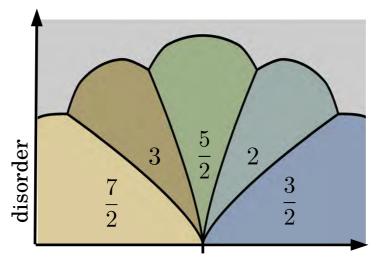
# Theory of Disorder-Induced Half-Integer Thermal Hall Conductance

David F. Mross

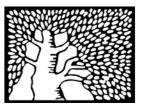


DFM, Y. Oreg, A. Stern, G. Margalit, M. Heiblum, PRL 121, 026801 (2018)













**VIEWPOINT** by Jason Alicea

#### A Hot Topic in the Quantum Hall Effect

Heat transport studies of fractional quantum Hall systems provide evidence for a new phase of matter with potential applications in fault-tolerant quantum computation.

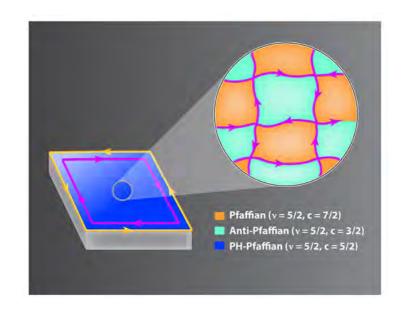
#### **Experiment:**

M. Banerjee, M. Heiblum *et al.*, Nature (2018)

#### Theory:

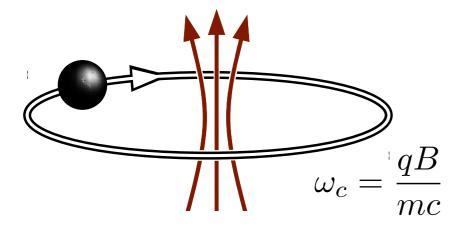
DFM, Y. Oreg, A. Stern, G. Margalit M. Heiblum, PRL 121, 026801 (2018)

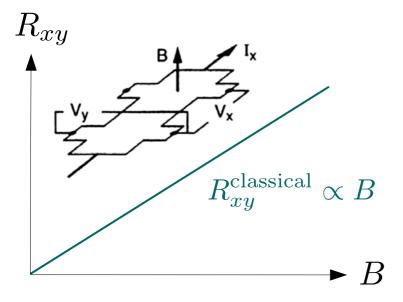
C. Wang, A. Vishwanath, B. Halperin, PRB 98, 045112 (2018)

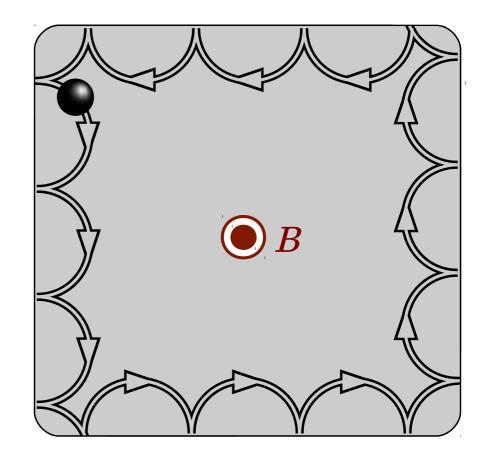


[Also related: B. Lian and J. Wang, PRB 97, 165124 (2018)]

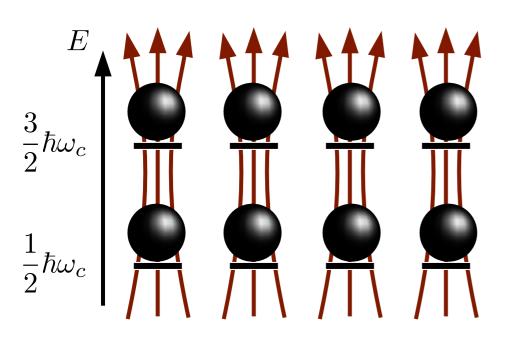
Classical: Cyclotron orbits





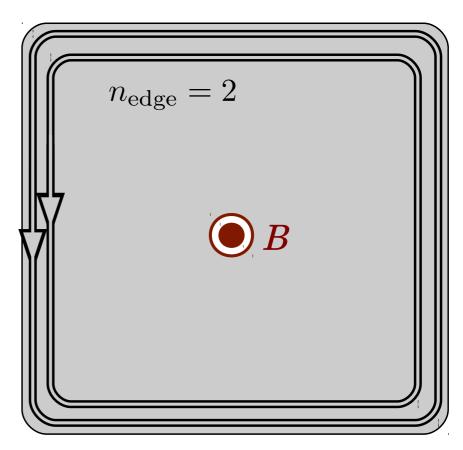


Quantum mechanical: Energy levels



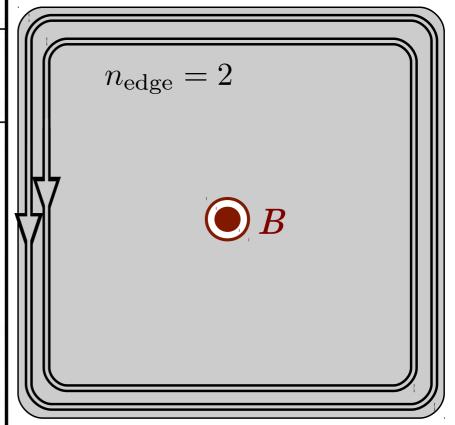
 $N_{
m flux}$  states per energy level

filling factor 
$$v = \frac{N_{\mathrm{electron}}}{N_{\mathrm{flux}}}$$

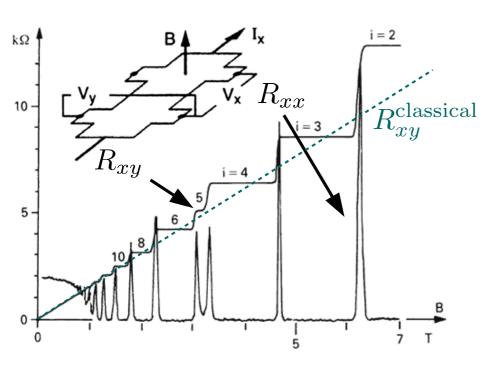


 $n_{\mathrm{edge}} = \nu$  chiral electron modes carry quantized flow of charge and energy

|              | C    |    |   |                | 1              |                |
|--------------|------|----|---|----------------|----------------|----------------|
|              | Symn | d  |   |                |                |                |
| AZ           | Θ    | Ξ  | Π | 1              | 2              | 3              |
| A            | 0    | 0  | 0 | 0              | Z              | 0              |
| AIII         | 0    | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AI           | 1    | 0  | 0 | 0              | 0              | 0              |
| BDI          | 1    | 1  | 1 | $\mathbb{Z}$   | 0              | 0              |
| D            | 0    | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
| DIII         | -1   | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| AII          | -1   | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| CII          | -1   | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| $\mathbf{C}$ | 0    | -1 | 0 | 0              | $\mathbb{Z}$   | 0              |
| CI           | 1    | -1 | 1 | 0              | 0              | $\mathbb{Z}$   |

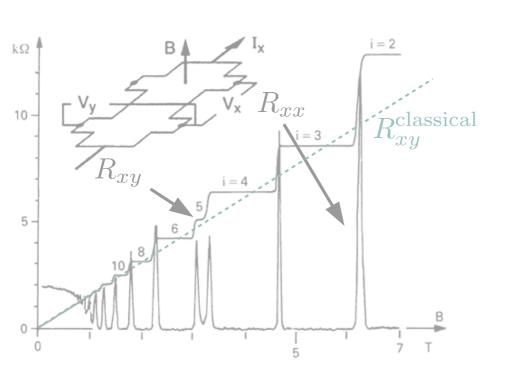


 $ho_{
m se} = 
u$  chiral electron modes carry antized flow of charge and energy



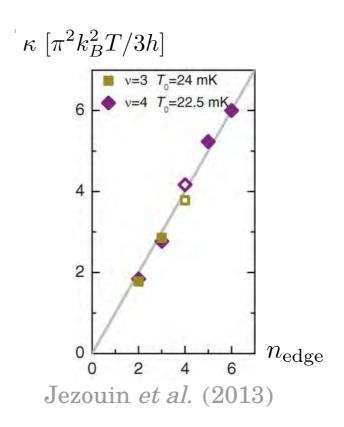
#### Hall conductance

$$\sigma_{xy} = n_{\text{edge}} \frac{e^2}{h}$$



#### Hall conductance

$$\sigma_{xy} = n_{\text{edge}} \frac{e^2}{h}$$



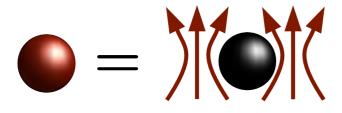
#### Thermal Hall conductance

$$\kappa_{xy} = n_{\text{edge}} \kappa_0$$

# Fractional quantum Hall effect



Fewer electrons than flux quanta: many possible states



Composite fermions

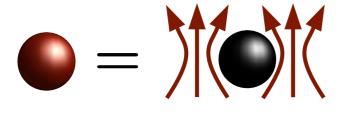
## Fractional quantum Hall effect



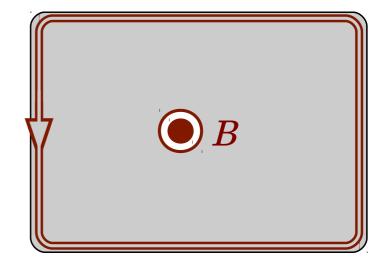




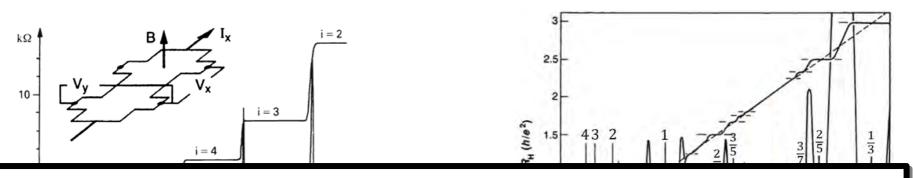
One composite fermions per flux quantum



Composite fermions



## Fractional quantum Hall effect



Any charge carrying edge state, fractional or integer, carries an integer thermal conductance  $\kappa_0$ 

Theory: Kane and Fisher (1997)

Experiment: Banerjee et al. (2017)



$$\sigma_{xy} = n_{\text{edge}} \frac{e^2}{h}$$

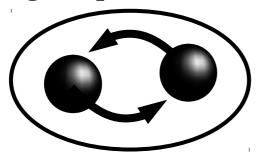
$$\kappa_{xy} = n_{\text{edge}} \kappa_0$$



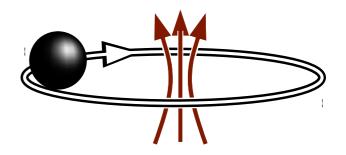
$$\sigma_{xy} = \frac{1}{3} \frac{e^2}{h}$$

$$\kappa_{xy} = \kappa_0$$

Pairing of spinless electrons

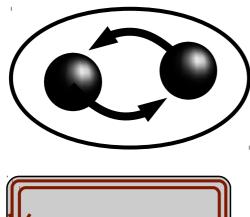


Electrons in magnetic field



| Pairing | Symmetry     |          |    |   | d              |                |                | magnetic field |
|---------|--------------|----------|----|---|----------------|----------------|----------------|----------------|
|         | AZ           | $\Theta$ | Ξ  | Π | 1              | 2              | 3              |                |
|         | A            | 0        | 0  | 0 | 0              | Z              | 0              |                |
|         | AIII         | 0        | 0  | 1 | $\mathbb{Z}$   | P              | $\mathbb{Z}$   |                |
|         | AI           | 1        | 0  | 0 | 0              | 0              | 0              |                |
|         | BDI          | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              |                |
|         | D            | 0        | 1  | 0 | $\mathbb{Z}_2$ | Z              | 0              |                |
|         | DIII         | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |                |
|         | AII          | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |                |
|         | CII          | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |                |
|         | $\mathbf{C}$ | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              |                |
|         | CI           | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   |                |

Pairing of spinless electrons

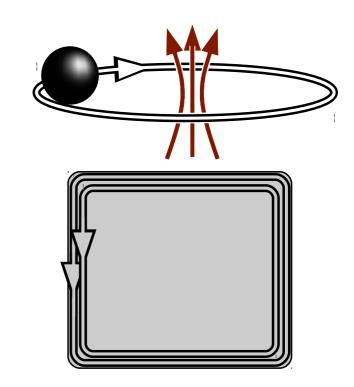




<sup>n</sup>Majorana chiral Majoranas

$$\kappa_{xy} = \frac{n_{\text{Majorana}}}{2} \kappa_0$$

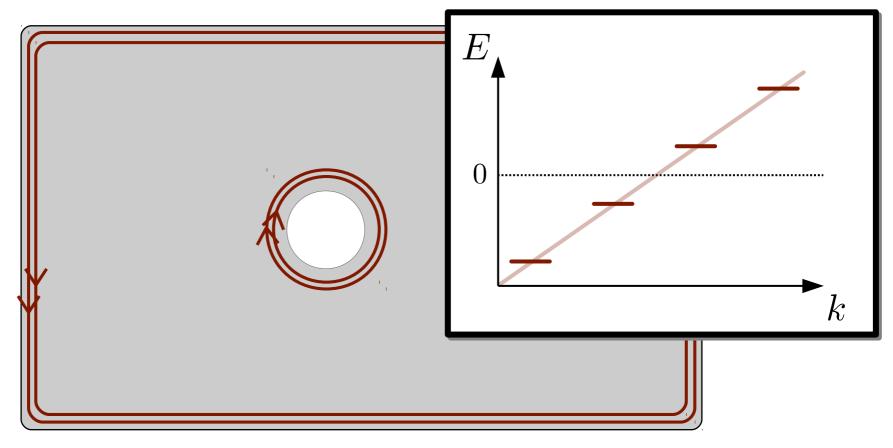
Electrons in magnetic field



 $n_{
m edge}$  chiral electrons

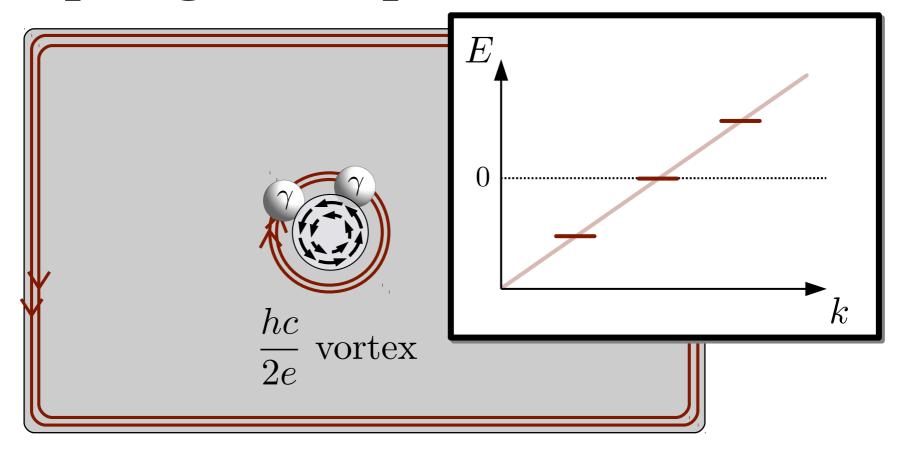
$$\sigma_{xy} = n_{\text{edge}} \frac{e^2}{h}$$

$$\kappa_{xy} = n_{\text{edge}} \kappa_0$$



Majorana chiral Majoranas propagating at the edge (absolutely stable)

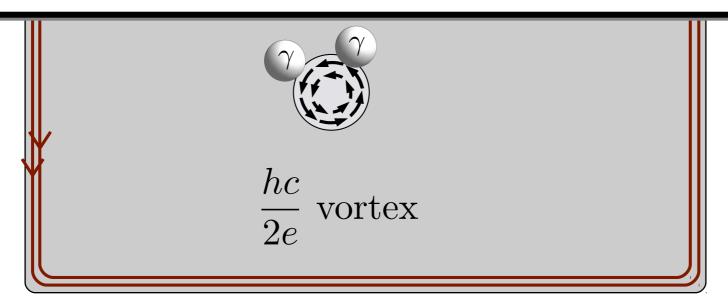
$$\kappa_{xy} = \frac{n_{\text{Majorana}}}{2} \kappa_0$$



Majorana chiral Majoranas propagating at the edge (absolutely stable)

$$\kappa_{xy} = \frac{n_{\text{Majorana}}}{2} \kappa_0$$

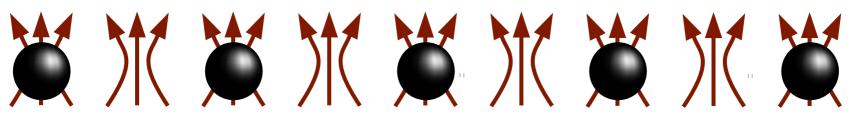
Half-odd integer  $\kappa_{xy} \rightarrow \text{Majorana zero modes}$ 



Majorana chiral Majoranas propagating at the edge (absolutely stable)

Majorana Majorana zero modes localized at a vortex (stable mod 2)

$$\kappa_{xy} = \frac{n_{\text{Majorana}}}{2} \kappa_0$$





Composite fermions in zero flux



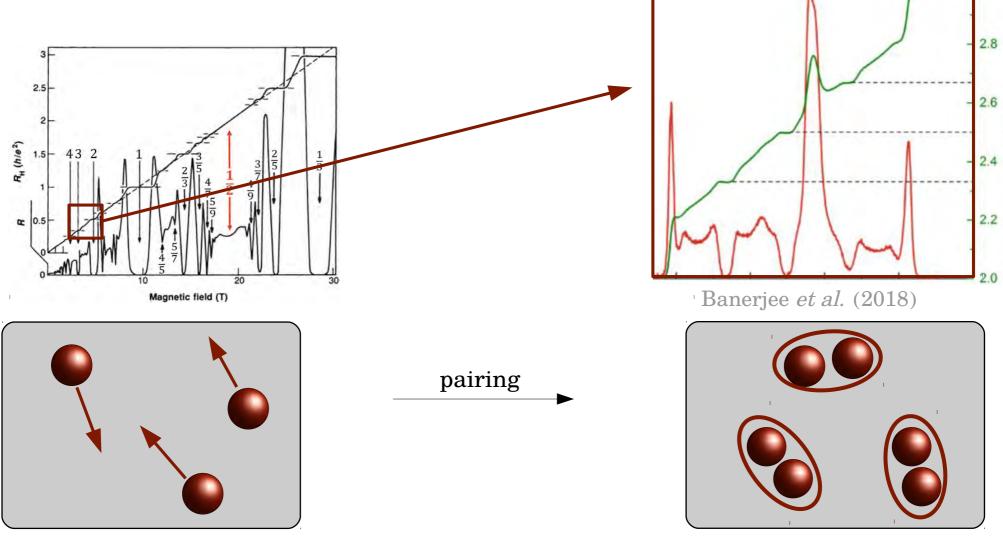
Composite fermions in zero flux



Composite fermions in zero effective magnetic field move in straight lines

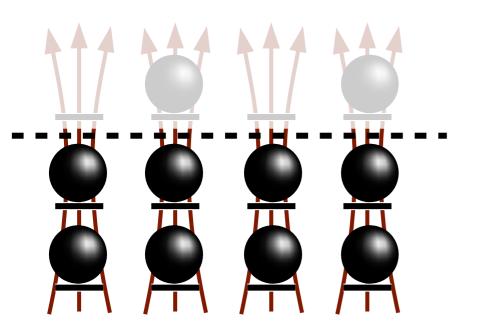
form Fermi surface

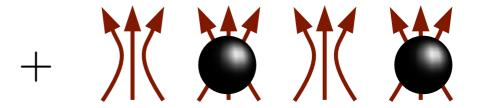
metallic state at  $\nu = \frac{1}{2}$ 

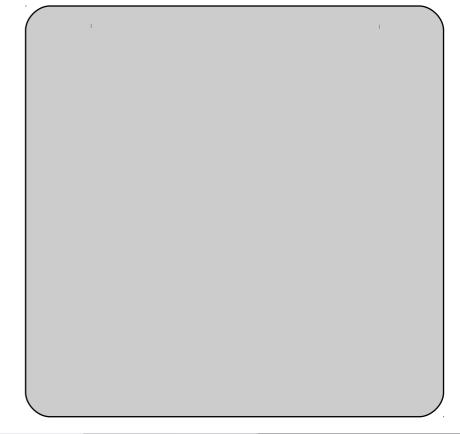


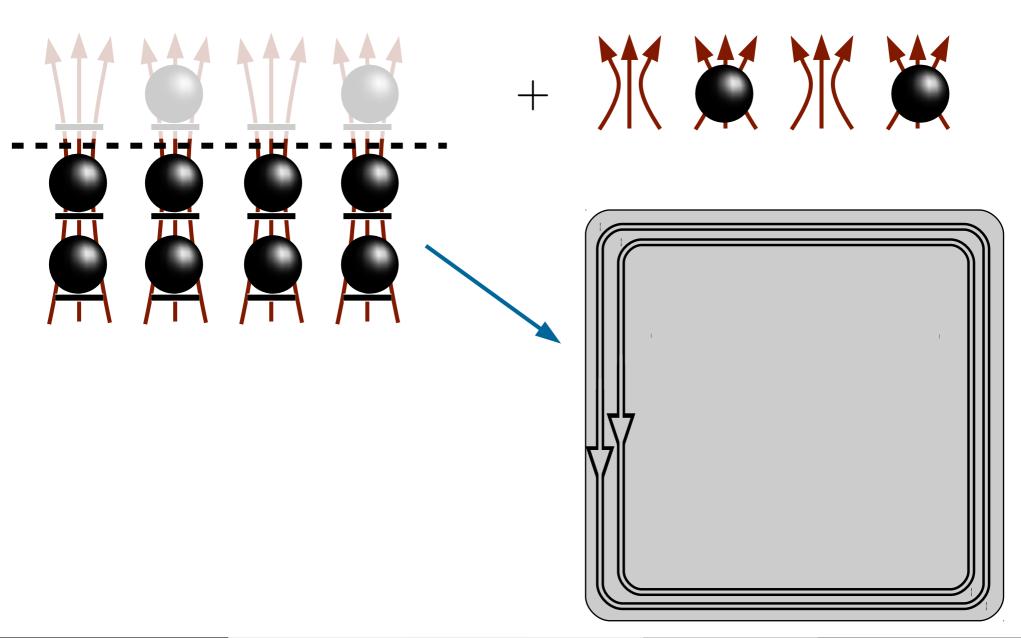
- Compressible state
- Hall conductance not quantized

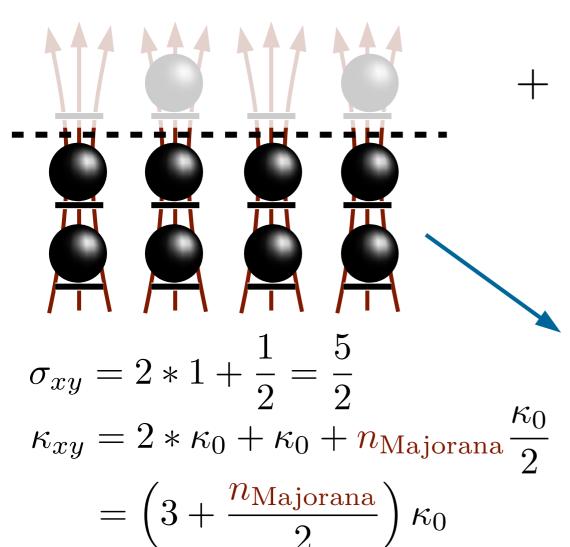
- Incompressible state
- Quantized Hall conductance



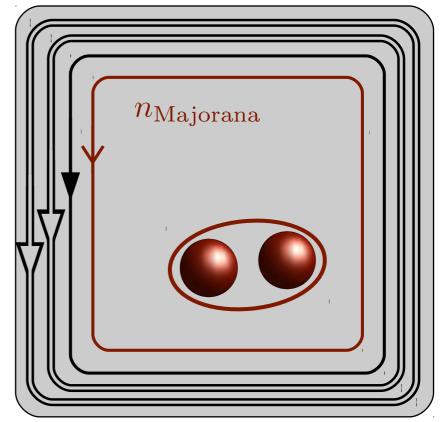




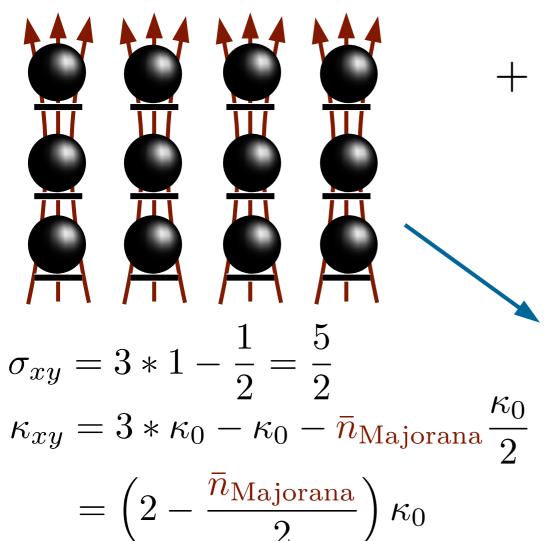




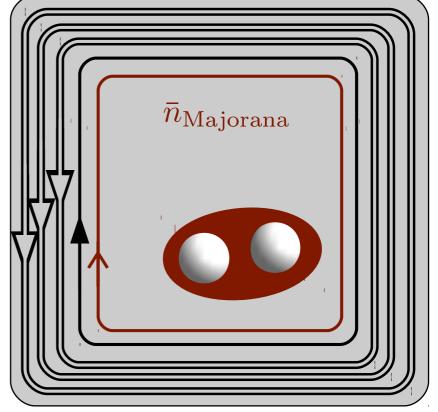
Many possible phases!



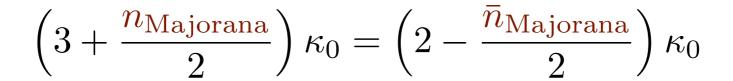
## Particle-hole symmetry at $\nu = 5/2$







## Particle-hole symmetry at $\nu = 5/2$



Particle-hole transformation:

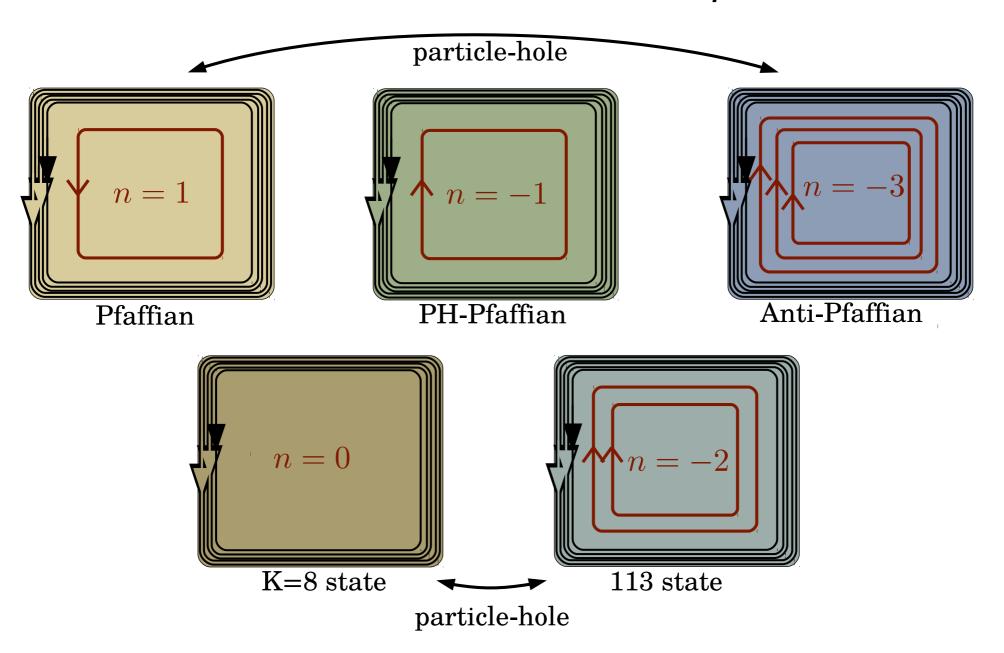
$$P_{\text{electron}}: n_{\text{Majorana}} \to -2 - n_{\text{Majorana}}$$

$$\Psi_{\text{Dirac CF}} \to i\sigma^y \Psi_{\text{Dirac CF}}$$

- acts as time reversal on composite fermions
- may or may not be present

$$P_{\text{composite fermion}}: n_{\text{Majorana}} \to n_{\text{Majorana}}$$

• always present in any composite fermion superconductor



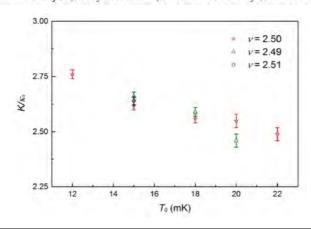
### Input from experiment

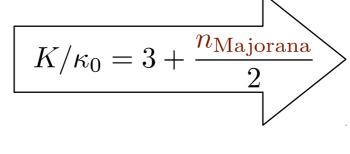
#### ARTICLE

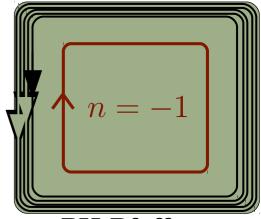
https://doi.org/10.1038/s41586-018-0184-1

# Observation of half-integer thermal Hall conductance

Mitali Banerjee<sup>1</sup>, Moty Heiblum<sup>1</sup>\*, Vladimir Umansky<sup>1</sup>, Dima E. Feldman<sup>2</sup>, Yuval Oreg<sup>1</sup> & Ady Stern<sup>1</sup>







PH-Pfaffian

PRL 117, 096802 (2016)

PHYSICAL REVIEW LETTERS

week ending 26 AUGUST 2016

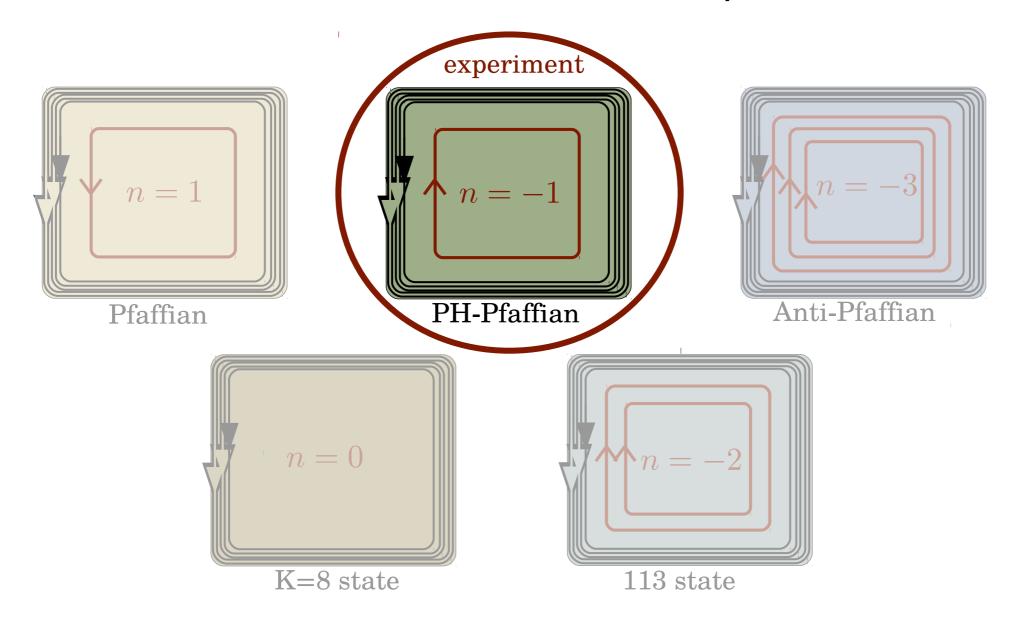
Stabilization of the Particle-Hole Pfaffian Order by Landau-Level Mixing and Impurities
That Break Particle-Hole Symmetry

P. T. Zucker and D. E. Feldman

Department of Physics, Brown University, Providence, Rhode Island 02912, USA

(Received 30 March 2016; published 22 August 2016)

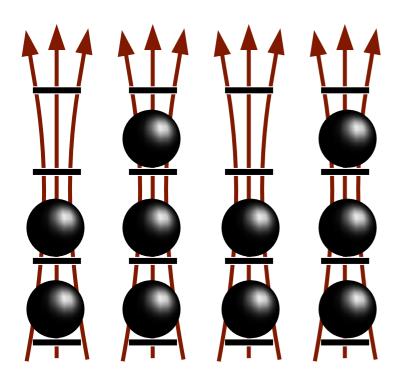
Numerical results suggest that the quantum Hall effect at  $\nu = 5/2$  is described by the Pfaffian or anti-Pfaffian state in the absence of disorder and Landau-level mixing. Those states are incompatible with the observed transport properties of GaAs heterostructures, where disorder and Landau-level mixing are strong. We show that the recent proposal of a particle-hole (PH)-Pfaffian topological order by Son is consistent with all experiments. The absence of particle-hole symmetry at  $\nu = 5/2$  is not an obstacle to the



## Input from theory

#### 1. Exact Diagonalization and DMRG

Morf (1998), Rezayi, Haldane (2000), Peterson, Jolicoeur, Das Sarma (2008) Feiguin, Rezayi, Nayak, Das Sarma (2008), Feiguin *et al.* (2009) Storni, Morf, Das Sarma (2010), Wójs, Tőke, Jain (2010), Rezayi, Simon (2011) Papić, Haldane, Rezayi (2012), Pakrouski *et al.* (2015) Zaletel, Mong, Pollmann, Rezayi (2015), Rezayi (2017).

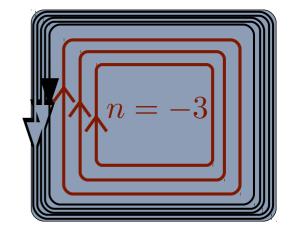


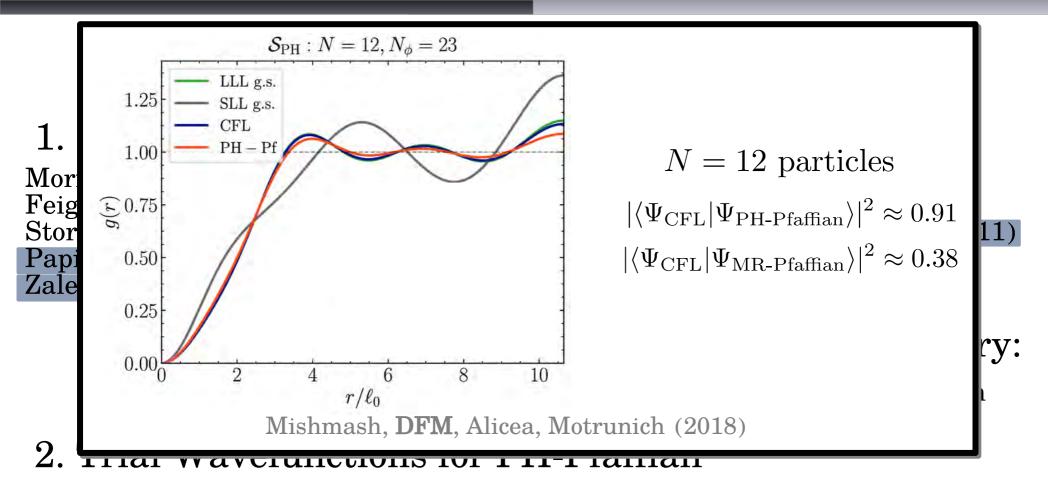
#### Without particle-hole symmetry:

or

Pfaffian n = 1

Anti-Pfaffian

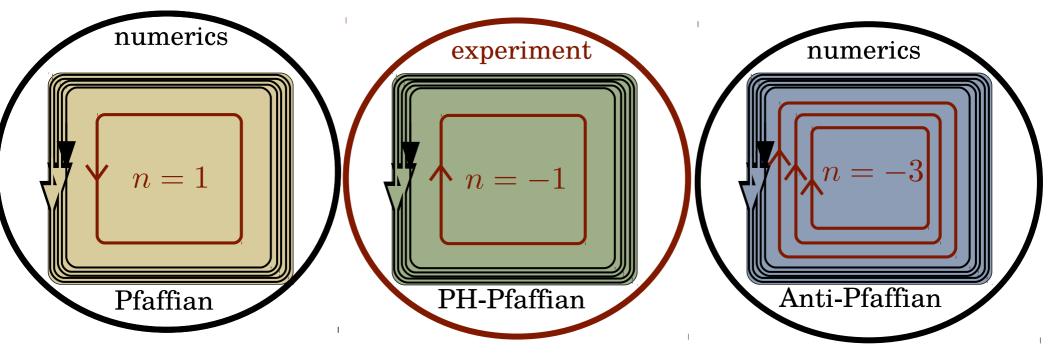




$$\Psi_{\text{PH-Pfaffian}} = \mathcal{P}_{\text{LLL}} \text{Pf} \left[ \frac{1}{z_i^* - z_j^*} \right] \prod_{i < j} (z_i - z_j)^2$$
 Zucker, Feldmann (2016)

- almost zero overlap with Coulomb in 2<sup>nd</sup> LL
- high overlap with gapless Composite Fermi Liquid

Balram, Barkeshli, Rudner (2018) Mishmash, **DFM**, Alicea, Motrunich (2018)



#### Possible resolutions:

#### 'numerics are wrong'

- Incorrect Hamiltonian
- Finite size not representative

#### 'experiment is wrong'

• Alternative interpretation possible? Simon (2018), Feldman (2018), Ma, Feldman (2018)

#### Can both be right?

Numerics: In clean system, Pfaffian or Antipfaffian

Away from 
$$\nu = 5/2$$
:

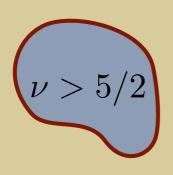
- 1. Introduces quasiparticles/quasiholes
- 2. Breaks PH-symmetry  $\rightarrow$  favors Pfaffian or Antipfaffian

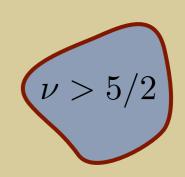
#### Weak disorder:

- 1. Localizes quasiparticles
- 2. Filling factor position dependent  $\nu \to \nu(x)$

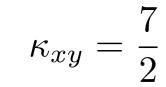
degenerate when PH-symmetric ( $\nu = 5/2$ )

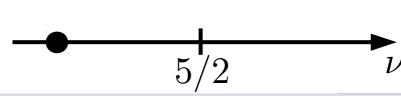
With disorder: Regions of Pfaffian and Antipfaffian





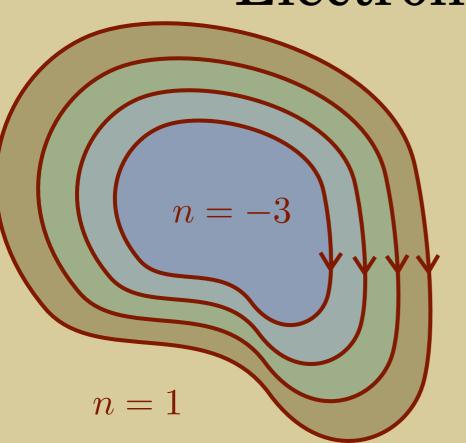
$$\nu < 5/2$$

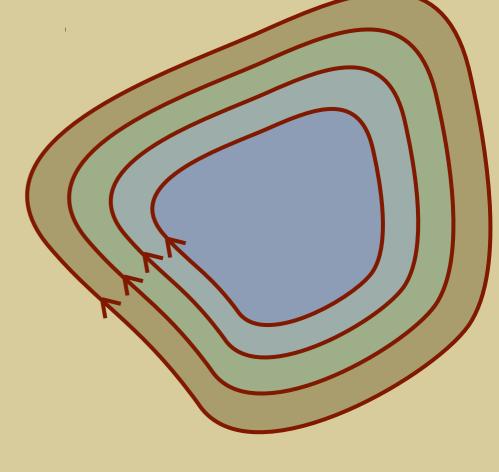




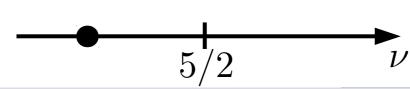
$$\sigma_{xy} = \frac{5}{2}$$



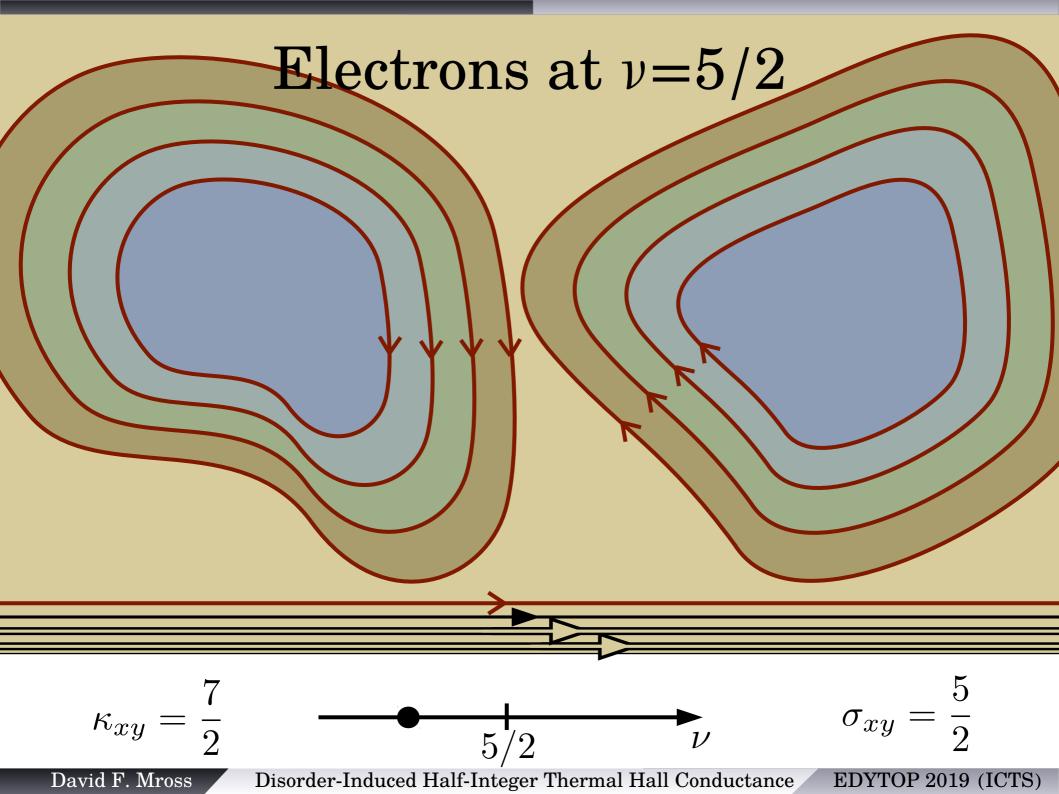


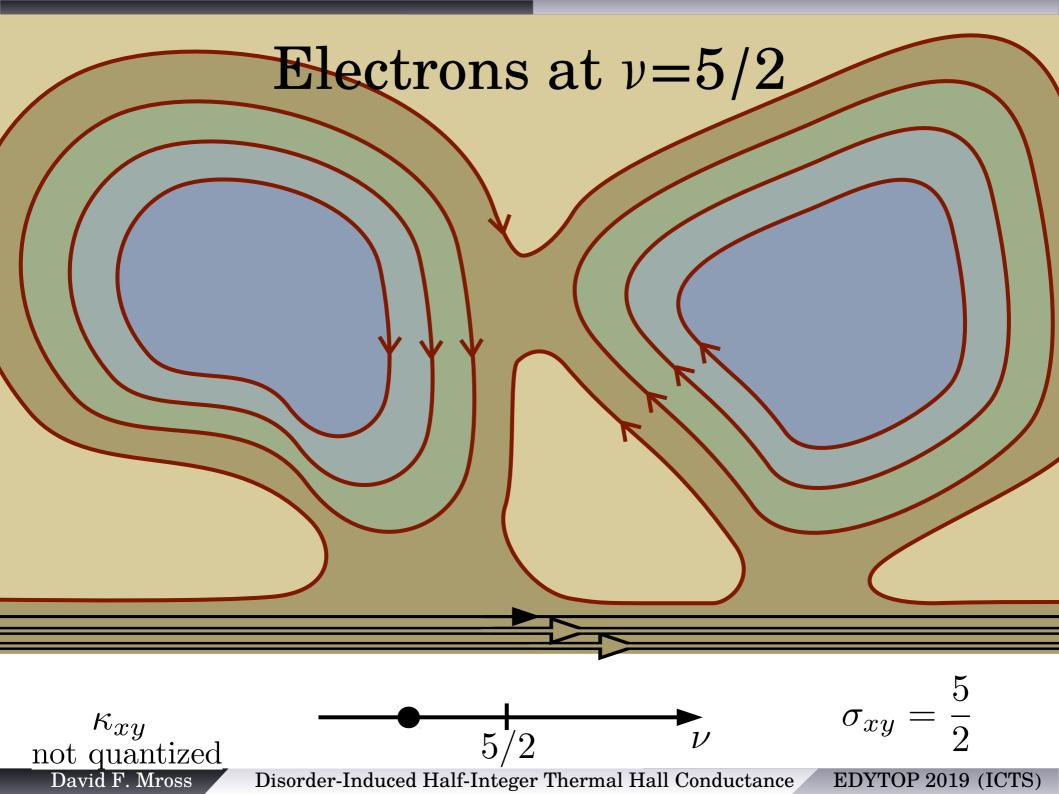


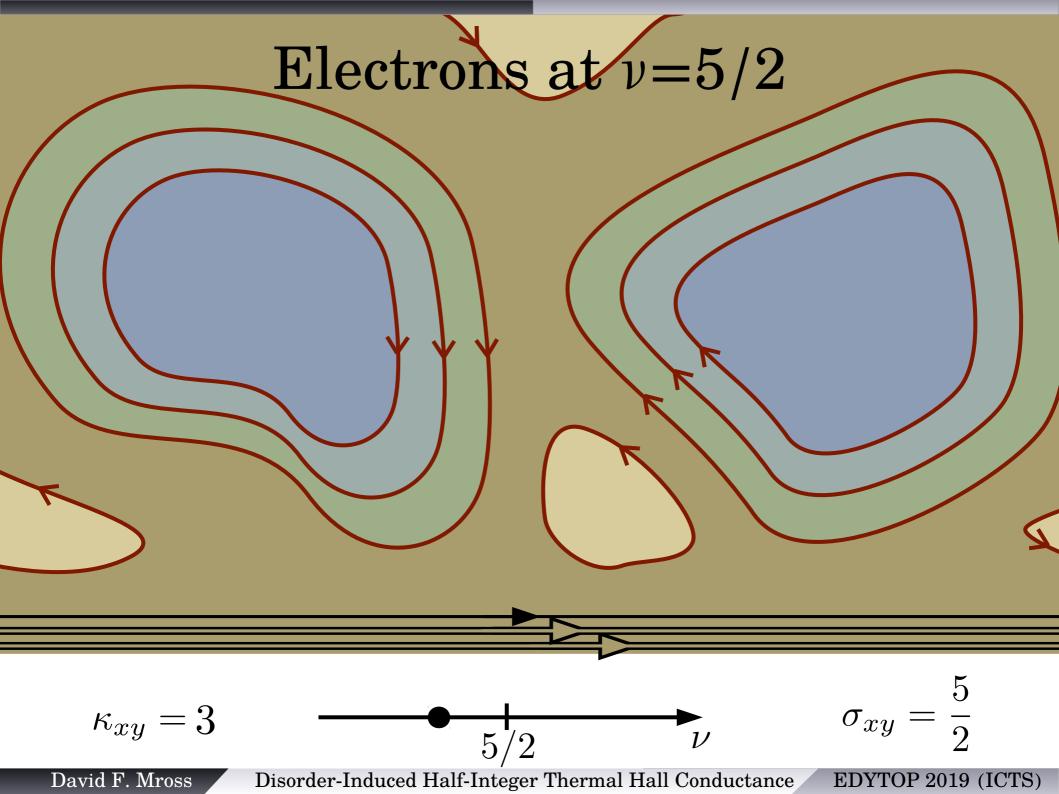
$$\kappa_{xy} = \frac{7}{2}$$

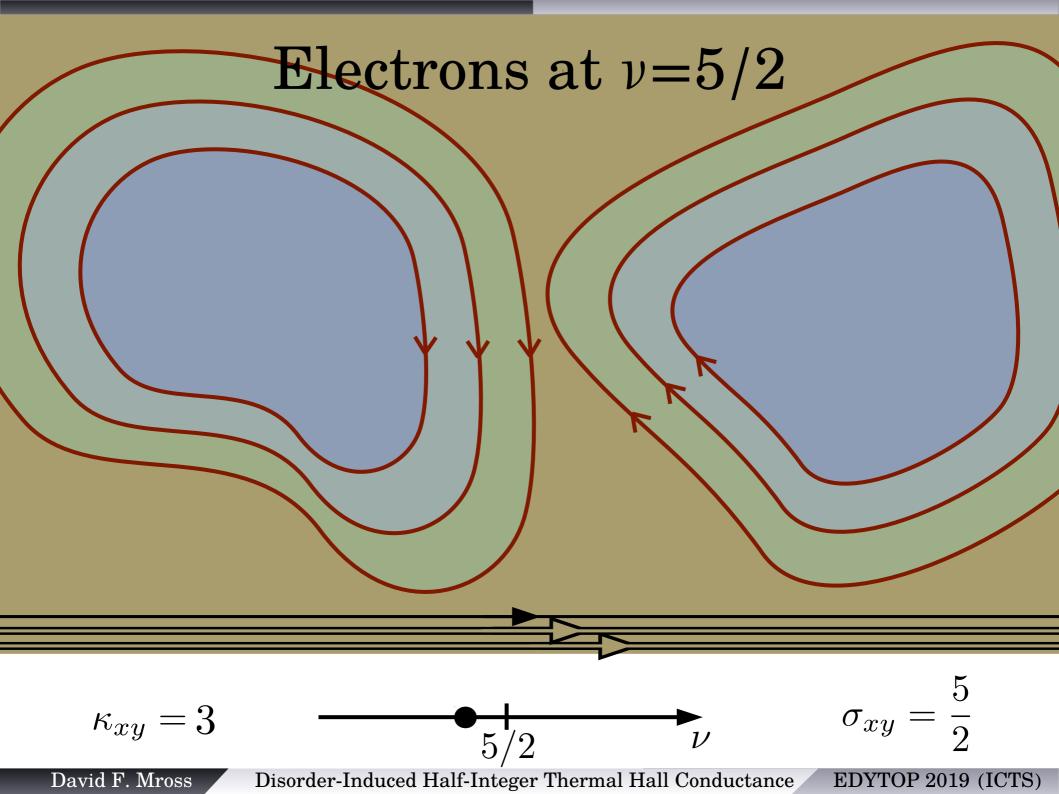


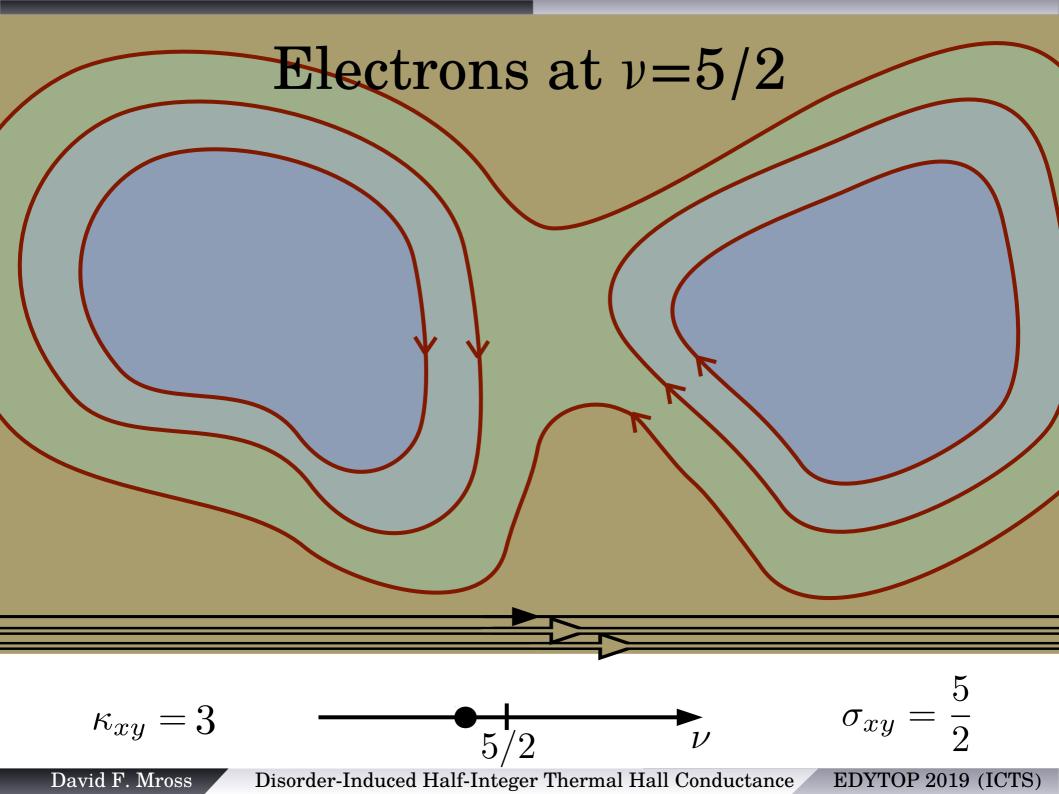
$$\sigma_{xy} = \frac{5}{2}$$

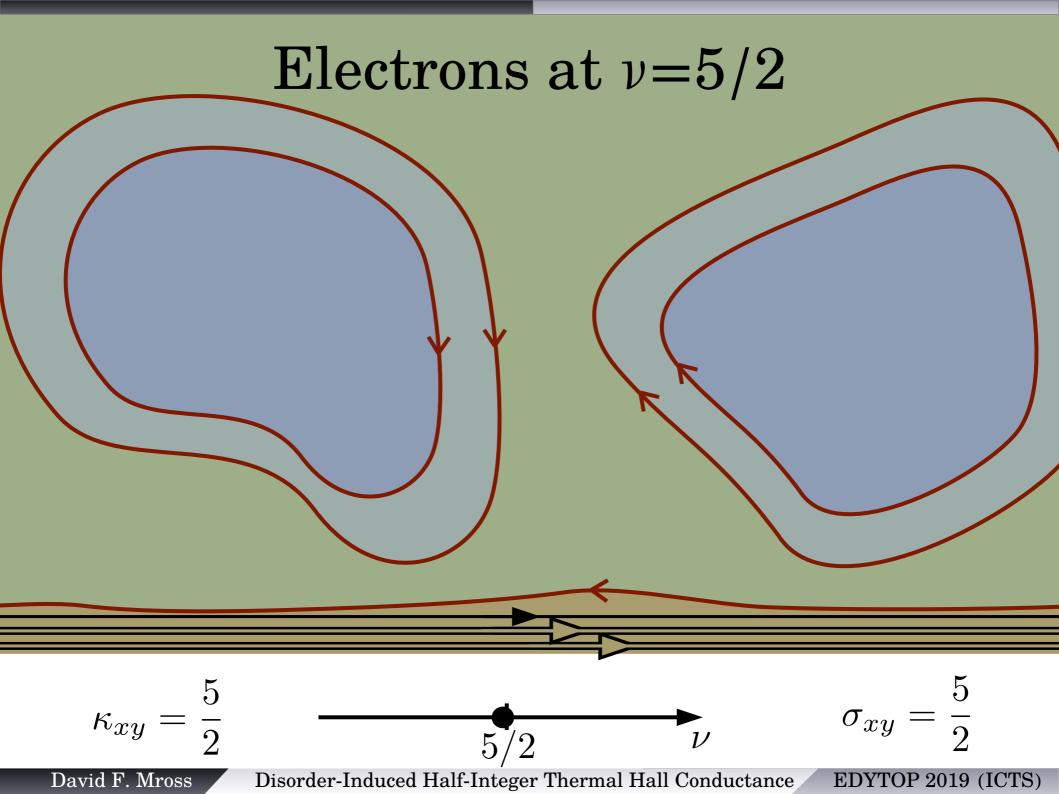


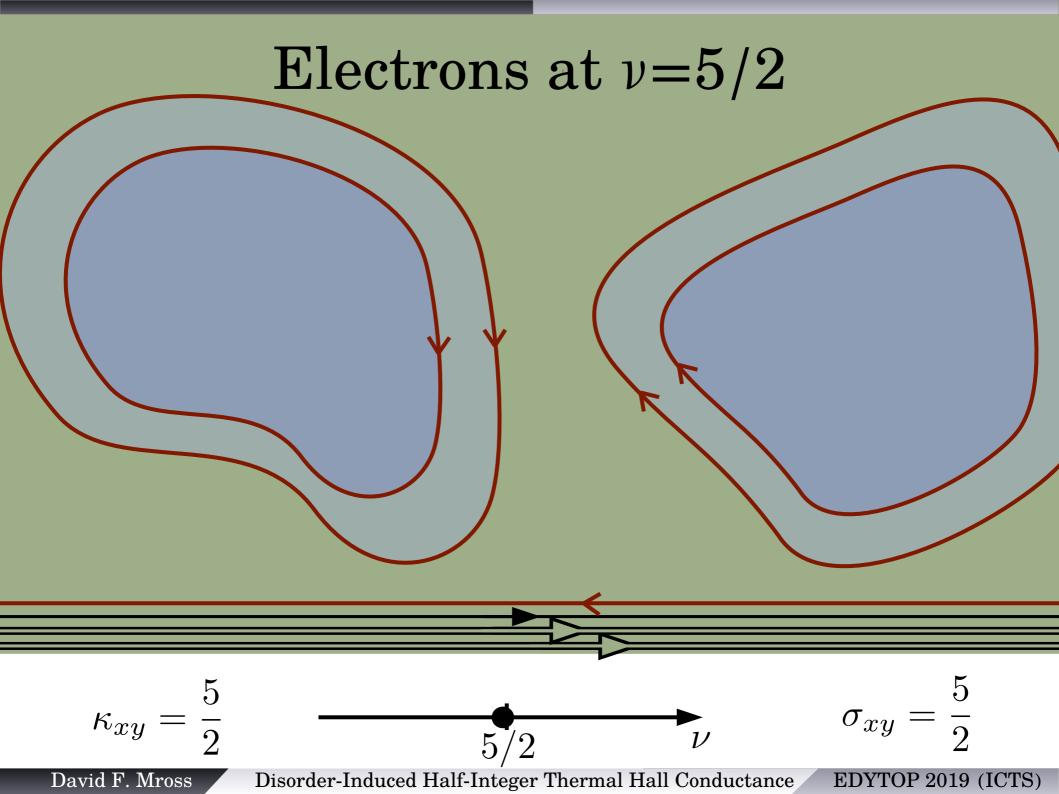




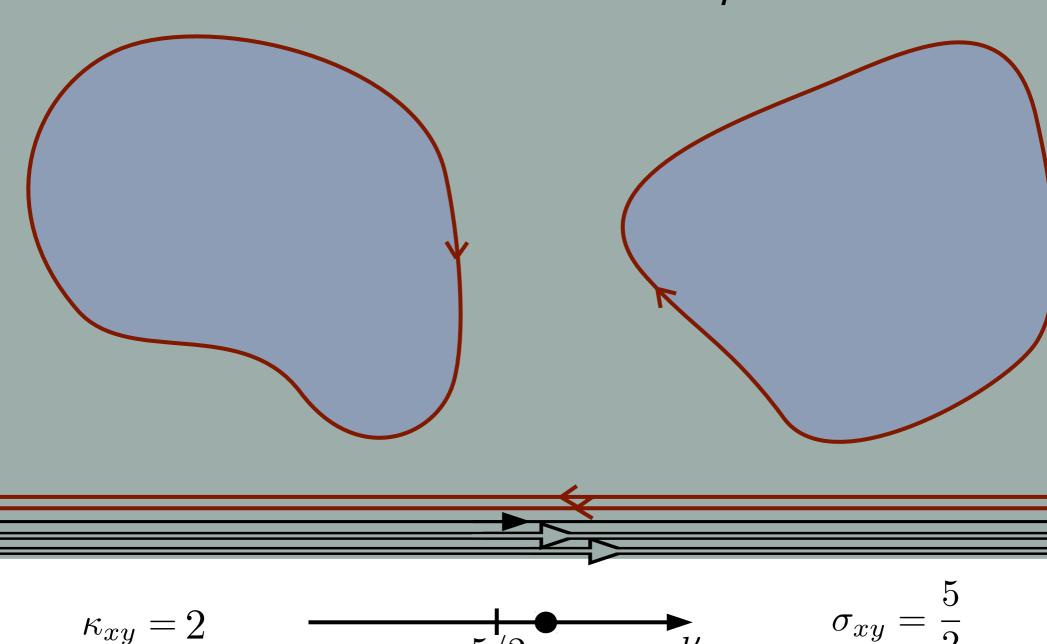










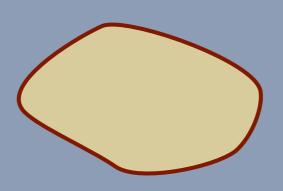


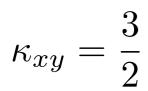
David F. Mross

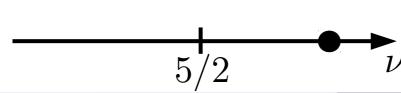
Disorder-Induced Half-Integer Thermal Hall Conductance

EDYTOP 2019 (ICTS)

# Electrons at $\nu = 5/2$

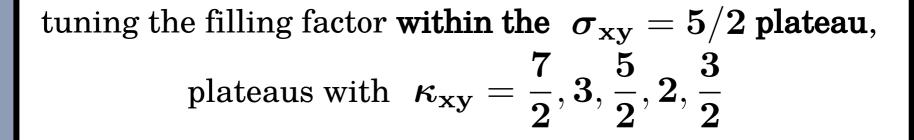




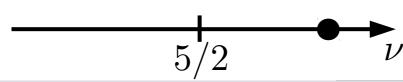


$$\sigma_{xy} = \frac{5}{2}$$

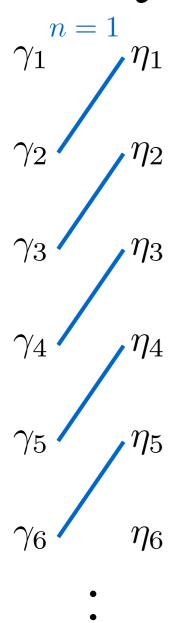
## Electrons at $\nu = 5/2$



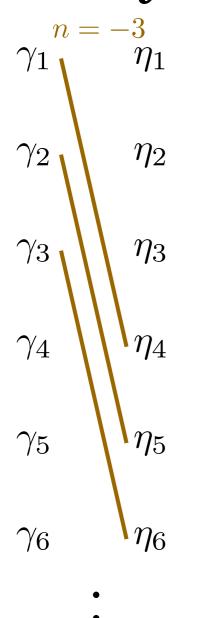




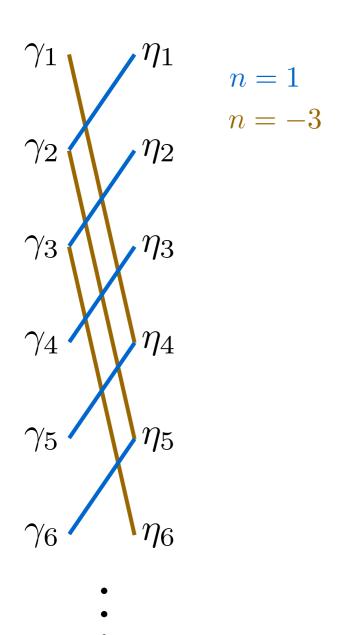
 $\sigma_{xy} = \frac{5}{2}$ 



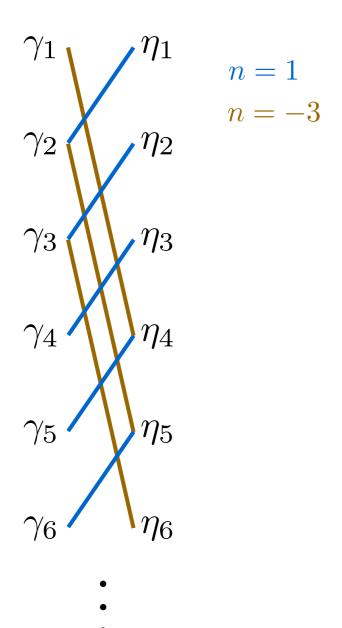
| Symmetry     |          |    |   | d              |                |                |
|--------------|----------|----|---|----------------|----------------|----------------|
| AZ           | $\Theta$ | Ξ  | Π | 1              | 2              | 3              |
| A            | 0        | 0  | 0 | 0              | Z              | 0              |
| AIII         | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AI           | 1        | 0  | 0 | 0              | 0              | 0              |
| BDI          | 1        | 1  | 1 | Z              | 0              | 0              |
| D            | 0        | 1  | 0 | $\mathbb{Z}_2$ | Z              | 0              |
| DIII         | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| AII          | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| CII          | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| $\mathbf{C}$ | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              |
| CI           | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   |

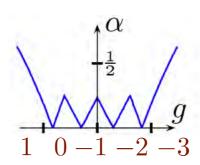


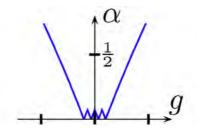
| Symmetry     |          |    |   | d              |                |                |
|--------------|----------|----|---|----------------|----------------|----------------|
| AZ           | $\Theta$ | Ξ  | Π | 1              | 2              | 3              |
| A            | 0        | 0  | 0 | 0              | Z              | 0              |
| AIII         | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AI           | 1        | 0  | 0 | 0              | 0              | 0              |
| BDI          | 1        | 1  | 1 | Z              | 0              | 0              |
| D            | 0        | 1  | 0 | $\mathbb{Z}_2$ | Z              | 0              |
| DIII         | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| AII          | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| CII          | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| $\mathbf{C}$ | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              |
| CI           | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   |

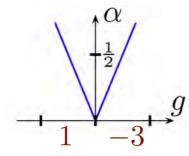


| _            |          |    |   |                |                |                |
|--------------|----------|----|---|----------------|----------------|----------------|
| Symmetry     |          |    |   | d              |                |                |
| AZ           | $\Theta$ | Ξ  | Π | 1              | 2              | 3              |
| A            | 0        | 0  | 0 | 0              | Z              | 0              |
| AIII         | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AI           | 1        | 0  | 0 | 0              | 0              | 0              |
| BDI          | 1        | 1  | 1 | Z              | 0              | 0              |
| D            | 0        | 1  | 0 | $\mathbb{Z}_2$ | Z              | 0              |
| DIII         | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| AII          | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| CII          | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| $\mathbf{C}$ | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              |
| CI           | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   |



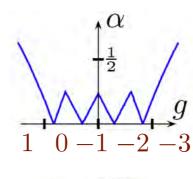


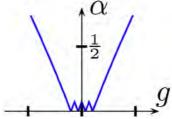




One-dimensional superconductor (BDI)

Motrunich, Damle, Huse (2001), Rieder, Brouwer, Adagideli (2013)





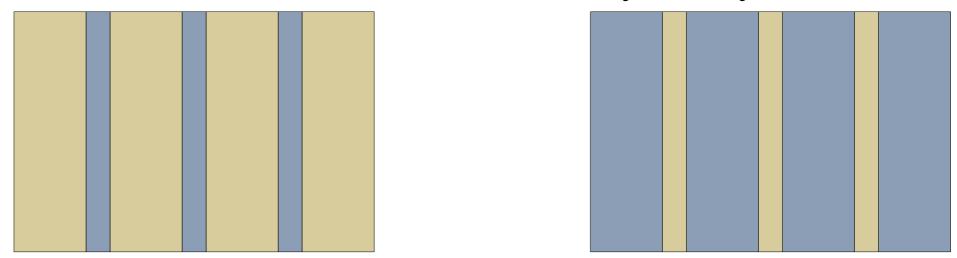
$$H = \sum_{i=1}^{4} \xi_i^T \left[ \tau_x(-i\partial_x) + m\tau_y \right] \xi_i$$

Continuous phase transition in clean system

## Two dimensions

With disorder, all translation symmetry is lost  $\rightarrow$  no distinction!

Continuous translation symmetry



Discrete translation symmetry

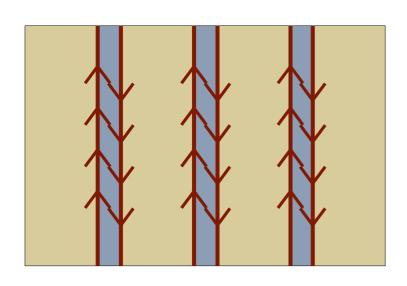


### Two dimensions

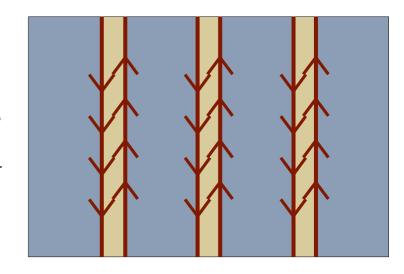
$$H = \sum_{i=1}^{4} \xi_i^T \left[ \tau_z(-i\partial_z) + \tau_x(-i\partial_x) + m\tau_y \right] \xi_i$$

motion along domain walls

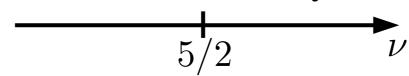
tunneling across domains



2nd order transition



Discrete translation symmetry



# A useful analogy

#### Integer quantum Hall

Electrons at  $\nu = 5/2$ 

Class A for electrons

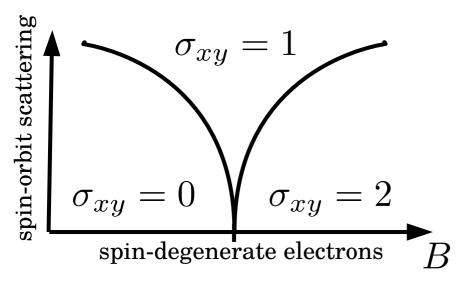
• Class D for comp. fermions

| Symmetry |          |   |   | d              |                |                |
|----------|----------|---|---|----------------|----------------|----------------|
| AZ       | $\Theta$ | Ξ | Π | 1              | 2              | 3              |
| A        | 0        | 0 | 0 | 0              | Z              | 0              |
| AIII     | 0        | 0 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AI       | 1        | 0 | 0 | 0              | 0              | 0              |
| BDI      | 1        | 1 | 1 | $\mathbb{Z}$   | 0              | 0              |
| D        | 0        | 1 | 0 | $\mathbb{Z}_2$ | Z              | 0              |
| DIII     | -1       | 1 | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| AII      | -1       | 0 | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |

# A useful analogy

#### Integer quantum Hall

- Class A for electrons
- Integer classification (n = # of edge electrons)
- Generic transition:  $\Delta n = 1$



#### Electrons at $\nu = 5/2$

• Class D for comp. fermions

Electrons with full spin rotation symmetry:  $\Delta n = 2$ 

With spin-orbit scattering: Two transitions with  $\Delta n = 1$ 

Lee and Chalker (1994)

## A useful analogy

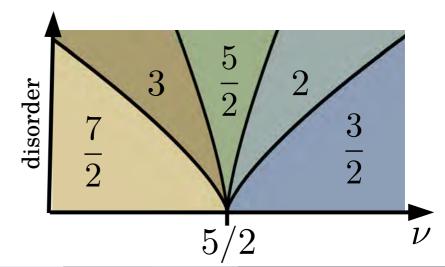
#### Integer quantum Hall

- Class A for electrons
- Integer classification (n = # of edge electrons)
- Generic transition:  $\Delta n = 1$

# spin-degenerate electrons $\sigma_{xy} = 1$ $\sigma_{xy} = 1$ $\sigma_{xy} = 0$ $\sigma_{xy} = 2$

#### Electrons at $\nu = 5/2$

- Class D for comp. fermions
- Integer classification (n = # of edge Majoranas)
- Generic transition:  $\Delta n = 1$

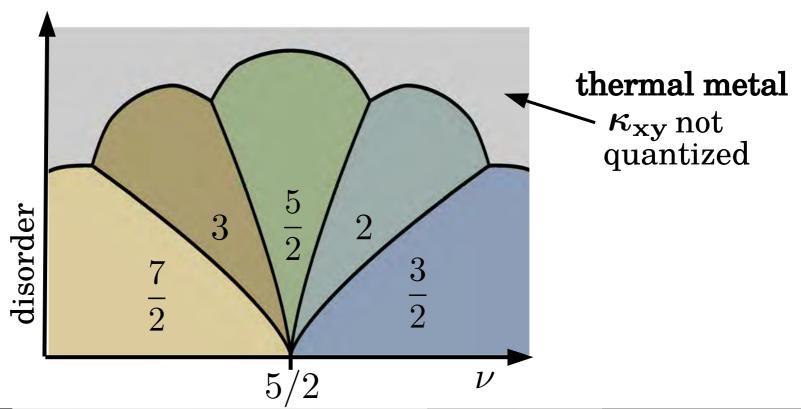


# Strong disorder

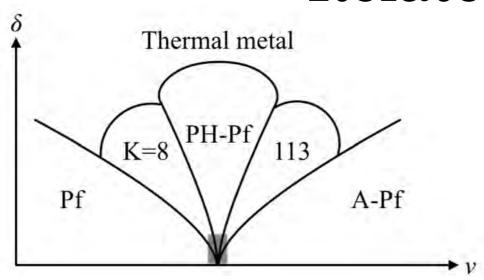
ullet a localized phase (well defined  $n_{
m Majorana}$ ) not guaranteed

Cho and Fisher (1997), Senthil and Fisher (2000), Bocquet, Serban and Zirnbauer (2000) Read and Ludwig (2000), Chalker *et al.* (2001)

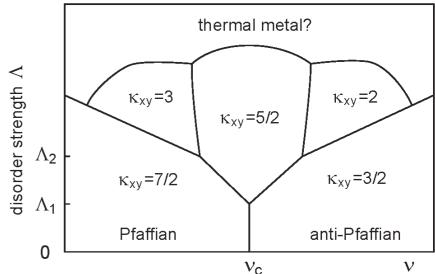
depends on details of the disorder potential



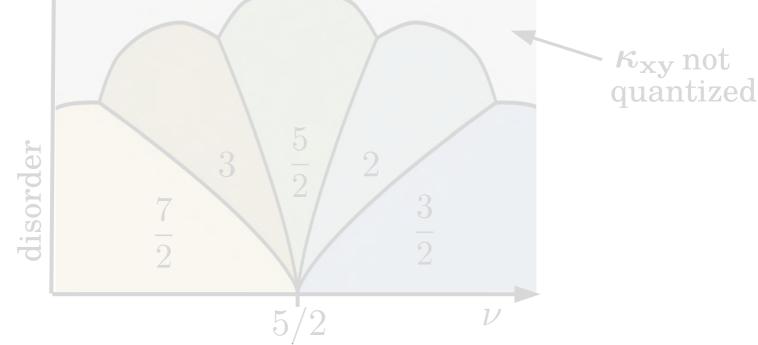
## Related work



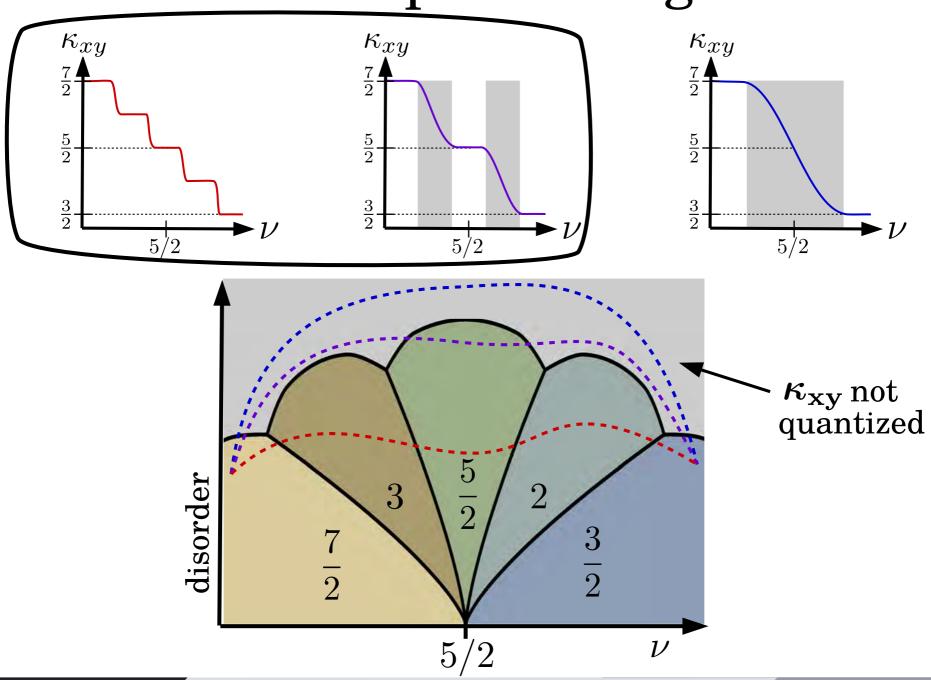
C. Wang, A. Vishwanath, B. Halperin, PRB 98, 045112 (2018)



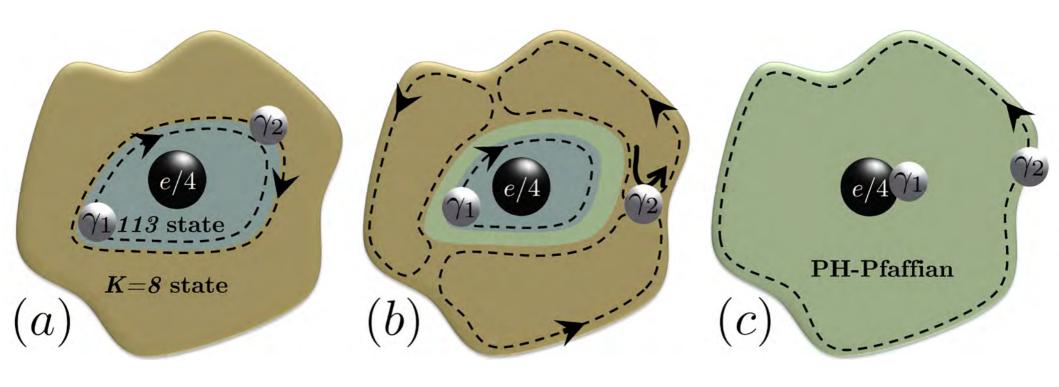
B. Lian and J. Wang PRB 97 165124 (2018)



# General phase diagram



## From Abelian to non-Abelian

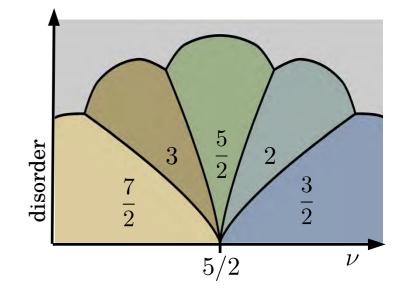


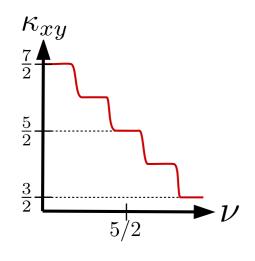
- (a) No isolated Majorana modes in Abelian phase
- (b) Transfer of Majorana mode at transition
- (c) Isolated Majorana mode, i.e., non-Abelian phase

# Conclusions / Outlook

Weak disorder can resolve discrepancy between numerics and experiment.

- Are edge modes fully equilibrated? Simon (2018), Feldman (2018), Ma, Feldman (2018)
- Microscopic treatment of disorder.





Predict additional plateaus in thermal Hall conductance

- Are different plateaus accessible?
- What about thermal metal?
- Is PH-Pfaffian possible in a clean PH-symmetric system and what is its wave function?

Milovanović (2017), Antonić, Vučičević, and Milovanović (2018)

• What interactions realize PH-Pfaffian in a clean system?