Demonstration of a New Software for Stability and Bifurcation Analysis of Switching Dynamical Systems

Kuntal Mandal

Department of Electrical and Electronics Engineering
National Institute of Technology Sikkim
Ravangla – 737139, India

E-mail: dr.kuntal.mandal@gmail.com

Outline

- Introduction
- Different Class of Switching Dynamical Systems
- Saltation Matrix for different cases
- Automated Algorithm and Implementation
- Examples
- Demonstration
- Conclusions

Switching Dynamical Systems

Mathematically, an n-dimensional switching dynamical system can be described by piecewise linear (or nonlinear) set of differential equations of the form

$$\dot{x} = f(x,t,\rho) = \left\{ \begin{array}{l} f_1(x,t,\rho), \text{ for } x \in M_1 \\ f_2(x,t,\rho), \text{ for } x \in M_2 \\ \dots \\ f_m(x,t,\rho), \text{ for } x \in M_m \end{array} \right.$$

where $M_1, M_2, \cdots M_m$ are different regions of state-space separated by (n-1) dimensional switching surfaces given by algebraic equation of the form h(x,t)=0 and ρ is a system parameter.

Different Class of Switching Dynamical Systems

(a) Systems with discontinuous vector fields
[Ex: Relay systems, Power Electronic Systems, Dry friction]

(b) Systems with discontinuous state jump [Ex: Impact Oscillators, Converter with reset switch, overhead camshaft automotive valve train]

(c) Systems with Piecewise Nonlinear Subsystems [Ex: Alpazur Oscillators, DC Series Motor]

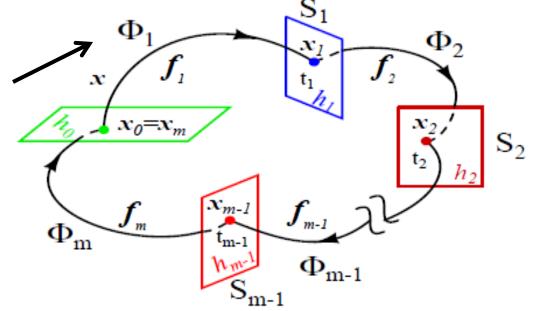
(d) Systems with Differential algebraic equations
[Ex: PV connected Converters, Robotic Systems, Power
Systems]

Filippov Method: Monodromy Matrix

$$M_i: \frac{d\mathbf{x}}{dt} = \mathbf{f}_i(\mathbf{x}, t) = \mathbf{A}_i \mathbf{x} + \mathbf{B}_i \mathbf{u}$$

 $h_i(\mathbf{x}, t) = 0$

$$\Phi_i = \frac{\partial x_i}{\partial x_{i-1}} = e^{A_i(t_i - t_{i-1})}$$



$$M(T_s, t_0, \mathbf{x}_0) = \frac{\partial \mathbf{x}_m}{\partial \mathbf{x}_{m-1}} \cdot \mathbf{S}_{m-1} \cdot \frac{\partial \mathbf{x}_{m-1}}{\partial \mathbf{x}_{m-2}} \cdots \mathbf{S}_2 \cdot \frac{\partial \mathbf{x}_2}{\partial \mathbf{x}_1} \cdot \mathbf{S}_1 \cdot \frac{\partial \mathbf{x}_1}{\partial \mathbf{x}_0}$$

$$= \Phi_m \cdot \mathbf{S}_{m-1} \cdot \Phi_{m-1} \cdots \mathbf{S}_2 \cdot \Phi_2 \cdot \mathbf{S}_1 \cdot \Phi_1$$

STM for Linear Subsystems

Integrate the differential equations along with the checking of switching condition.

A proper adaptive (variable) step-size integration gave us satisfying performance along with precious control of the numerical error to find out t_1 .

$$\Phi_1 = exp(A_1(t_1 - t_0))$$

Matlab's *expm function* which is ten-term Taylor's series approximation

Ref: Nick Higham, How and How Not to Compute the Exponential of a Matrix, The University of Manchester.

STM for Nonlinear Subsystems

We have to solve the system equations and variational equations simultaneously.

Differential equations for Subsystem M_1 :

$$\dot{\mathbf{x}} = \mathbf{f}_1(\mathbf{x}, t, \rho)$$
$$\mathbf{x}(t=0) = \mathbf{x}_0$$

Variational equations for Subsystem M_1 :

$$\dot{\Phi}_1 = \frac{\partial f_1(x, t, \rho)}{\partial x} \Phi_1$$
$$\Phi_1(t = 0) = I_n$$

For n-dimensional system, $(n + n^2)$ differential equations have to be solved.

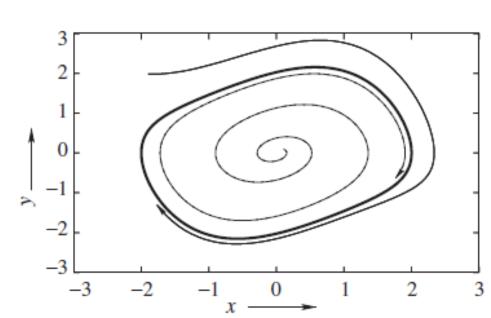
Ref: The Variational Equation, Liz Bradley, Department of Computer Science, University of Colorado.

Van der Pole System

2nd Order ODE
$$\ddot{x} - \mu(1 - x^2)\dot{x} + x = 0$$
,
1st Order ODEs $\dot{x} = y$,
 $\dot{y} = \mu(1 - x^2)y - x$.

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2\mu xy - 1 & \mu - \mu x^2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

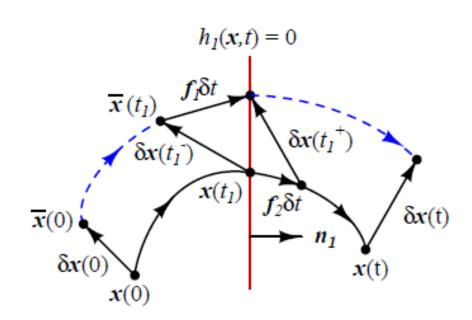
J



Saltation Matrix (Transversal Intersection)

The saltation matrix relates how the perturbation **before** the switching maps to the perturbation **after** the switching.

$$\delta x(t_1^+) = S_1 \delta x(t_1^-)$$

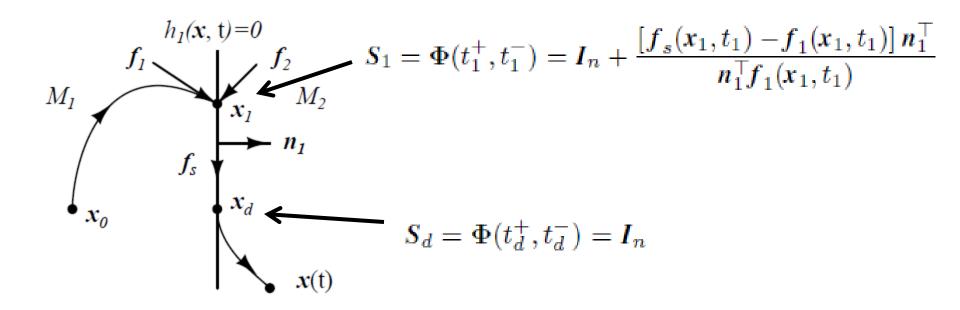


$$S_1 = \Phi(t_1^+, t_1^-) = I_n + \frac{[f_2(x_1, t_1) - f_1(x_1, t_1)] n_1^+}{n_1^\top f_1(x_1, t_1) + \frac{\partial h_1}{\partial t}\Big|_{t=t_1}}$$

Ref: Books by R.I. Leine and H. Nijmeijer (2004), A. F. Filippov (1988), di Bernardo et al. 2008

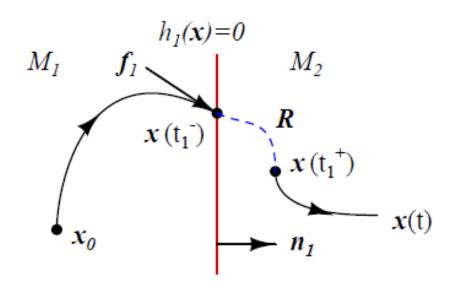
Saltation Matrix (Crossing Sliding)

To find out the sliding vector field f_s we use Filippov's convex method (or Utkin's equivalent control).



Ref: Books by R.I. Leine and H. Nijmeijer (2004), A. F. Filippov (1988), di Bernardo et al. 2008

Saltation Matrix (Impacting System)



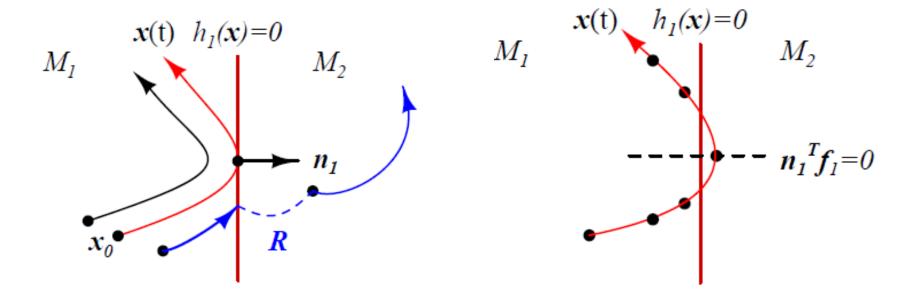
Impact law: $x(t_1^+) = Rx(t_1^-)$

$$S_1 = \Phi(t_1^+, t_1^-) = R + \frac{\left[f_2(x_1, t_1) - R f_1(x_1, t_1)\right] n_1^\top}{n_1^\top f_1(x_1, t_1)}$$

For piecewise-smooth systems, $R = I_n$.

Ref: P. T. Piiroinen et al., Chaos and Period-Adding in an Impacting System, Journal of Nonlinear Science, 2004.

Detection of Grazing



Ref: P. T. Piiroinen et al., Chaos and Period-Adding in an Impacting System, Journal of Nonlinear Science, 2004.

Locating the Periodic Orbit and Finding Its Stability

For a periodic orbit, $\boldsymbol{H}(\boldsymbol{x}_0) = \boldsymbol{x}_m - \boldsymbol{x}_0 = 0$.

Newton-Raphson method:

$$\begin{aligned}
\boldsymbol{x}_0^{k+1} &= \boldsymbol{x}_0^k - \left[\frac{\partial \boldsymbol{H}(\boldsymbol{x}_0^k)}{\partial \boldsymbol{x}_0^k}\right]^{-1} \boldsymbol{H}(\boldsymbol{x}_0^k) \\
&= \boldsymbol{x}_0^k - \left[\frac{\partial \boldsymbol{x}_m^k}{\partial \boldsymbol{x}_0^k} - \boldsymbol{I}_n\right]^{-1} (\boldsymbol{x}_m^k - \boldsymbol{x}_0^k).
\end{aligned}$$

The Jacobian matrix:

$$\boldsymbol{J} = \frac{\partial \boldsymbol{x}_m}{\partial \boldsymbol{x}_0} = \boldsymbol{M}(T_s, t_0, \boldsymbol{x}_0)$$

Our Algorithm

- Start from a suitable initial condition.
- Simulate for one period. Determine the subsystem sequence in that period, and the times spent in each subsystem.
- Determine the state transition matrices for each subsystem, and the saltation matrices for each switching. Obtain the monodromy matrix.

The Algorithm (continued)

- Take one Newton-Raphson step using this Jacobian matrix. Obtain a new initial condition. Repeat the steps.
- When the algorithm converges on the fixed point, the Jacobian converges on that of the periodic orbit.
- Obtain the Eigenvalues.
- Once a periodic orbit is located, make a small change in the parameter and use the old periodic orbit as the initial guess (natural continuation method).

The Algorithm (continued)

- It is not restricted by the problem size (dimension, number of subsystems, switching conditions, etc.).
- Convergence may be a problem unless the initial condition is close to the periodic orbit.

We overcome the problem by starting from a stable periodic orbit, which can be located using **brute force** simulation.

Advantages of the Software

- No limitation in problem size i.e., dimensions and number of subsystems. Higher number of subsystems in a period only increases the number of matrices to be multiplied, and not the dimension of the matrices.
- From the **algorithmic complexity** point of view, the size of the Jacobian, condition number of the Jacobian and the number of Newton iterations are significantly less than that in multiple shooting and collocation methods.
- > Applicable to linear as well as nonlinear subsystems.
- > Applicable to different operation modes.
- ➤ It can handle the crossing-sliding and grazing-sliding segments.

K. Mandal et al., "An Automated Algorithm for Stability Analysis of Hybrid Dynamical Systems," European Physical Journal (EPJ), 2013.

Comparison with the Available Programs

Algorithmic complexity:

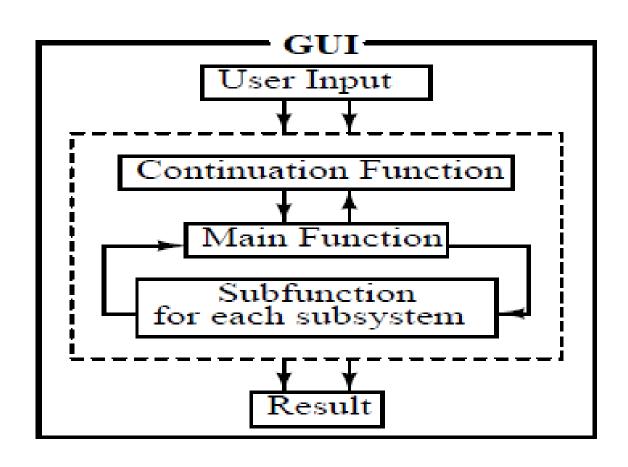
- the size of the Jacobian,
- condition number of the Jacobian,
- the number of Newton iterations,
- the domains of convergence.

In collocation method, the Jacobian is of dimension (mnN + b + q + 1), where n is the number of subintervals, m the number of collocation points per subinterval, N the dimension of the system, b the number of boundary conditions and q the number of integral conditions.

In the multiple-shooting methods, the Jacobian is of dimension (N-1)s+1, where s is the number of cross-sections that are used.

For systems with high complexity, these become unmanageable.

Program Structure inside GUI



Event Detection Routine in Matlab

The function is of the form:

function [value,isterminal,direction] = events(t,y)

- value(i) is the value of the ith event function.
- isterminal(i) = 1 if the integration is to terminate at a zero of this event function,

0 otherwise

- direction(i) = 0 if all zeros are to be located (the default),
 - +1 only zeros for increasing event function and
 - -1 only zeros for decreasing event function

Errors and Control of Errors in Matlab

Accuracy vs Speed

RelTol: the relative accuracy tolerance, controls the number of correct digits in the answer.

AbsTol: the absolute error tolerance, controls the difference between the answer and the solution.

At each step, the error e in component i of the solution satisfies $|e(i)| \le \max(\text{RelTol*abs}(y(i)), \text{AbsTol}(i))$

Ref: T. Park and P. I. Barton, State event location in differential-algebraic models, *ACM Transactions on Modeling and Computer Simulation*, 996.

Bifurcation and Stability Analysis

Bifurcation Diagram

and Phase-Space: Direct time integration

Unstable Periodic Orbit: Single Shooting method

Coexisting Periodic Orbits: Natural Continuation Method

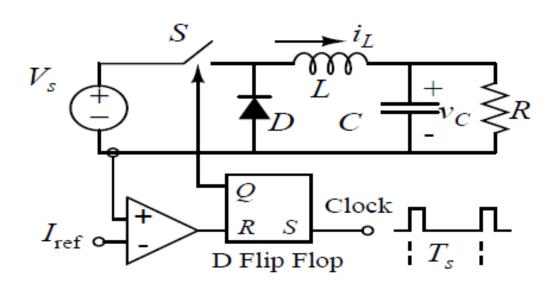
Bifurcation Point: Monitoring the Maximum Eigenvalue of the Jacobian.

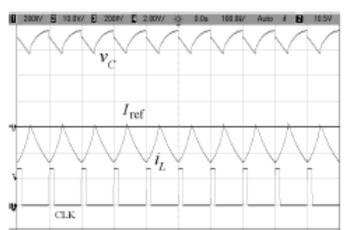
GUI in Matlab

Write 'guide' in Matlab Command window

Ref: Book by P. Marchand and O. T. Holland, *Graphics and GUIs with MATLAB*, 2003.

Example 1: Buck Converter with Current-Mode Control





Waveforms

Parameters					
$V_s = 20 \text{ V}, R_L = 10 \Omega, f_s = 30 \text{ kHz},$					
$L = 0.62 \text{ mH}, C = 1 \text{ mF}, I_{\text{ref}} = 1 \text{ A}.$					

Buck Converter: Modeling

From "hybrid system" point of view the system can be modeled as

$$\frac{dx}{dt} = \begin{cases} M_1 : A_1x + B_1u & \text{S is ON} \\ M_2 : A_2x + B_2u & \text{S is OFF} \end{cases}$$

where, $\mathbf{x} = \begin{bmatrix} i_L \ v_C \end{bmatrix}^T = \begin{bmatrix} x_1 \ x_2 \end{bmatrix}^T$, $\mathbf{u} = V_s$ and the coefficient matrices are

$$m{A}_1 = m{A}_2 = egin{bmatrix} 0 & -rac{1}{L} \ rac{1}{C} & -rac{1}{RC} \end{bmatrix}, \quad m{B}_1 = egin{bmatrix} rac{1}{L} \ 0 \end{bmatrix}, \quad m{B}_2 = egin{bmatrix} 0 \ 0 \end{bmatrix}.$$

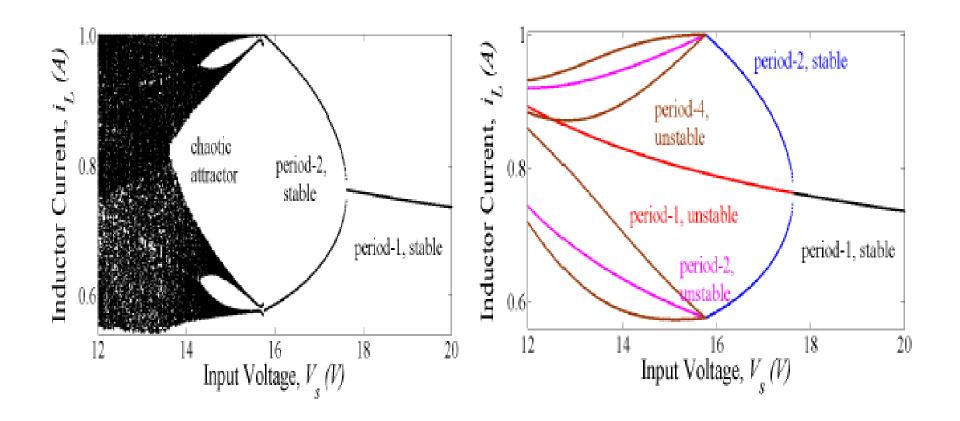
The switching surfaces are given by $h_1: x_1 - I_{ref} = 0$, and $h_2: t \mod T_s = 0$.



Buck Converter: Bifurcation Diagrams

Brute-Force

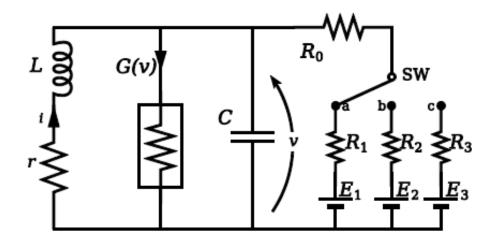
Path-Following



Buck Converter: Fixed point and Eigenvalues

V_s	Periodic orbit	Subsystem sequence	Fixed point	Eigenvalues	Type
20.00	stable period-1	[1-2]	$[\ 0.7359\ 8.6792\]$	-0.7668, 0.9966	
17.631	stable period-1	[1-2]	[0.7630158.81507]	-0.9999, 0.9967	
17.630	unstable period-1	[1-2]	$[\ 0.763028\ 8.81514\]$	-1.0000, 0.9967	smooth
17.630	stable period-2	[1-2-1-2]	[0.7604 8.8150]	0.9999,0.9935	
15.763	stable period-2	[1-2-1-2]	[0.57637.8815]	$0.9931 \pm 0.0842 \mathrm{j} \ (\simeq 0.9967)$	
15.762	unstable period-2	[1-1-2]	$[\ 0.5762\ 7.8811\]$	-1.0000, 0.9934	nonsmooth
15.762	unstable period-4	[1-2-1-2-1-1-2]	[0.5762 7.8810]	-1.0007, 0.9868	nonsmooth

Example 2: 2-D, Three-Subsystems, 10 Parameters Alpazur Oscillator



Example 2: Modeling of Alpazur Oscillator

Modeling: Piecewise Nonlinear Subsystem (Normalized voltage and current)

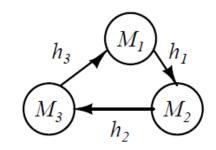
For i = 1, 2, 3

$$M_i: \begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} rx_1 - x_2 \\ x_1 + (1 - A_i)x_2 - \frac{1}{3}x_2^3 + B_i \end{bmatrix}$$

The switching surfaces are:

$$h_1 : x_2 - h = 0,$$

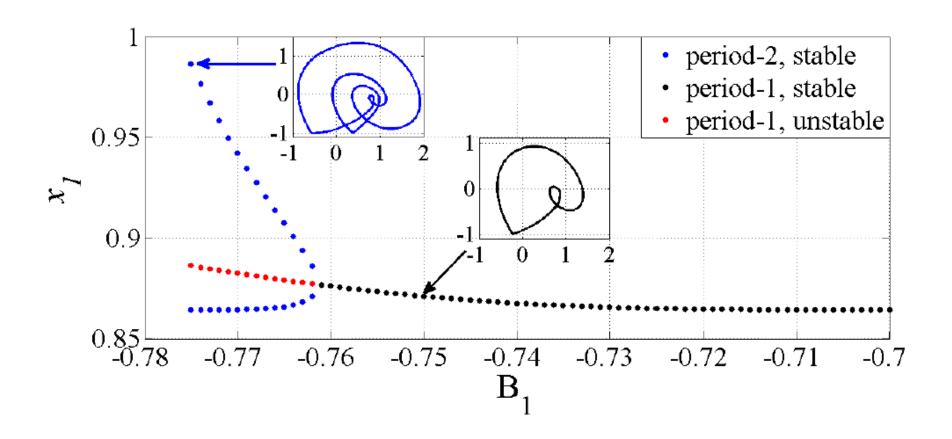
 $h_2 : x_2 - b = 0,$
 $h_3 : x_2 - m = 0.$



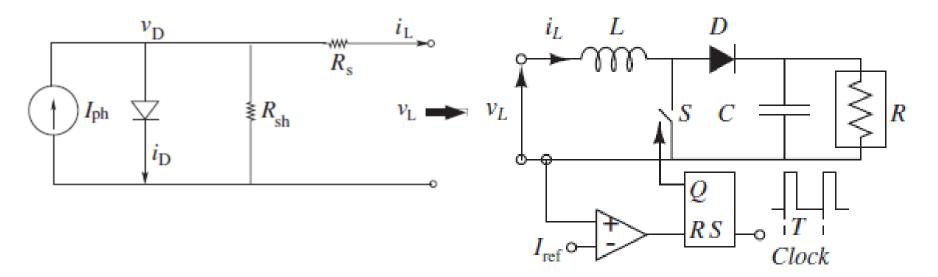
Parameters
$r = 0.1, A_1 = 0.2, A_2 = 2.0, A_3 = 0.8, B_1 = -0.70$
$B_2 = -0.8$, $B_3 = -0.1$, $h = -1$, $b = -0.3$, $m = -0.1$.

Q. Brandon et al., Numerical bifurcation analysis framework for autonomous piecewise-smooth dynamical systems, Chaos, Solitons and Fractals, 2009.

Alpazur Oscillator: Bifurcation Diagram



Example 3: PV Connected Boost Converter



	Parameters
Ì	$I_{\rm ph} = 1 \text{ A}, I_o = 10^{-10} \text{ A}, R_s = 3 \Omega, R_{\rm sh} = 100 \Omega, A = 3.8647$
- 1	$I_{\text{ref}} = 1 \text{ A}, L = 3.125 \text{ mH}, C = 20 \mu\text{F}, R = 3 \Omega, T_s = 100 \mu\text{s}$

State-Space Modeling: PV Connected Boost Converter

The system can be modeled using differential-algebraic equations as

$$\frac{dx}{dt} = \begin{cases} M_1 : A_1x + B_1 & \text{S is ON, D is OFF} \\ M_2 : A_2x + B_2 & \text{S is OFF, D is ON} \end{cases}$$

$$I_{\text{ph}} - I_o(e^{A(v_L + i_L R_s)} - 1) - \frac{v_L + i_L Rs}{R_{\text{sh}}} = i_L$$

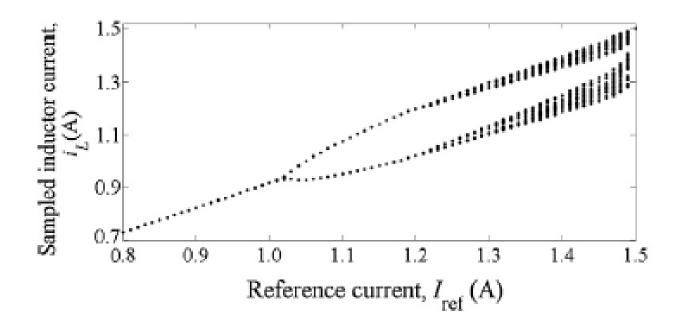
where, $x = [i_L \ v_C]^\top = [x_1 \ x_2]^\top$, and

$$\boldsymbol{A}_1 = \begin{bmatrix} 0 & 0 \\ 0 & -\frac{1}{RC} \end{bmatrix}, \quad \boldsymbol{A}_2 = \begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{RC} \end{bmatrix}, \quad \boldsymbol{B}_1 = \boldsymbol{B}_2 = \begin{bmatrix} \frac{v_L}{L} \\ 0 \end{bmatrix}.$$

The switching surfaces are -

$$h_1: x_1 - I_{ref} = 0$$
, and $h_2: t \mod T_s = 0$.

PV Connected Boost Converter



$I_{\text{ref}}(A)$	Orbit	Subsystem sequence	Eigenvalues
0.8	Stable Period-1	$M_1 - M_2 \ M_1 - M_2$	-0.7447, 0.5744
1.0	Stable Period-1		-0.9903, 0.5813
1.01	Unstable Period-1	$M_1 - M_2$	-1.0023, 0.5816
1.01	Stable Period-2	$M_1 - M_2$; $M_1 - M_2$	0.9991, 0.3612

Ref: A. Abusorrah et al., Stability of the Boost Converter Fed from Photovoltaic Source, *Solar Energy*, 2013.

Demonstration

Conclusions

A general-purpose software is developed to handle highdimensional switching dynamical systems with a large number of subsystems.

THANK YOU