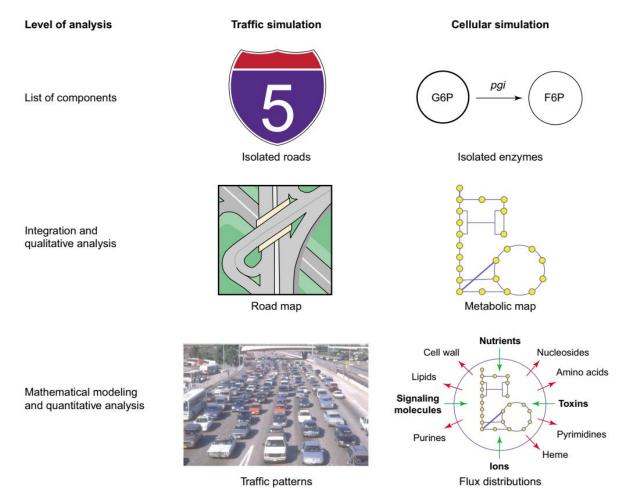


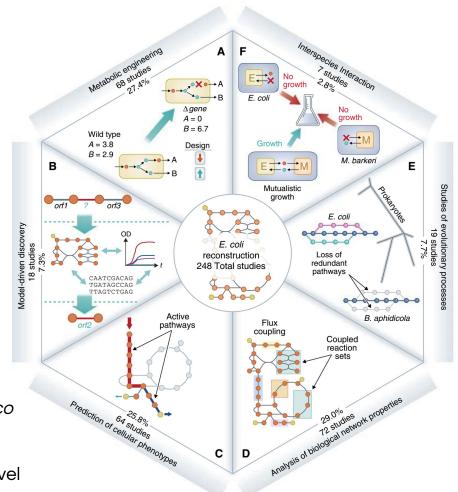
ENUMERATING ALL POSSIBLE BIOSYNTHETIC PATHWAYS IN METABOLIC NETWORKS

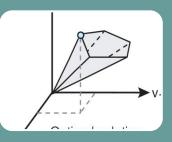
Karthik Raman
Bhupat and Jyoti
Mehta School of
Biosciences,
IBSE, RBC DSAI
IIT MADRAS


INTRODUCTION

- Genome-scale metabolic networks have been reconstructed for many organisms
- Many methods exist to analyse these networks
- Tools from graph theory have been extensively used
 - To identify pathways
 - To study the organisation of these networks

Metabolic Pathways


METABOLIC NETWORKS: AN ANALOGY


WHAT CAN GENOME-SCALE METABOLIC MODELS TELL US?

- Analysis of biological network properties
- Metabolic engineering¹
- Prediction of cellular phenotypes
- Model-driven (biological knowledge) discovery
- Studies of evolutionary processes
- Interspecies interactions²

¹Badri A, Srinivasan A & Raman K (2017) In silico approaches to metabolic engineering ISBN 978-0-444-63667-6 pp. 161-200 ²Ravikrishnan A & Raman K (2018) Systems-level modelling of microbial communities ISBN 978-1-1385-9671-9 104 pp.

HOW TO ANALYSE GENOME-SCALE METABOLIC NETWORKS?

Constraint-based Modelling

- Extremely popular for applications such as metabolic engineering
- Demands well-curated models

Network-based (Graph-based) Modelling

- Path-finding in metabolic networks
- Predicting 'new' pathways based on atom-atom mapping

Challenges

- Need methods that are very scalable and accurate
- Methods that can figure all possible routes that

PATH-FINDING IN METABOLIC NETWORKS

CURRENT STATE-OF-THE-ART

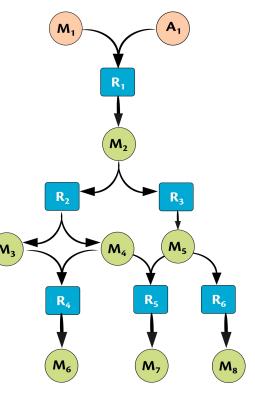
- Rahnuma: Hypergraph-based method that performs DFS on hypergraph to find routes
- FMM: Constructs metabolic pathways between metabolites using substrate graph representation
- PathPred: Generates the pathways based on the structure transformation patterns and its comparison with reference pathway
- MetaPath: Calculates the scope of metabolic networks given a set of starting seed
- ATLAS: Finds possible transformations between two metabolites using reactions from KEGG and other (predicted) reactions specific to ATLAS
- Metabolic Route Explorer (MRE): Provides organism specific data from KEGG online tool for heterologous biosynthesis pathway design
- These algorithms/methods are based on different heuristics, and aim to infer/predict the routes of conversions from source to the target molecules
- Many of these methods are no longer available (broken link etc.)

GRAPH REPRESENTATIONS OF METABOLIC NETWORKS

- How to convert a metabolic network to a graph?
 - Substrate graph
 - Nodes: Metabolites
 - Edges connect metabolites participating in the same reaction / reactants to products
 - Reaction graph
 - Nodes: Reactions
 - Edges connect reactions sharing metabolites
 - Bi-partite graph / Hypergraphs
 - Nodes: two sets metabolites and reactions
 - Edges: connect reactants to reaction nodes and reaction nodes to product nodes
 - No metabolite-metabolite or reaction-reaction links between
- 'Currency' metabolites
 - Need to be eliminated from substrate graphs!
 - Else, we have a two-step glycolysis!

OUR ALGORITHM: METQUEST

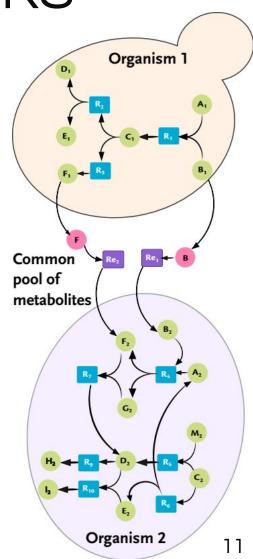
Ravikrishnan, Nasre & Raman (2018) *Scientific Reports*


METQUEST: OVERVIEW

- Novel dynamic-programming based enumeration, which assembles reactions into pathways of a specified size producing the target from the source
- Employs two phases
 - Guided Breadth First Search (BFS)
 - Assembly of reactions into pathways
- Implemented on Python 3.6 & Python 2.7
- Key Features
 - Requires only the topology of reaction network (rather than stoichiometry / atom mapping)
 - Simple and scalable to large metabolic networks (especially those comprising >1 organism)
 - Efficiently handles cyclic and branched pathways
 - Examines multiple alternate routes of conversion

INPUT REPRESENTATION: BIPARTITE GRAPHS

- Any given metabolic network can be represented as a directed bipartite graph G(M, R, E)
 - M is the set of metabolites, R is the set of reactions and E is the set of edges
- Directed edges connect metabolites ($m_i \in M$) to a reaction node ($r_i \in R$) or a reaction node to product metabolites
- Reversible reactions in the metabolic networks are denoted by two separate reaction identifiers


 representing the forward and reverse reactions, respectively
- Bipartite representations disallow invalid conversions as may be interpreted from substrate graphs and
- Help in generating valid paths with biologically meaningful conversions

HANDLING COMMUNITY METABOLIC NETWORKS

 Directed bipartite graph G of microbial communities (consisting of more than one metabolic network) are also easily constructed

- By connecting the graphs of individual organisms through a common extracellular medium, based on the overlapping set of exchange reactions
- The non-common exchange reactions are connected only to the extracellular environment

METQUEST: INPUTS TO THE ALGORITHM

- Input to MetQuest
 - a directed bipartite graph G derived from a given metabolic network
 - a set of seed metabolites, S
 - a set of target metabolites, T
 - an integer β which bounds the size of any pathway generated

Seed Metabolites

- include the source metabolite(s)
- as well as molecules such as co-factors and co-enzymes commonly present in any cell
- akin to a "medium" for growth

DEFINITIONS

Reachable metabolite m

•A metabolite m is reachable from a set S if either m is in the set S or there is a reaction r in the reaction network whose output is m and every input of r is producible

Branched pathway producing m

 An S-to-m pathway R' is a set of reactions such that m is the output of at least one reaction in R' and every input of every reaction in R' is producible from S

Cyclic pathway producing m

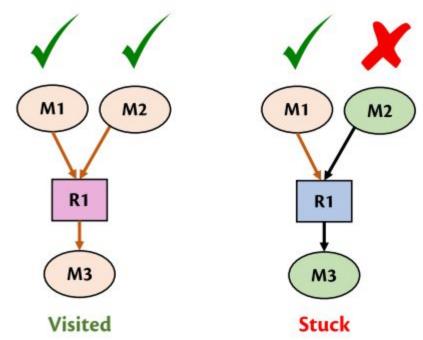
•A cyclic pathway R', from S to m is a set of reactions where m, which is the output of at least one reaction in R' is used in its own production by another reaction in R'

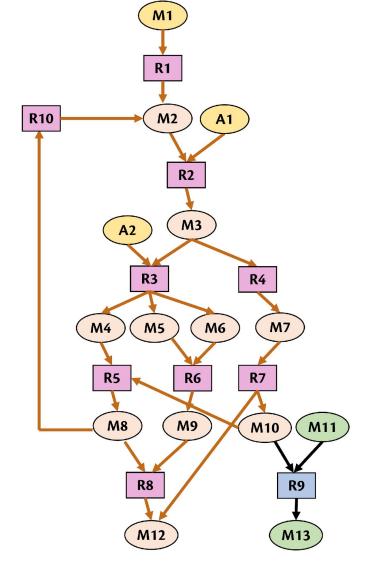
Size of a pathway

• It is the cardinality/number of reactions in the set R'

ALGORITHM WALKTHROUGH PHASE 1: GUIDED BFS

"GUIDED" BFS


- BFS is a classic graph traversal technique that visits all the nodes of a given graph, starting at a source node, in a breadth-first fashion
- BFS employs a queue of vertices, where newly discovered vertices are enqueued, to be processed at a later stage
- We modify the standard BFS by guiding it, based on the availability of precursor metabolites
- Starting with the set of seed metabolites S, the algorithm first finds all the reactions from the set R, whose precursor metabolites are in S
- ${\color{red} \bullet}$ Such reactions are marked "visited" and added to the *visited reaction set* ${\rm R_v}$
- The metabolites produced by these reactions, m_{c} , are then added to S
- The traversal continues in a breadth-first manner, incrementally adding triggerable reactions to the BFS queue


"GUIDED" BFS

- The expansion stops when there are no further reactions that can be visited; during the expansion, a reaction node is labelled as stuck, if it does not (yet) have the necessary precursors in S
- Such reactions are automatically triggered if the precursor metabolites are produced at any later stage
- The traversed graph consists of all reactions that can be visited
- At the end of the traversal, we obtain the scope $M_s \supseteq S$ and the set of visited reaction nodes $R_{_V}$
- This process of graph traversal resembles the ideas of network expansion¹, and forward propagation² reported earlier
- However, we make a systematic note of the visited and stuck reaction nodes — later exploited for efficient and exhaustive enumeration

GUIDED BFS: WALKTHROUGH

- Input Directed bipartite graph G derived from metabolic network(s), seed metabolites
- Output Scope of metabolites,
 Reaction set that can be visited

Scope metabolite set – {M1, A1, A2, M2, M3, M4, M5, M6, M7, M9, M10, M12, M8}

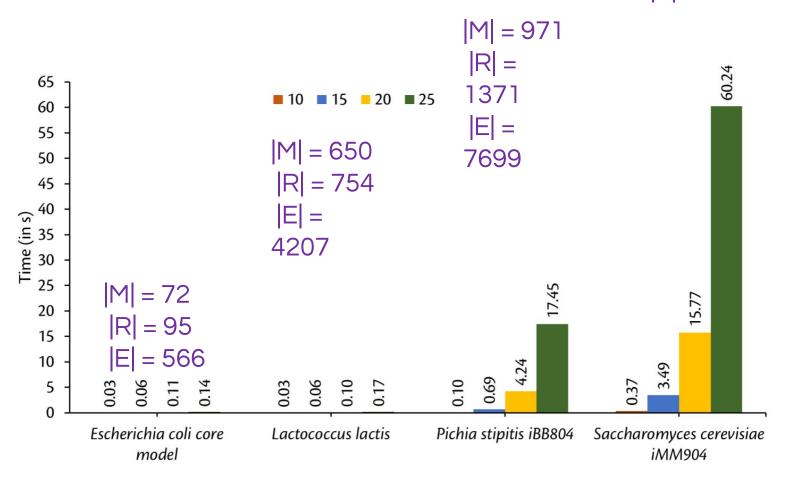
Visited reaction set – {R1, R2, R3, R4, 17 R6, R7, R5, R8, R10**}**

ALGORITHM WALKTHROUGH PHASE 2: PATHWAY GENERATION

PATHWAY GENERATION

- Generates a large Table, of size |M_s|×β
 - Enumerating all pathways of size ≤β
 - For every metabolite in the scope
- Goal of MetQuest: to populate all the entries of this Table
- We start filling the table entries by first considering the seed metabolite set S
- For every seed metabolite $m \in S$, the entry in corresponding cell $Table(m, 0) = \emptyset$, indicating that no reaction is required to produce it
- For every metabolite $m \in M_s \setminus S$, the entry Table[m][0] remains as \bot
- At the end of the algorithm, for any metabolite $m \in M_s$ and an integer $k (0 \le k \le \beta)$, the entry Table[m][k] is a set of pathways or \bot
- If the entry is not \bot , each pathway in the set Table[m][k] is of size k and produces the metabolite m starting from the seed metabolite set
- $Table[m][k] = \bot$ implies that m cannot be produced starting from the seed metabolite set S using exactly k reactions

RESULTS


METQUEST EXCELS IN COMPARISON WITH OTHER ALGORITHMS

Source	Target	Size	Output sub-network	Comments
L-Arginine (C00062)	L-Citrulline (C00327)	2	R00551, R00665	Matches with ATLAS and FMM
Pyruvate (C00022)	Itaconate (C00490)	4	R02491, R00209, R00237, R02405	Matches with FMM, FMM does not report R00209 which produces C00024 – required by R02405 [†]
Pyruvate (C00022)	Itaconate (C00490)	5	R00351, R02243, R00209, R00217, R01325	Matches with FMM, FMM does not report R00351 which produces C00036 – required by R00351 [†]
L-Tyrosine (C00082)	Naringenin (C00509)	5	R02446, R00737, R01616, R01613, R06641	Matches with FMM, FMM does not report R06641†
L-Phenylalanine (C00079)	Resveratrol (C03582)	5	R01616, R00697, R02253, R06641, R01614	Matches with FMM, FMM does not report R06641 which produces malonyl-CoA required by R01614 [†]
Mevalonic acid (C00418)	Amorpha-4,11-diene (C16028)	7	R01658, R03245, R02245, R01121, R01123, R07630, R02003	No paths found by FMM, ATLAS, however it is natively found in <i>S. cerevisiae</i> ⁵¹ .
D-Erythrose 4-phosphate (C00279)	3-Amino-5-hydroxy-benzoate (C12107)	7	_	No paths reported by ATLAS, FMM and our algorithm

- Our output sub-networks are complete they have all reactions necessary to produce every reactant in the pathway
- Smaller pathways of size 2 completely match with those generated by the other algorithms
- However, in many cases, we identify longer pathways, since these involve metabolites generated by branched pathways
- MetQuest correctly identified the already reported pathway between C00418 (Mevalonic acid) and C16028 (Amorpha-4,11-diene) — not identified by the other algorithms

METQUEST PERFORMANCE NETWORKS OF DIFFERENT SIZES, FOR DIFFERENT β

|R| = 1577 |E| = 8386

METQUEST SCALES WELL TO LARGE GENOME-SCALE/COMMUNITY METABOLIC NETWORKS Consortia of Clostridium Celluiolyticum (cc.), Desulfovibrio vulgaris

- Consortia of Clostridium celluiolyticum (cc), Desulfovibrio vulgaris (dv) & Geobacter sulfurreducens (gs)¹ ⇒ Directed Bipartite graph constructed
- Size of the network 14265 nodes, 29073 edges
- Size of scope 1135 metabolites
- Pathways of size 20, to all the metabolites within the scope of cellobiose and other seed metabolites were determined
- Verified if the results contain pathways demonstrating experimentally proven metabolic exchanges
- In all the paths, acetate, pyruvate & ethanol were most frequently exchanged as previously shown¹

¹Miller LD et al (2010) BMC Microbiol. 10:149

LIMITATIONS OF METQUEST

- Predictions are obviously heavily contingent on the quality of the input network
- No weights or ranking attached to the metabolites/paths
- Difficult to identify very long pathways
 - But they may not be very interesting!

SUMMARY

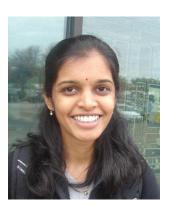
SUMMARY

- MetQuest a novel dynamic-programming based enumeration
- Exhaustively identifies all possible pathways between a set of source and target molecules (within a size)
- Employs a two-phase approach : Guided BFS & Dynamic-programming based generation of pathways
- Overcomes the shortcomings of existing tools
- Scales well to large networks and identifies longer pathways
- Particularly interesting to identify metabolic cross-talks happening between micro-organisms in a community
- MetQuest is able to correctly identify the metabolic interactions happening in a 3-member community
- Generic algorithm Can be applied to any microbial community to identify pathways and metabolic interactions

AVAILABILITY/USAGE

- \$ pip3 install metquest
- Ravikrishnan, Nasre & Raman (2018) Scientific Reports

http://metquestdoc.readthedoc s.io/


ACKNOWLEDGEMENTS

- Aarthi Ravikrishnan
 - DST-INSPIRE
 - DAAD-UGC Exchange Programme
- Dr. Meghana Nasre (CSE, IITM)

THANK YOU!