italy), Joyeux (France), Mulder-Debashish (Netherlands-India)

Our Primary Observation:

- Cross-links at **specific** points along the chain leads to the organization of the DNA-polymer ?! DNA binding proteins.
- Position of cross-link (CL) chosen from the Contact Map.

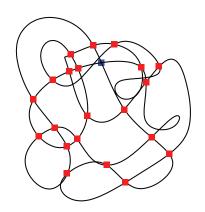
DNA segments with highest probability of contact were cross-linked together in a bead-spring model of ring polymer.

Random cross-links: Nature of organization is different.
 More *diffuse* organization.
 10 different CL sets.

Primary Results:

Bead spring ring polymer model of bacterial DNA.

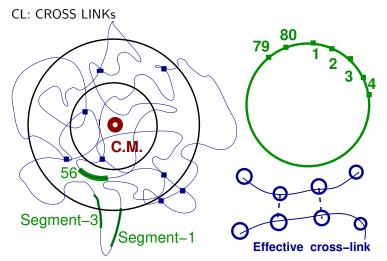
E. coli: 4.642 million **Base Pairs**: **4642** monomers :: 1 monomer \equiv 1000 BP. *C. Crescentus*: 4.017 million **Base Pairs**: **4017** monomers.


- E. coli: 82 cross-links at specific positions along contour → organization.
 38 CLs in confinement.
- C. crescentus: 60 cross-links in DNA → organization.
 33 CLs in confinement.

Publications: Tejal Agarwal, G.P. Manjunath, F. Habib, A.C.

J.Phys: Condens. Matter (2018); Europhys. Lett. (2018) Submitted as Part-1,2 to J.Chem.Phys: arXiv:1808.09400; arXiv:1808.09396.

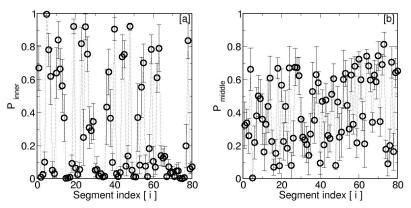
Modelling-1: Choose Bacteria with single DNA.


- **I** *E. coli.* 4.642 million base pairs = 4642 monomers.
 - CC 4 million BPs: 4017 monomers.
- 2 1 coarse grained monomer in model = 1000 BP.
- Bead spring model of polymer.
- 4 Persistence length of DNA : $\ell_p \equiv 150 \; \mathrm{BP} \equiv 50 \; \mathrm{nm}$
- 5 RING polymer.
- Ex. Volume radius = 0.2b: Suitably truncated Lennard Jones interactions.

Cross-link between monomers A, B modelled by $V_{AB}(r) = \kappa_b (r_{AB} - b)^2$

How can we say that a polymer is structured/organized?

Quantities determining Structure ?? Rg..and..


E. coli: 4642 monomers: 80 segments of 58 monomers each.

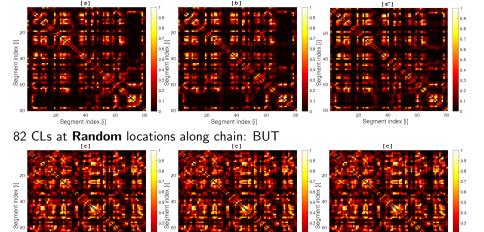
Calculate positional corr. of segments.

Distance from center of Mass
 Angular correlations.

Spatial location of a Ecoli segment: Inner/ Middle/ Outer?

Calculate R_g ; • R_g (Random CLs) $< R_g$ (Bio CLs): Same no. of CLs

S. Karlin et.al, J. of Bacter., **183**, 5025(2001). List: 47/4000 most expressed Genes

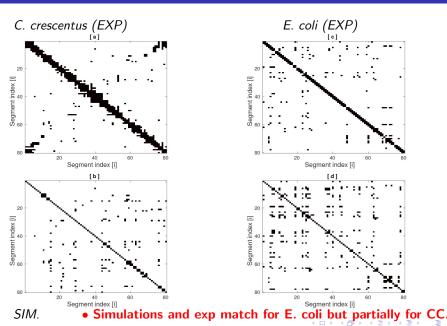

82 effective CLs

37 out 47 genes are in peripheral regions.

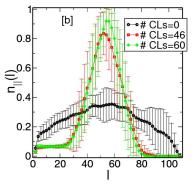
Well defined location of CLs/segments.

Positional correlation of segments: (without confinement).

Ecoli \equiv 82 CLs: Comparison from 3 independent runs:


Fewer cross-links: The pattern/correlation is lost

Seament index [i]


Segment index [i]

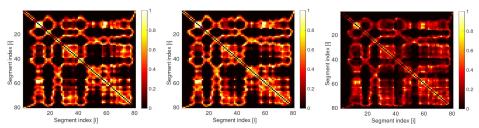
Segment index [i]

Compare EXP & SIM: Coarse-grained maps: Highest Prob.

CC-DNA confined in cylinder, Aspect Ratio 1:7.5

49 CLs: 26 effective CLs. 60 CLs: 33 effective CLs.

Cyl. Radius=7a, Axis: 108a


Monomer-1 (ori) fixed.

Ori free for E.coli

12 independent Initial Conditions.

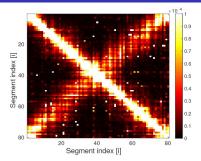
Positional Corr of CC: Confinement + Crowders

No crowder

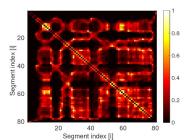
$$R_c = 5a = 0.55R_g$$
.

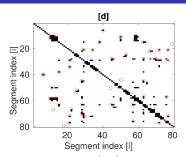
No crowder

 $R_c = 5a = 0.55R_g.$

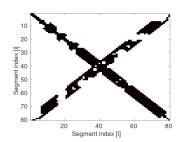

Crowder: Weak Attraction

LJ $\epsilon = 0.3k_BT$.

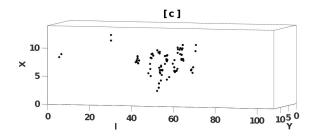

Crowder:


The presence of other organelles within cell compactifies DNA: modelled by weak effective attraction between monomers.

CC : Comparison with experiments: confinement+crowders



(Experimental coarse-grained)



OFF-diagonal p(i,j) > 0.5: BLACK

CONCLUSIONS:

Self avoiding loops emanating from cluster of cross-links: CLs are clustered around center.

- 33,38 Cross-links + Confinement + Crowder organize DNA (micron scale) for 2 bacteria: C. crescentus and E. coli.
- We give 3-d prediction of local position of segments within Cell.
- EPL (2018), JPCM (2018), arxiv: 1808.09400, 1808.09396.

THANK YOU FOR YOUR ATTENTION TO SEE THANK