Introduction to Dynamical Systems

Soumitro Banerjee

soumitro@iiserkol.ac.in

Department of Physical Sciences IISER-Kolkata

Ecology as dynamical system

The number of individuals in all biological populations fluctuate. \Rightarrow dynamical system.

Ecology as dynamical system

The number of individuals in all biological populations fluctuate. \Rightarrow dynamical system.

Can be represented in discrete time:

$$x_{n+1} = f(x_n)$$

Ecology as dynamical system

The number of individuals in all biological populations fluctuate. \Rightarrow dynamical system.

Can be represented in discrete time:

$$x_{n+1} = f(x_n)$$

Or in continuous time:

$$\frac{dx}{dt} = f_1(x, y)$$

$$\frac{dy}{dt} = f_2(x, y)$$

$$\frac{dy}{dt} = f_2(x,y)$$

Consider a single population of fish in a pond.

• Let x_n be the normalized population [0,1] in the n-th generation.

- Let x_n be the normalized population [0,1] in the n-th generation.
- First approximation: $x_{n+1} = \mu x_n$

- Let x_n be the normalized population [0,1] in the n-th generation.
- First approximation: $x_{n+1} = \mu x_n$
- When the population is small, the above is a good model.

- Let x_n be the normalized population [0,1] in the n-th generation.
- First approximation: $x_{n+1} = \mu x_n$
- When the population is small, the above is a good model.
- But when it is large, overpopulation and scarcity of food slows down the growth.

- Let x_n be the normalized population [0,1] in the n-th generation.
- First approximation: $x_{n+1} = \mu x_n$
- When the population is small, the above is a good model.
- But when it is large, overpopulation and scarcity of food slows down the growth.
- So a reasonable model of a single population will be

$$x_{n+1} = \mu x_n (1 - x_n)$$

• Take a prey species x, and a predator species y.

- Take a prey species x, and a predator species y.
- In the absence of predators (y = 0), assume proportional growth rate: $\dot{x} = ax$. When predators are present, assume that the prey population decreases in proportion to the predator/prey encounters (represented by bxy).

- Take a prey species x, and a predator species y.
- In the absence of predators (y = 0), assume proportional growth rate: $\dot{x} = ax$. When predators are present, assume that the prey population decreases in proportion to the predator/prey encounters (represented by bxy).
- In absence of prey, predator population declines as $\dot{y} = -cy$. When prey are present, the predator population increases at a rate proportional to the predator/prey encounters, or dxy.

- Take a prey species x, and a predator species y.
- In the absence of predators (y = 0), assume proportional growth rate: $\dot{x} = ax$. When predators are present, assume that the prey population decreases in proportion to the predator/prey encounters (represented by bxy).
- In absence of prey, predator population declines as $\dot{y} = -cy$. When prey are present, the predator population increases at a rate proportional to the predator/prey encounters, or dxy.
- Thus the whole model:

$$\dot{x} = ax - bxy$$

$$\dot{y} = -cy + dxy$$

ODE: $\dot{x} = f(x)$ and $\dot{x} = f(x, t)$

• If the system equations do not have any externally applied time-varying input, the system is said to be *autonomous* e.g., the Lorenz system

$$\dot{x} = -3(x - y)
\dot{y} = -xz + rx - y
\dot{z} = xy - z,$$

ODE: $\dot{x} = f(x)$ and $\dot{x} = f(x, t)$

• If the system equations do not have any externally applied time-varying input, the system is said to be *autonomous* e.g., the Lorenz system

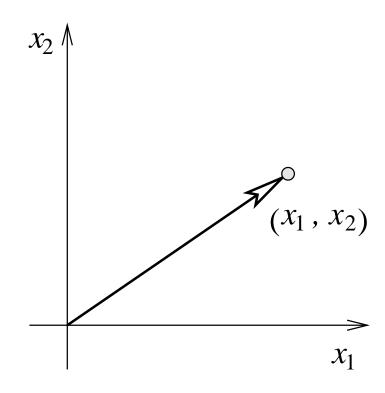
$$\dot{x} = -3(x - y)
\dot{y} = -xz + rx - y
\dot{z} = xy - z,$$

• Systems with external inputs or forcing functions are called *non-autonomous*, e.g., a periodically forced pendulum:

$$\dot{x} = y
\dot{y} = -g\sin x + F\cos\omega t.$$

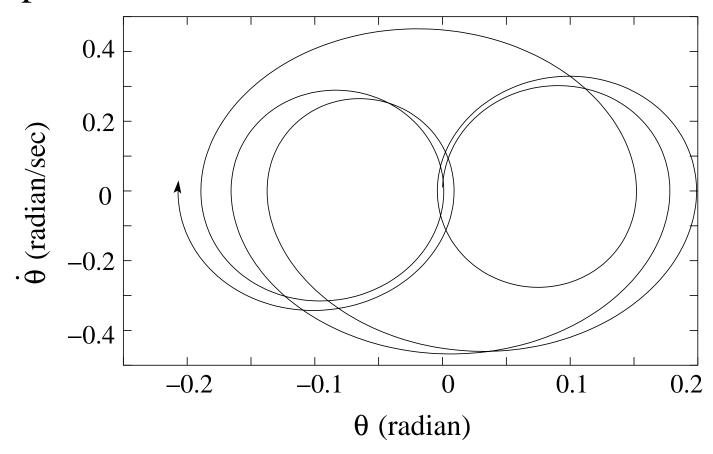
The phase space

Geometrically, the dynamics can be visualized by constructing a space with the variables as the coordinates.



The trajectory

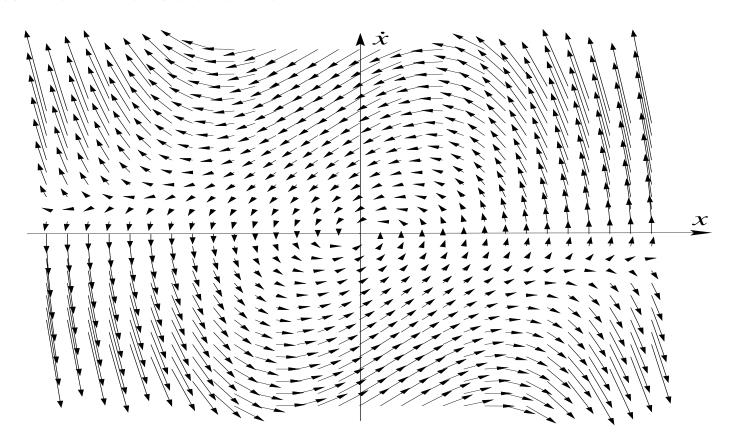
Example:



The trajectory of the pendulum with oscillating support for 10 seconds starting from a standstill position.

The vector field

The differential equations define a vector at every point in the phase space. The solution follows the "flow" of the vectors.



Vector field for
$$\ddot{x} - (1 - x^2)\dot{x} + x = 0$$
.

Equilibrium points

• The points where $\dot{\mathbf{x}} = f(\mathbf{x}) = 0$, are called the equilibrium points.

Equilibrium points

- The points where $\dot{\mathbf{x}} = f(\mathbf{x}) = 0$, are called the equilibrium points.
- The behaviour in the neighbourhood of an equilibrium point (x^*, y^*) is studied by local linearization:

$$\begin{pmatrix} \delta \dot{x} \\ \delta \dot{y} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \end{pmatrix},$$

where $\delta x = x - x^*$, $\delta y = y - y^*$.

⇒ Jacobian matrix

• Given equation: $\ddot{x} - (1 - x^2)\dot{x} + x = 0$

- Given equation: $\ddot{x} (1 x^2)\dot{x} + x = 0$
- Reduce to first order form:

$$\dot{x} = y,
\dot{y} = (1 - x^2)y - x.$$

- Given equation: $\ddot{x} (1 x^2)\dot{x} + x = 0$
- Reduce to first order form:

$$\dot{x} = y,
\dot{y} = (1 - x^2)y - x.$$

• Find the equilibrium point: (0,0).

- Given equation: $\ddot{x} (1 x^2)\dot{x} + x = 0$
- Reduce to first order form:

$$\dot{x} = y,
\dot{y} = (1 - x^2)y - x.$$

- Find the equilibrium point: (0,0).
- Obtain the Jacobian: $\begin{pmatrix} 0 & 1 \\ -2xy 1 & 1 x^2 \end{pmatrix}$.

- Given equation: $\ddot{x} (1 x^2)\dot{x} + x = 0$
- Reduce to first order form:

$$\dot{x} = y,$$

$$\dot{y} = (1 - x^2)y - x.$$

- Find the equilibrium point: (0,0).
- Obtain the Jacobian: $\begin{pmatrix} 0 & 1 \\ -2xy 1 & 1 x^2 \end{pmatrix}$.
- Substituting x = 0 and y = 0 we get

$$\begin{pmatrix} \delta \dot{x} \\ \delta \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \end{pmatrix}.$$

• Consider the dynamics in the neighbourhood of an equilibrium point:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
.

• Consider the dynamics in the neighbourhood of an equilibrium point:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
.

• If the system is 1D, $\dot{x} = ax$. Solution: $x(t) = x_0 e^{at}$.

• Consider the dynamics in the neighbourhood of an equilibrium point:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
.

• If the system is 1D, $\dot{x} = ax$. Solution: $x(t) = x_0 e^{at}$.

• If the system is 2D, $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$.

If we can find linearly independent solutions

$$\left[\begin{array}{c} x_1(t) \\ y_1(t) \end{array}\right]$$
 and $\left[\begin{array}{c} x_2(t) \\ y_2(t) \end{array}\right]$, then a general solution

starting from any given initial condition is

$$x(t) = c_1 x_1(t) + c_2 x_2(t)$$

 $y(t) = c_1 y_1(t) + c_2 y_2(t).$

These linearly independent solutions are obtained from the eigenvalues and eigenvectors of the matrix \mathbf{A} .

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

In $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, the matrix \mathbf{A} operates on the vector \mathbf{x} to give the vector $\dot{\mathbf{x}}$. There exist some special directions such that the resulting vector remains in the same direction, i.e.,

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

where λ is a number, called the eigenvalue. Any vector along these special directions are called eigenvectors.

Eigenvalues and eigenvectors

In $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, the matrix \mathbf{A} operates on the vector \mathbf{x} to give the vector $\dot{\mathbf{x}}$. There exist some special directions such that the resulting vector remains in the same direction, i.e.,

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

where λ is a number, called the eigenvalue. Any vector along these special directions are called eigenvectors.

Thus, if we place an initial condition on an eigenvector, the $\dot{\mathbf{x}}$ vector will be in the same direction. Thus we can use the 1D solution $x(t) = x_0 e^{at}$ as one possible solution.

Calculation of eigenvalues

Let the linearized equations close to an equilibrium point be

Eigenvalue equation:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0.$$

This is true if $|\mathbf{A} - \lambda \mathbf{I}| = 0$.

Calculation of eigenvalues

Thus

$$\begin{vmatrix} \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \end{vmatrix} = 0$$
$$(-2 - \lambda)(-2 - \lambda) - 1 = 0$$
$$\lambda^2 + 4\lambda + 3 = 0.$$

Solutions of this characteristic equation (the eigenvalues) are -1 and -3.

Calculation of eigenvectors

Let us take the eigenvalue -1, and calculate its corresponding eigenvector:

$$\mathbf{A}\mathbf{x} = (-1)\mathbf{x} \quad \Rightarrow \quad (\mathbf{A} + \mathbf{I})\mathbf{x} = 0$$

$$\begin{bmatrix} -2+1 & 1 \\ 1 & -2+1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0.$$

Both the rows lead to the same equation

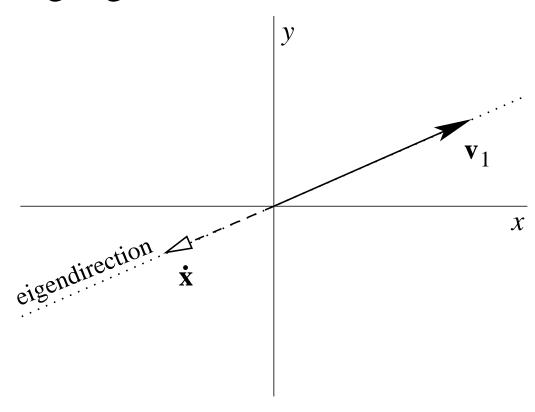
$$x - y = 0.$$

This is the eigenvector associated with $\lambda_1 = -1$. Similarly, the eigenvector associated with $\lambda_2 = -3$ is found to be x + y = 0.

Back to solution of ODEs

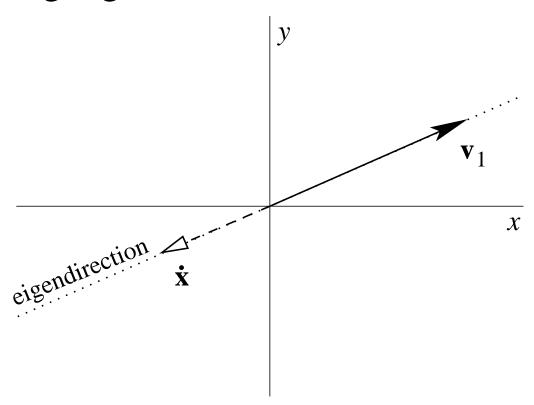
Back to solution of ODEs

Let λ_1 and λ_2 be the eigenvalues and \mathbf{v}_1 and \mathbf{v}_2 be the corresponding eigenvectors.



Back to solution of ODEs

Let λ_1 and λ_2 be the eigenvalues and \mathbf{v}_1 and \mathbf{v}_2 be the corresponding eigenvectors.



If we place an initial condition on \mathbf{v}_1 , we have $\dot{\mathbf{x}} = \mathbf{A}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$. The solution is $\mathbf{x}_1(t) = e^{\lambda_1t}\mathbf{v}_1$.

Solution of ODEs

Similarly, for any initial condition placed along v_2 we have another solution

$$\mathbf{x}_2(t) = e^{\lambda_2 t} \mathbf{v}_2.$$

Therefore the general solution can be constructed as

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2.$$

Example

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -4 & -3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

The matrix A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -3$. For λ_1 , the eigenvector is given by 2x = -y. To choose any point on this eigenvector, set x = 1. This gives y = -2. Thus $\mathbf{v}_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^T$. For this initial condition the solution is

$$\mathbf{x}_1(t) = e^{2t} \left[\begin{array}{c} 1 \\ -2 \end{array} \right].$$

Example

Similarly, for $\lambda_2 = -3$, the eigenvector is x = -3y. To choose a point on this eigenvector, take x = 3. This gives y = -1. Thus the second eigenvector becomes $\mathbf{v}_2 = \begin{bmatrix} 3 & -1 \end{bmatrix}^T$, and the solution along this eigenvector is

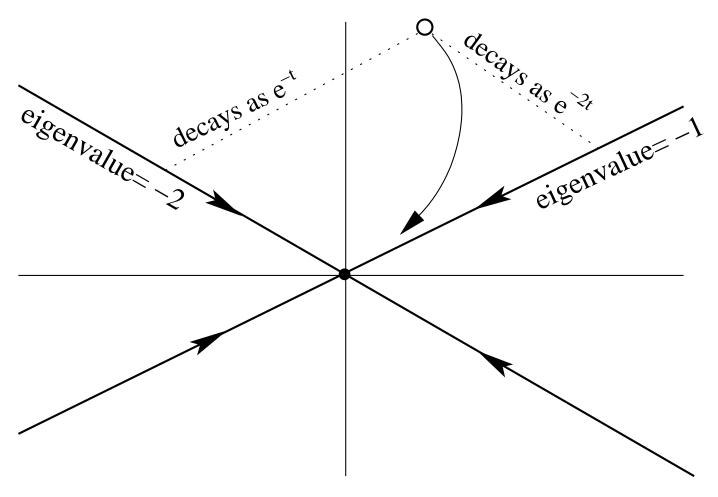
$$\mathbf{x}_2(t) = e^{-3t} \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

Hence the general solution of the system of differential equations is

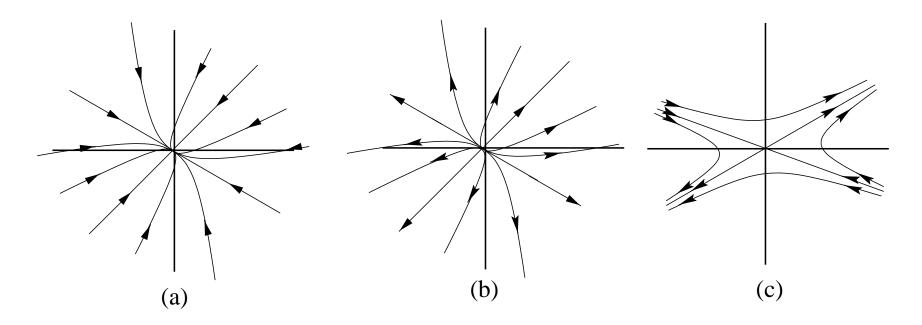
$$\mathbf{x}(t) = c_1 e^{2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} + c_2 e^{-3t} \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$$

Local vector fields

The dynamics in the system with eigenvalues -1 and -2:



Local vector fields

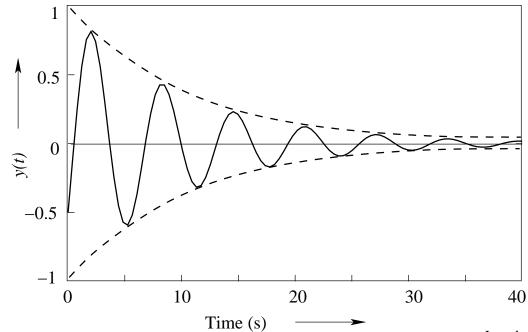


Vector fields of linear systems with real eigenvalues, (a) both eigenvalues negative, (b) both eigenvalues positive, and (c) one eigenvalue negative and the other positive.

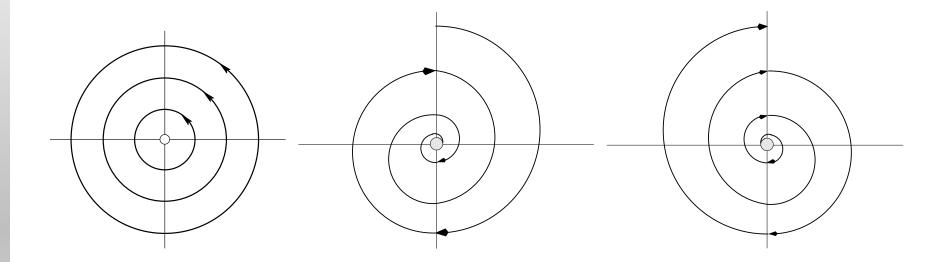
Complex eigenvalues

If the eigenvalues are $\lambda = \sigma \pm i\omega$, we get spiralling solutions (combination of exponentials and sinusoids):

$$\mathbf{x}(t) = c_1 e^{\sigma t} \begin{pmatrix} -\sin \omega t \\ \cos \omega t \end{pmatrix} + c_2 e^{\sigma t} \begin{pmatrix} \cos \omega t \\ \sin \omega t \end{pmatrix}.$$

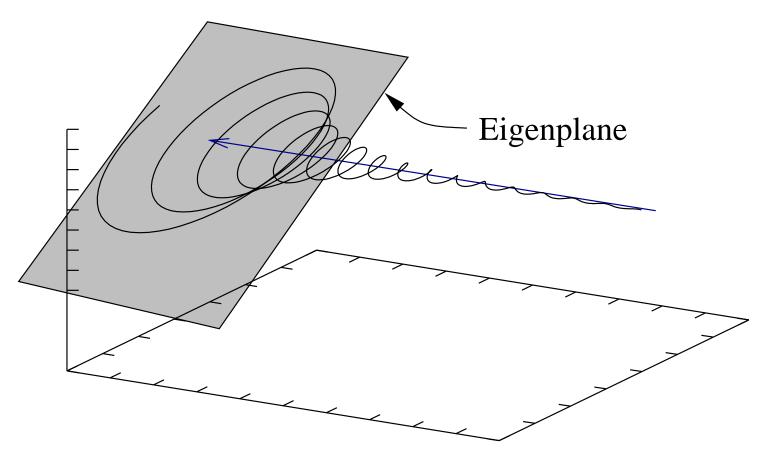


Complex eigenvalues



The structure of the vector field in the state space for (a) imaginary eigenvalues, (b) complex eigenvalues with negative real part, and (c) complex eigenvalues with positive real part.

3D systems



The typical orbit for a system with one negative real eigenvalue and two complex conjugate eigenvalues with positive real part.

On to nonlinear systems

Take the simple pendulum

$$\dot{x} = y \\
\dot{y} = -\sin x.$$

• Multiple equilibrium points:

$$(0,0), (-\pi,0), (\pi,0), (-2\pi,0), (2\pi,0),$$
 etc.

On to nonlinear systems

Take the simple pendulum

$$\dot{x} = y \\
\dot{y} = -\sin x.$$

- Multiple equilibrium points: $(0,0), (-\pi,0), (\pi,0), (-2\pi,0), (2\pi,0),$ etc.
- At (0,0), local linearization yields

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

whose eigenvalues are purely imaginary, $\pm i$.

The simple pendulum

At $(-\pi, 0)$ and $(\pi, 0)$, local linearization yields

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

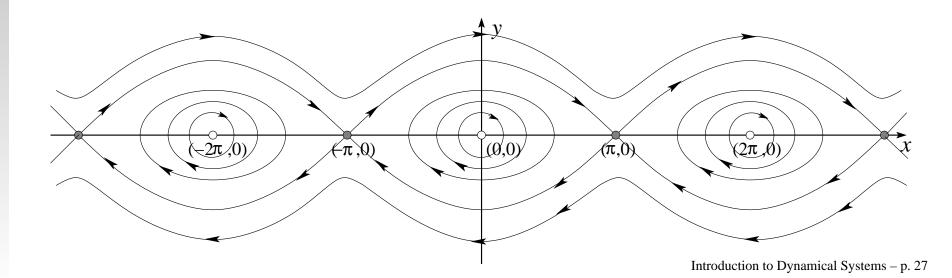
whose eigenvalues are +1 and -1. For the eigenvalue $\lambda_1 = +1$, the eigendirection is x = y. For $\lambda_2 = -1$, the eigendirection is x = -y.

The simple pendulum

At $(-\pi, 0)$ and $(\pi, 0)$, local linearization yields

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

whose eigenvalues are +1 and -1. For the eigenvalue $\lambda_1 = +1$, the eigendirection is x = y. For $\lambda_2 = -1$, the eigendirection is x = -y.



Consider the van der Pol system:

$$\ddot{x} - \mu(1 - x^2)\dot{x} + x = 0$$

In first order form:

$$\dot{x} = y$$

$$\dot{y} = \mu(1 - x^2)y - x.$$

Equilibrium point: (0,0)

Consider the van der Pol system:

$$\ddot{x} - \mu(1 - x^2)\dot{x} + x = 0$$

In first order form:

$$\dot{x} = y$$

$$\dot{y} = \mu(1 - x^2)y - x.$$

Equilibrium point: (0,0)

Local linearization:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2\mu xy - 1 & \mu - \mu x^2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Evaluated at (0,0), it yields the Jacobian matrix

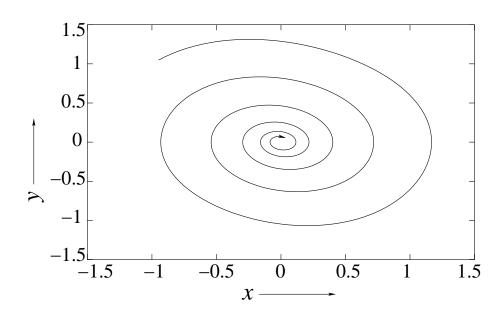
$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ -1 & \mu \end{array} \right].$$

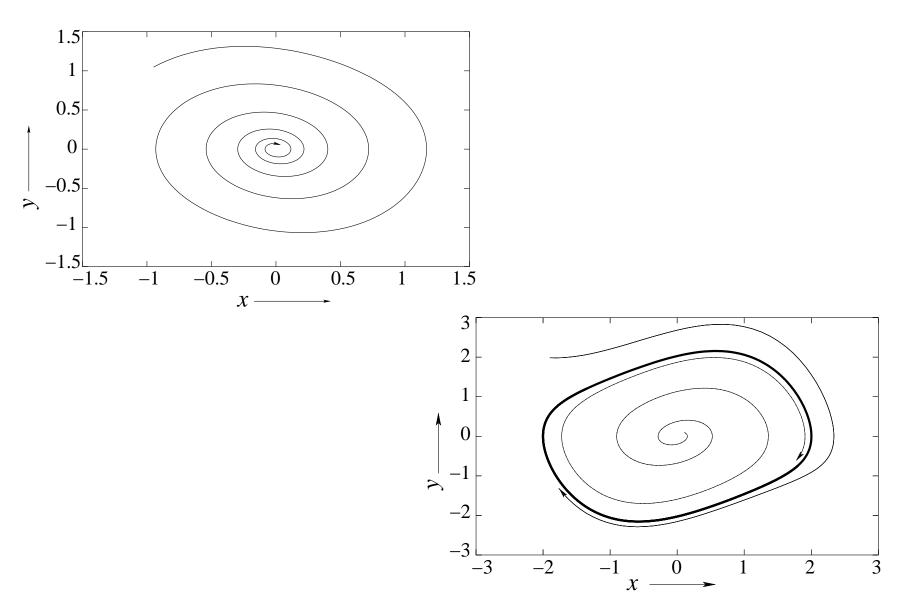
Its eigenvalues are

$$\lambda_{1,2} = \frac{\mu}{2} \pm \frac{1}{2} \sqrt{\mu^2 - 4}.$$

Conclusion:

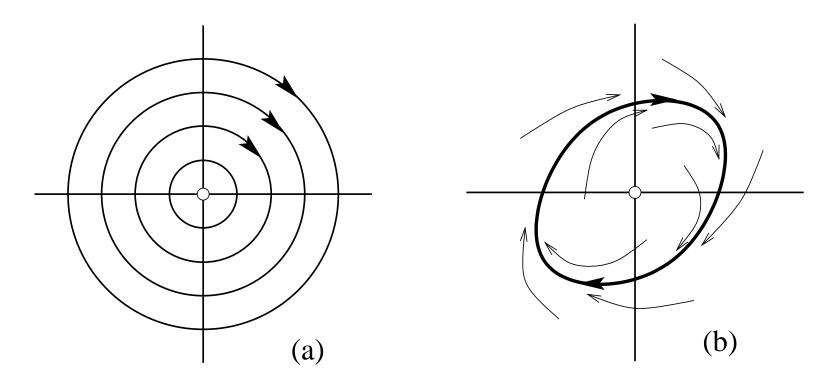
- 1. For μ < 2 the eigenvalues are complex conjugate.
- 2. An incoming spiraling vector field should change into an outgoing spiraling vector field as μ is varied through zero.





(a) for $\mu < 0$, and (b) for $\mu > 0$.

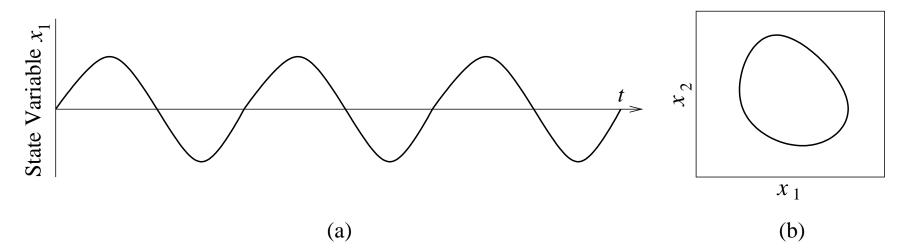
Limit cycle



(a) Periodic orbits in a linear system with imaginary eigenvalues, and (b) limit cycle in a nonlinear system.

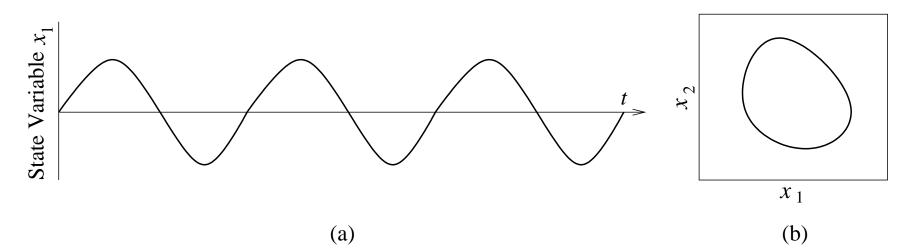
Limit cycles

Limit cycles

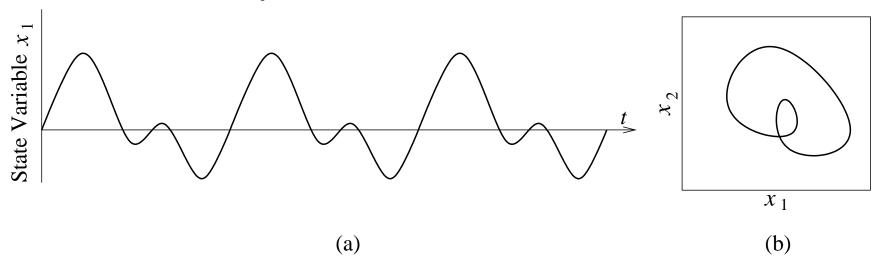


Period-1 limit cycle.

Limit cycles



Period-1 limit cycle.



Period-2 limit cycle. Not possible in a 2D system, but possible in 3 or higher dimensions.

Introduction to Dynamical Systems - p. 32

$$\dot{x} = -\sigma(x - y)
\dot{y} = -xz + rx - y
\dot{z} = xy - bz,$$

$$\dot{x} = -\sigma(x - y)
\dot{y} = -xz + rx - y
\dot{z} = xy - bz,$$

Equilibrium points are

$$A = (0,0,0),$$

$$B = (\sqrt{b(r-1)}, \sqrt{b(r-1)}, r-1),$$

$$C = (-\sqrt{b(r-1)}, -\sqrt{b(r-1)}, r-1).$$

The local behavior around these equilibrium points will be given by the Jacobian matrix

$$\begin{bmatrix} -\sigma & \sigma & 0 \\ -z+r & -1 & -x \\ y & x & -b \end{bmatrix}.$$

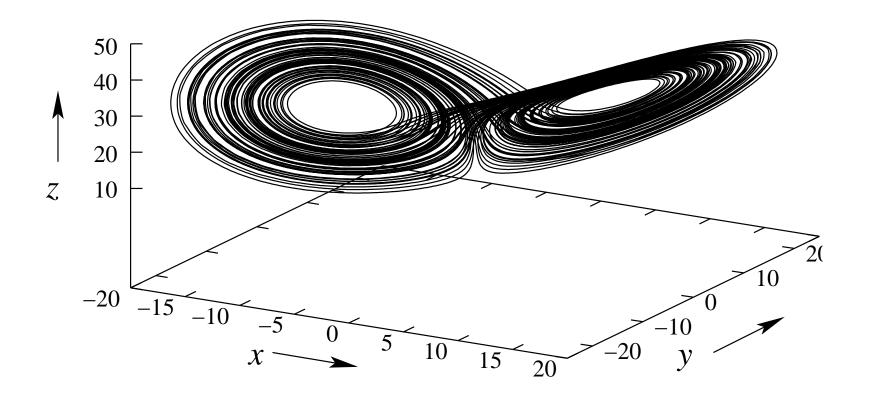
The local behavior around these equilibrium points will be given by the Jacobian matrix

$$\begin{bmatrix} -\sigma & \sigma & 0 \\ -z+r & -1 & -x \\ y & x & -b \end{bmatrix}.$$

- 1. For r < 1, the equilibrium points B and C do not exist, and the point A is stable. For r > 1, the point A at the origin becomes unstable, and the equilibria B and C come into existence.
- 2. For 1 < r < 24.74, these two equilibria have complex conjugate eigenvalues with real part negative. For r > 24.74, the real part becomes positive.

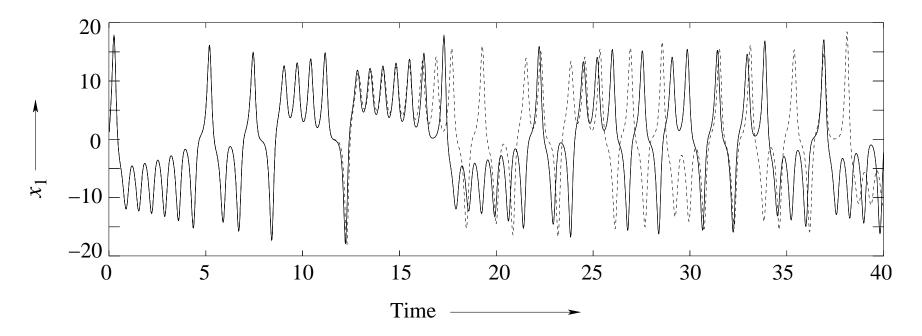
 Introduction to Dynamical Systems p. 34

Chaos



The trajectory of the Lorenz system for $\sigma = 8/3$, b = 10, and r = 28.

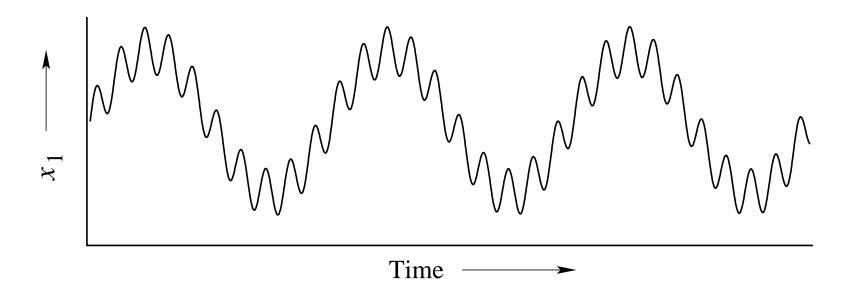
Chaos



The waveforms starting from two very close initial conditions. Firm line: the initial condition is [0, 7, 7], broken line: the initial condition is [0.0001, 7, 7].

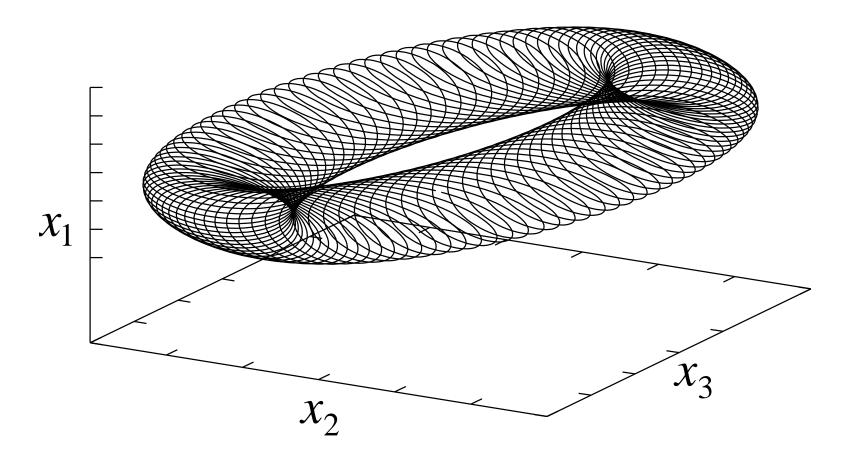
⇒ Sentitive dependence on initial condition.

Orbit on a torus

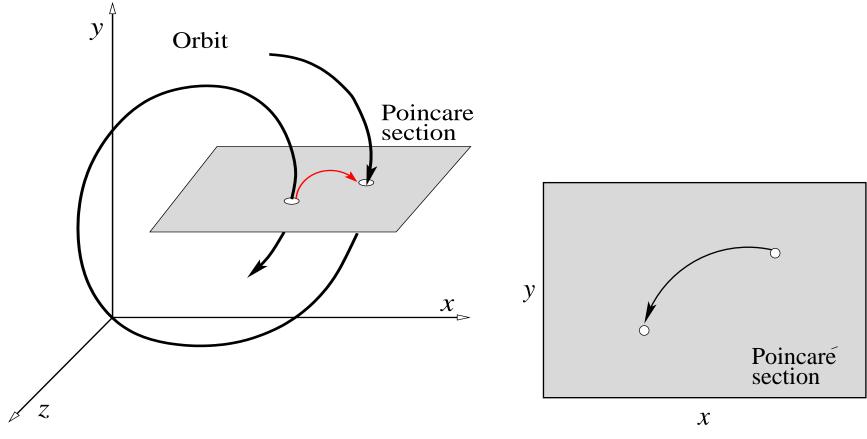


- Commensurate frequencies: mode-locked periodic orbit
- Incommensurate frequencies: quasiperiodicity

Orbit on a torus



The Poincaré section

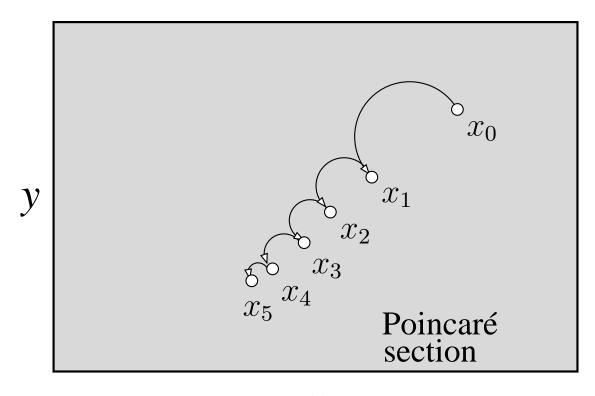


Reduces a continuous-time dynamical system into a discrete-time one:

$$x_{n+1} = f_1(x_n, y_n), y_{n+1} = f_2(x_n, y_n).$$

The Poincaré map

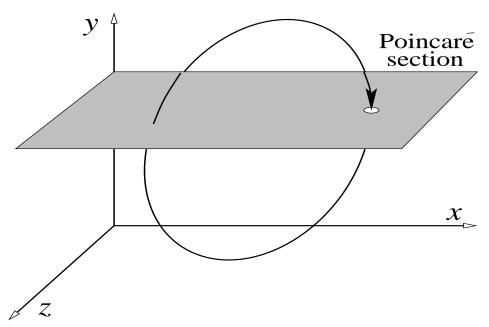
Reapeated application of the map leads to a sequence of points.

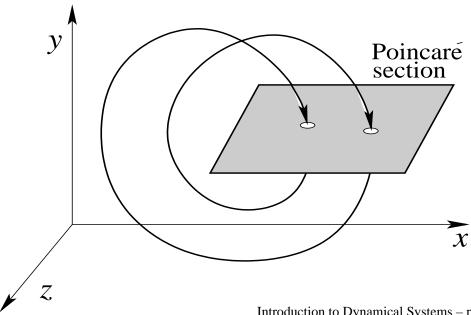


 \mathcal{X}

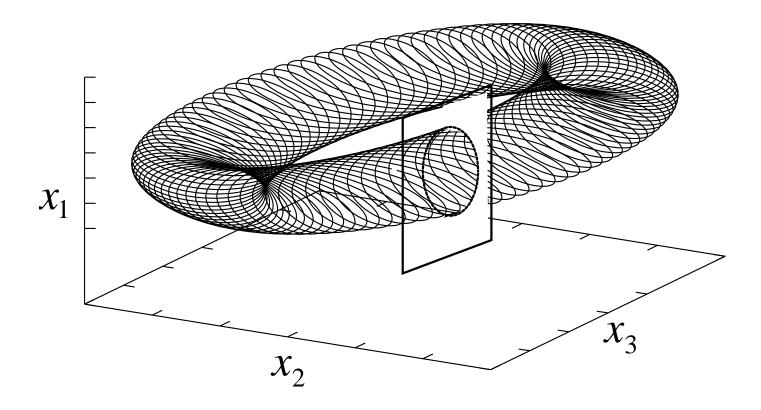
May converge to a fixed point $x_{n+1} = x_n$, $y_{n+1} = y_n$.

The Poincaré section





The Poincaré section

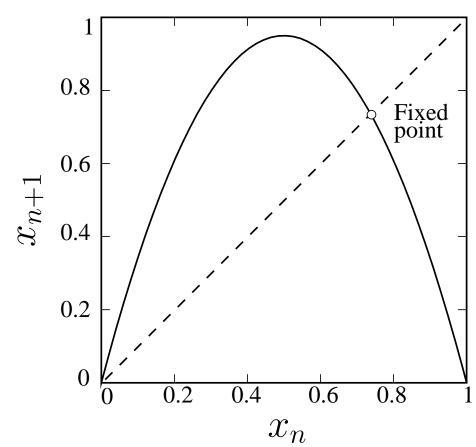


A quasiperiodic orbit appears as a closed loop in the Poincaré plane.

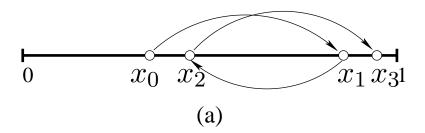
One-dimensional maps

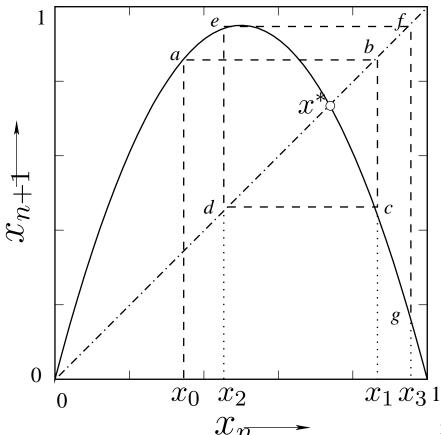
Consider the logistic map (single population model):

$$x_{n+1} = \mu x_n (1 - x_n)$$

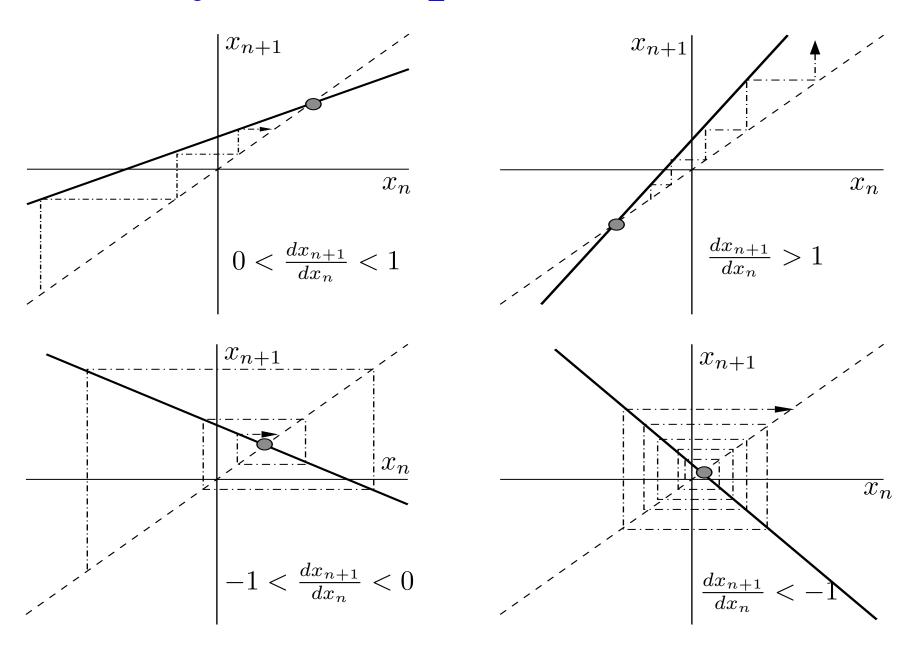


Graphical iteration

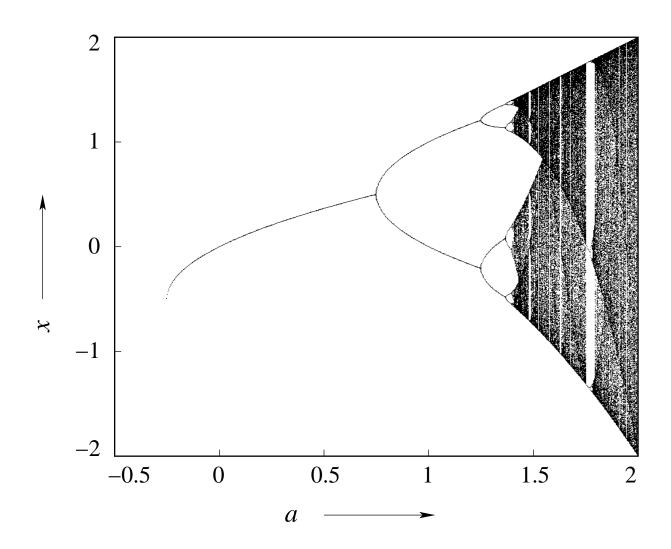




Stability of fixed points



Bifurcation diagram



The bifurcation diagram for the map $x_{n+1} = a - x_n^2$.

Saddle-node bifurcation

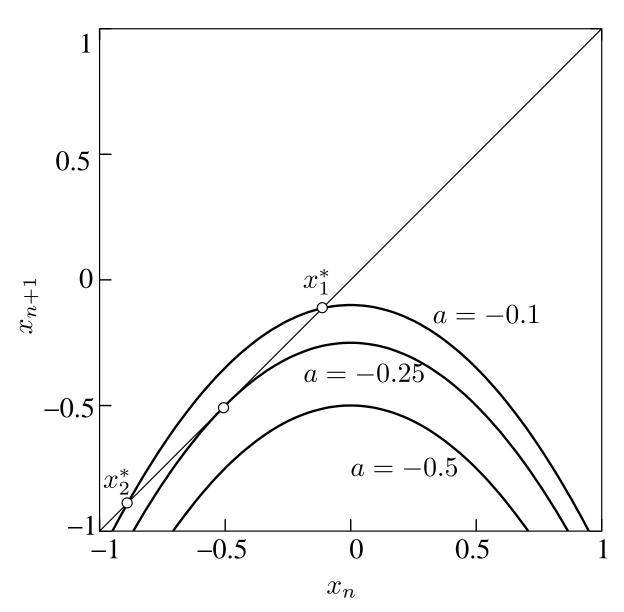
- Consider the map $x_{n+1} = a x_n^2$.
- Locate the fixed points $x_{n+1} = x_n = x^*$. $\Rightarrow x^{*2} + x^* - a = 0$, whose solutions are

$$x^* = -\frac{1}{2} \pm \frac{1}{2} \sqrt{1 + 4a} \ .$$

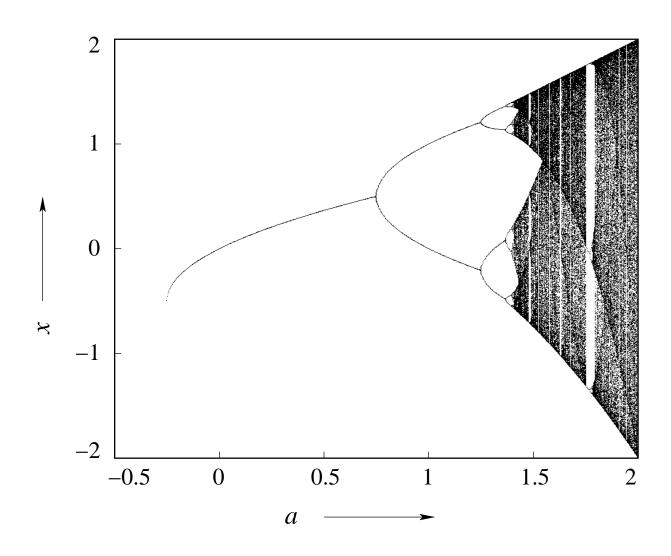
• For a < -1/4, we do not get a real number, which implies that no fixed point exists. For a > -1/4 there are two fixed points

$$x_1^* = -\frac{1}{2} + \frac{1}{2}\sqrt{1+4a},$$
 $x_2^* = -\frac{1}{2} - \frac{1}{2}\sqrt{1+4a}.$
Introduction to Dynamical Systems - p. 47

Saddle-node bifurcation



Bifurcation diagram



Slope of the graph at x_1^* :

$$\left. \frac{dx_{n+1}}{dx_n} \right|_{x_1^*} = 1 - \sqrt{1 + 4a}.$$

Slope of the graph at x_1^* :

$$\left. \frac{dx_{n+1}}{dx_n} \right|_{x_1^*} = 1 - \sqrt{1 + 4a}.$$

For -1/4 < a < 3/4, the magnitude of the derivative is less than unity, and hence the fixed point x_1^* is stable. For a > 3/4 the fixed point becomes unstable.

Slope of the graph at x_1^* :

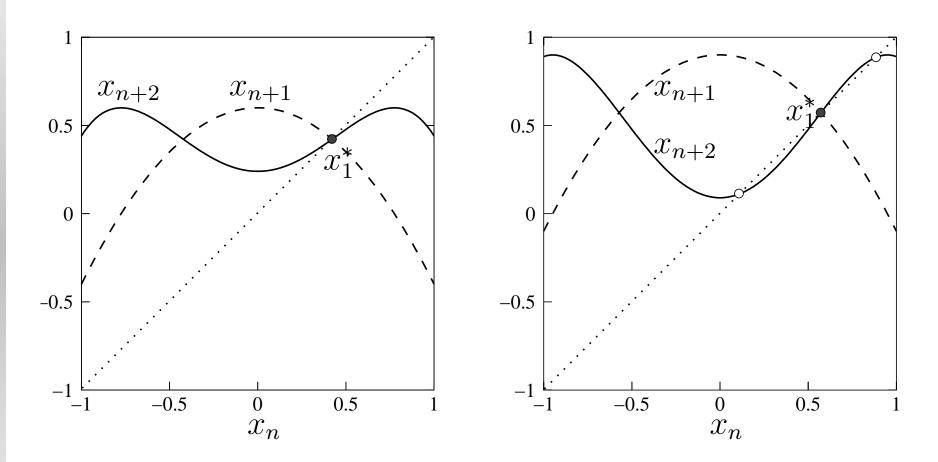
$$\left. \frac{dx_{n+1}}{dx_n} \right|_{x_1^*} = 1 - \sqrt{1 + 4a}.$$

For -1/4 < a < 3/4, the magnitude of the derivative is less than unity, and hence the fixed point x_1^* is stable. For a > 3/4 the fixed point becomes unstable. The second iterate map:

$$x_{n+2} = a - x_{n+1}^{2}$$

$$= a - (a - x_{n}^{2})^{2}$$

$$= -x_{n}^{4} + 2ax_{n}^{2} - a^{2} + a.$$



For a > 0.75 the period-1 fixed point becomes unstable, and two stable fixed points appear in the graph of x_{n+2} .

Two-dimensional maps

$$x_{n+1} = f_1(x_n, y_n),$$

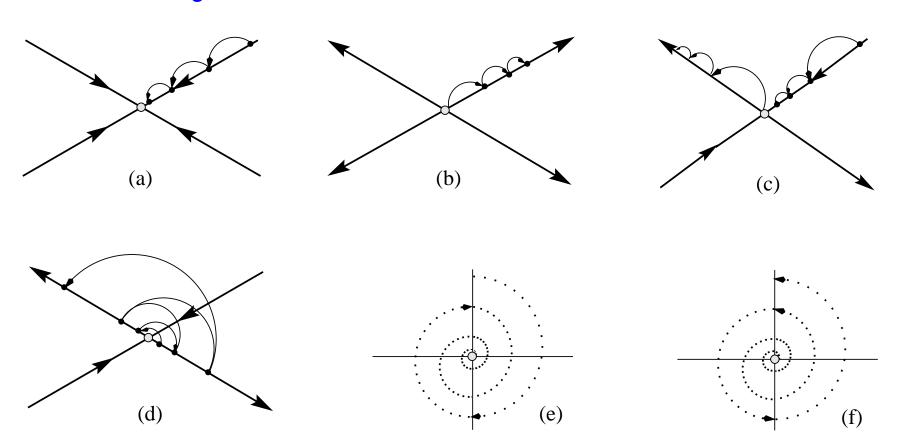
 $y_{n+1} = f_2(x_n, y_n),$

The local linear approximation is then given by

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_n} & \frac{\partial f_1}{\partial y_n} \\ \frac{\partial f_2}{\partial x_n} & \frac{\partial f_2}{\partial y_n} \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

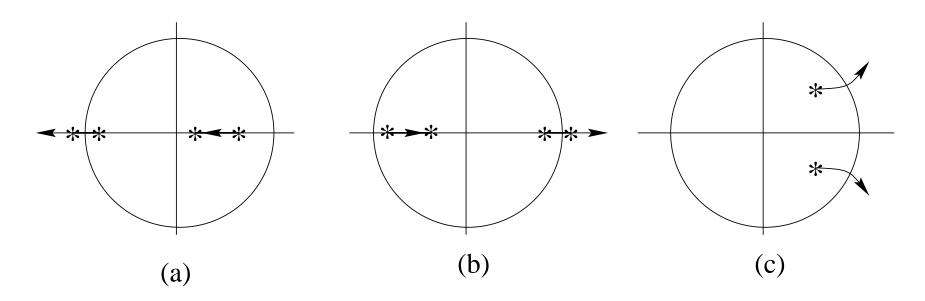
The stability of the fixed point is given by the eigenvalues of the Jacobian matrix.

Local dynamics



(a) Attracting node: $0 < \lambda_1, \lambda_2 < 1$. (b) Repelling node: $\lambda_1, \lambda_2 > 1$. (c) Regular saddle: $0 < \lambda_1 < 1, \lambda_2 > 1$. (d) Flip saddle: $0 < \lambda_1 < 1, \lambda_2 < -1$. (e) Spiral attractor: eigenvalues complex, $|\lambda_1|, |\lambda_2| < 1$. (f) Spiral repeller: eigenvalues complex, $|\lambda_1|, |\lambda_2| > 1$.

Three basic bifurcations



- (a) A period doubling bifurcation: eigenvalue crosses the unit circle on the negative real line,
- (b) A saddle-node bifurcation: an eigenvalue touches the unit circle on the positive real line, and
- (c) A Neimark-Sacker bifurcation: a complex conjugate pair of eigenvalues cross the unit circle.

Consider the Hénon map

$$x_{n+1} = A - x_n^2 + 0.4 y_n, \quad y_{n+1} = x_n.$$

Consider the Hénon map

$$x_{n+1} = A - x_n^2 + 0.4 y_n, \quad y_{n+1} = x_n.$$

The fixed points are

$$x^* = \frac{1}{2} \left(-0.6 \pm \sqrt{0.36 + 4A} \right)$$
 and $y^* = x^*$.

Consider the Hénon map

$$x_{n+1} = A - x_n^2 + 0.4 y_n, \quad y_{n+1} = x_n.$$

The fixed points are

$$x^* = \frac{1}{2} \left(-0.6 \pm \sqrt{0.36 + 4A} \right)$$
 and $y^* = x^*$.

For A < -0.09, the fixed point does not exist. For A > -0.09 there are two fixed points

$$x_1^* = y_1^* = -0.3 + \sqrt{0.09 + A},$$

 $x_2^* = y_1^* = -0.3 - \sqrt{0.09 + A}.$

At the fixed points, local linearization yields the Jacobian

$$\begin{bmatrix} -2x^* & 0.4 \\ 1 & 0 \end{bmatrix}.$$

whose eigenvalues are

$$\lambda = -x^* \pm \sqrt{x^{*2} + 0.4}.$$

At the fixed points, local linearization yields the Jacobian

$$\begin{bmatrix} -2x^* & 0.4 \\ 1 & 0 \end{bmatrix}.$$

whose eigenvalues are

$$\lambda = -x^* \pm \sqrt{x^{*2} + 0.4}.$$

At A = -0.09, the two solutions have the same value, $x^* = y^* = -0.3$. At that point one of the eigenvalues is +1. A > -0.09, one FP is a saddle, and the other is a node. \Rightarrow saddle-node bifurcation.

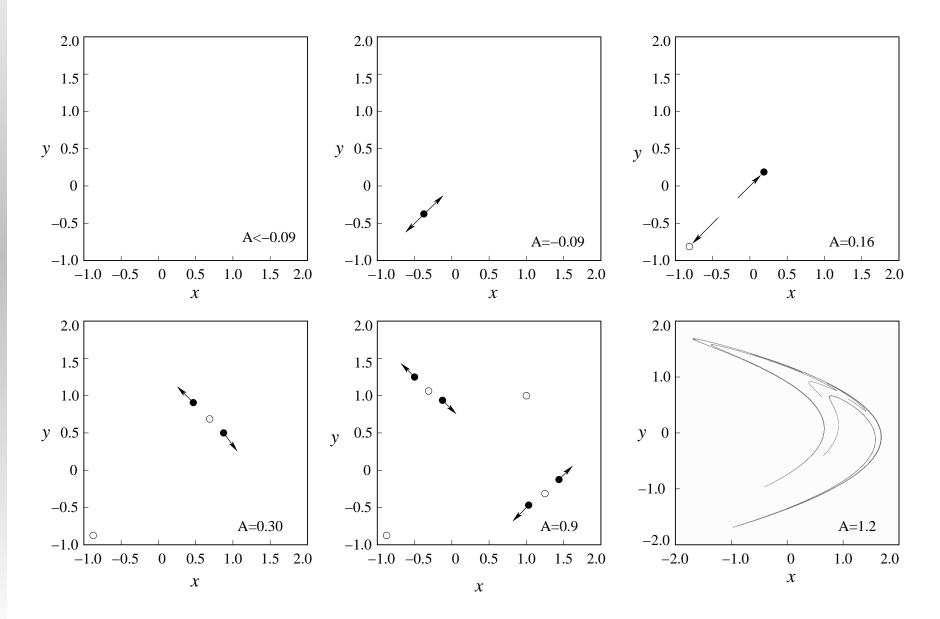
At the fixed points, local linearization yields the Jacobian

$$\begin{bmatrix} -2x^* & 0.4 \\ 1 & 0 \end{bmatrix}.$$

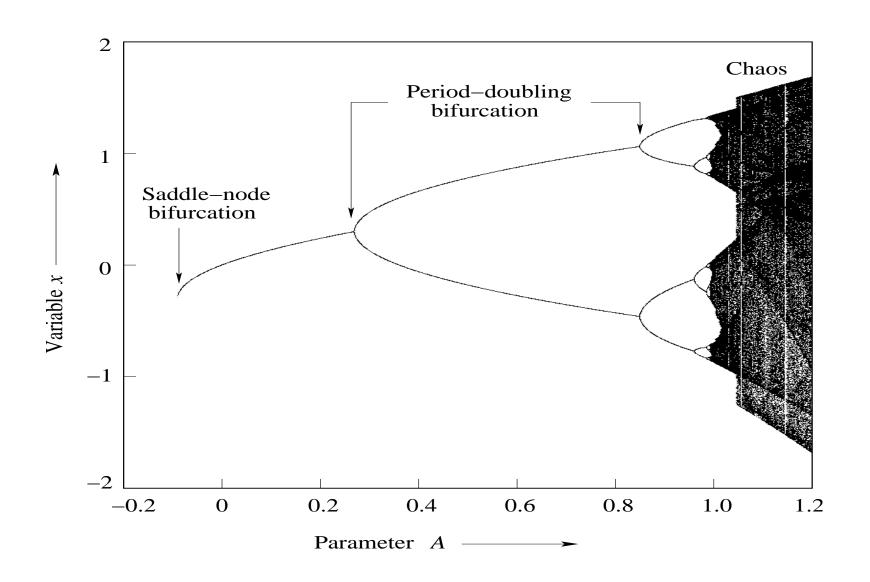
whose eigenvalues are

$$\lambda = -x^* \pm \sqrt{x^{*2} + 0.4}.$$

At A = -0.09, the two solutions have the same value, $x^* = y^* = -0.3$. At that point one of the eigenvalues is +1. A > -0.09, one FP is a saddle, and the other is a node. \Rightarrow saddle-node bifurcation. At A = 0.27 the node loses stability as an eigenvalue becomes -1.

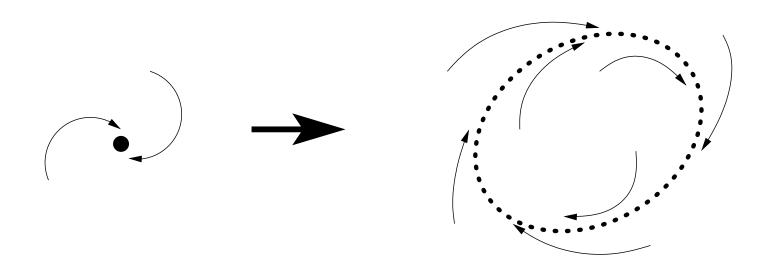


Bifurcation diagram



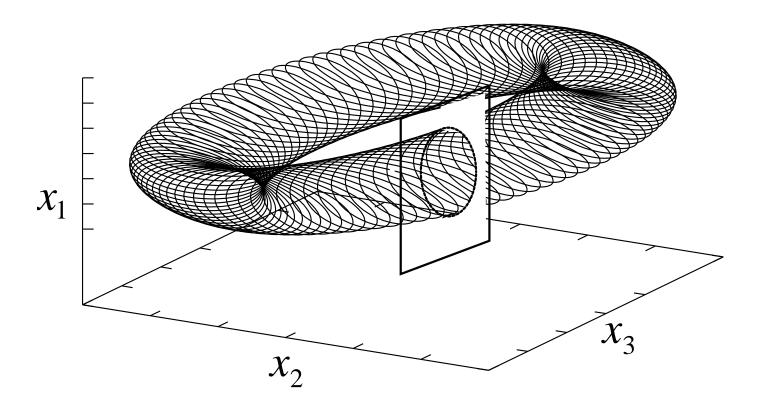
Neimark-Sacker bifurcation

If a pair of complex conjugate eigenvalues exit the unit circle, a closed loop is born in discrete time



Neimark-Sacker bifurcation

Closed loop in discrete time = torus in continuous time



Thank You