Dynamics of polynomial shift-like maps

Sayani Bera

Indian Association for the Cultivation of Science, Kolkata

26th July, 2019

Let $F: \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic self-map.

Let $F: \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic self-map.

The largest subset of \mathbb{C}^k , (denoted by $\mathcal{F}(F)$) where the family $\{F^{\circ n}\}$ is normal is called the **Fatou set** of F,

Let $F: \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic self-map.

The largest subset of \mathbb{C}^k , (denoted by $\mathcal{F}(F)$) where the family $\{F^{\circ n}\}$ is normal is called the **Fatou set** of F, i.e., for every point $z \in \mathcal{F}(F)$ there exists a neighbourhood such that the sequence $\{F^{\circ n}\}$ is either locally uniformly bounded or diverges to infinity uniformly.

Let $F: \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic self-map.

The largest subset of \mathbb{C}^k , (denoted by $\mathcal{F}(F)$) where the family $\{F^{\circ n}\}$ is normal is called the **Fatou set** of F, i.e., for every point $z \in \mathcal{F}(F)$ there exists a neighbourhood such that the sequence $\{F^{\circ n}\}$ is either locally uniformly bounded or diverges to infinity uniformly.

Complement of the Fatou set is called the **Julia set** (denoted by $\mathcal{J}(F)$).

Let $F: \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic self-map.

The largest subset of \mathbb{C}^k , (denoted by $\mathcal{F}(F)$) where the family $\{F^{\circ n}\}$ is normal is called the **Fatou set** of F, i.e., for every point $z \in \mathcal{F}(F)$ there exists a neighbourhood such that the sequence $\{F^{\circ n}\}$ is either locally uniformly bounded or diverges to infinity uniformly.

Complement of the Fatou set is called the **Julia set** (denoted by $\mathcal{J}(F)$).

Example 1

$$F(z)=z^2$$
 then $\mathcal{J}(F)=S^1$ and $\mathcal{F}(F)=\mathbb{C}\setminus S^1$.

Let $F: \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic self-map.

The largest subset of \mathbb{C}^k , (denoted by $\mathcal{F}(F)$) where the family $\{F^{\circ n}\}$ is normal is called the **Fatou set** of F, i.e., for every point $z \in \mathcal{F}(F)$ there exists a neighbourhood such that the sequence $\{F^{\circ n}\}$ is either locally uniformly bounded or diverges to infinity uniformly.

Complement of the Fatou set is called the **Julia set** (denoted by $\mathcal{J}(F)$).

Example 1

$$F(z)=z^2$$
 then $\mathcal{J}(F)=S^1$ and $\mathcal{F}(F)=\mathbb{C}\setminus S^1$.

$$F^n(z)=z^{2^n}.$$
 For $z\in\mathbb{D},\ F^n(z) o 0$ uniformly and $z\in\mathbb{C}\setminus\overline{\mathbb{D}},$

 $F^n(z) \to \infty$ uniformly.

Let $F: \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic self-map.

The largest subset of \mathbb{C}^k , (denoted by $\mathcal{F}(F)$) where the family $\{F^{\circ n}\}$ is normal is called the **Fatou set** of F, i.e., for every point $z \in \mathcal{F}(F)$ there exists a neighbourhood such that the sequence $\{F^{\circ n}\}$ is either locally uniformly bounded or diverges to infinity uniformly.

Complement of the Fatou set is called the **Julia set** (denoted by $\mathcal{J}(F)$).

Example 1

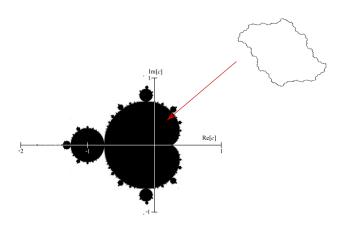
$$F(z)=z^2$$
 then $\mathcal{J}(F)=S^1$ and $\mathcal{F}(F)=\mathbb{C}\setminus S^1$.

$$F^n(z)=z^{2^n}.$$
 For $z\in\mathbb{D},\ F^n(z) o 0$ uniformly and $z\in\mathbb{C}\setminus\overline{\mathbb{D}},$

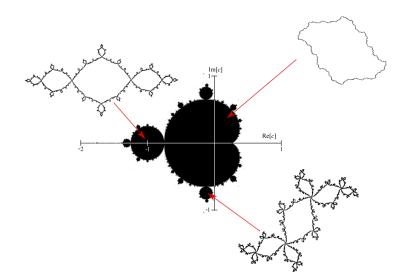
 $F^n(z) \to \infty$ uniformly. Note that $F^n(S^1) = S^1$.

Example 2: Julia set for the polynomials $P_c(z) = z^2 + c$, $c \in \mathbb{C}$.

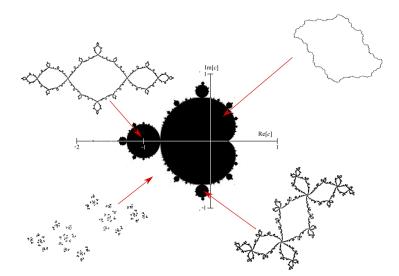
Example 2: Julia set for the polynomials $P_c(z) = z^2 + c$, $c \in \mathbb{C}$.



Example 2: Julia set for the polynomials $P_c(z) = z^2 + c$, $c \in \mathbb{C}$.



Example 2: Julia set for the polynomials $P_c(z) = z^2 + c$, $c \in \mathbb{C}$.



• The Fatou set and the Julia set of a holomorphic function F in \mathbb{C}^k are completely invariant under F, i.e.,

ullet The Fatou set and the Julia set of a holomorphic function F in \mathbb{C}^k are completely invariant under F, i.e.,

$$F(\mathcal{F}) = \mathcal{F} = F^{-1}(\mathcal{F})$$
 and $F(\mathcal{J}) = \mathcal{J} = F^{-1}(\mathcal{J})$.

• The connected components of the Fatou set are called **Fatou** components.

• The Fatou set and the Julia set of a holomorphic function F in \mathbb{C}^k are completely invariant under F, i.e.,

$$F(\mathcal{F}) = \mathcal{F} = F^{-1}(\mathcal{F})$$
 and $F(\mathcal{J}) = \mathcal{J} = F^{-1}(\mathcal{J})$.

• The connected components of the Fatou set are called **Fatou components**. Thus if \mathcal{U} is a Fatou component then $F(\mathcal{U})$ is also a Fatou component.

• The Fatou set and the Julia set of a holomorphic function F in \mathbb{C}^k are completely invariant under F, i.e.,

$$F(\mathcal{F}) = \mathcal{F} = F^{-1}(\mathcal{F})$$
 and $F(\mathcal{J}) = \mathcal{J} = F^{-1}(\mathcal{J})$.

• The connected components of the Fatou set are called **Fatou** components. Thus if \mathcal{U} is a Fatou component then $F(\mathcal{U})$ is also a Fatou component.

A Fatou component \mathcal{U} of a function F is **eventually periodic** if there exists $i \neq j > 1$ such that

$$F^{j}(\mathcal{U}) = F^{i}(\mathcal{U}).$$

• The Fatou set and the Julia set of a holomorphic function F in \mathbb{C}^k are completely invariant under F, i.e.,

$$F(\mathcal{F}) = \mathcal{F} = F^{-1}(\mathcal{F}) \text{ and } F(\mathcal{J}) = \mathcal{J} = F^{-1}(\mathcal{J}).$$

• The connected components of the Fatou set are called **Fatou** components. Thus if \mathcal{U} is a Fatou component then $F(\mathcal{U})$ is also a Fatou component.

A Fatou component \mathcal{U} of a function F is **eventually periodic** if there exists $i \neq j > 1$ such that

$$F^{j}(\mathcal{U}) = F^{i}(\mathcal{U}).$$

And \mathcal{U} is called **wandering**, i.e.,

• The Fatou set and the Julia set of a holomorphic function F in \mathbb{C}^k are completely invariant under F, i.e.,

$$F(\mathcal{F}) = \mathcal{F} = F^{-1}(\mathcal{F})$$
 and $F(\mathcal{J}) = \mathcal{J} = F^{-1}(\mathcal{J})$.

• The connected components of the Fatou set are called **Fatou** components. Thus if \mathcal{U} is a Fatou component then $F(\mathcal{U})$ is also a Fatou component.

A Fatou component \mathcal{U} of a function F is **eventually periodic** if there exists $i \neq j > 1$ such that

$$F^{j}(\mathcal{U}) = F^{i}(\mathcal{U}).$$

And \mathcal{U} is called **wandering**, i.e., for every $i \neq j$

$$F^{i}(\mathcal{U}) \cap F^{j}(\mathcal{U}) = \emptyset.$$

Theorem (Sullivan, 1985, Ann. of Math.)

There is no wandering domains for rational maps (in particular, **polynomials**) of degree greater than or equal to 2,

Theorem (Sullivan, 1985, Ann. of Math.)

There is **no wandering domains** for rational maps (in particular, polynomials) of degree greater than or equal to 2, i.e., every Fatou component of a polynomial map is eventually periodic.

Theorem (Sullivan, 1985, Ann. of Math.)

There is **no wandering domains** for rational maps (in particular, **polynomials**) of degree greater than or equal to 2, i.e., every Fatou component of a polynomial map is eventually periodic.

Theorem (Astorg. et. al, 2016, Ann. of Math.)

There exists a polynomial skew-product mapping in $P:\mathbb{C}^2\to\mathbb{C}^2$ with a wandering Fatou component.

Theorem (Sullivan, 1985, Ann. of Math.)

There is **no wandering domains** for rational maps (in particular, **polynomials**) of degree greater than or equal to 2, i.e., every Fatou component of a polynomial map is eventually periodic.

Theorem (Astorg. et. al, 2016, Ann. of Math.)

There exists a polynomial skew-product mapping in $P:\mathbb{C}^2\to\mathbb{C}^2$ with a wandering Fatou component.

Does polynomial automorphisms of \mathbb{C}^2 admits the non-wandering phenomenon? In particular, the **Hénon maps**.

Theorem (Sullivan, 1985, Ann. of Math.)

There is **no wandering domains** for rational maps (in particular, **polynomials**) of degree greater than or equal to 2, i.e., every Fatou component of a polynomial map is eventually periodic.

Theorem (Astorg. et. al, 2016, Ann. of Math.)

There exists a polynomial skew-product mapping in $P:\mathbb{C}^2\to\mathbb{C}^2$ with a wandering Fatou component.

Does polynomial automorphisms of \mathbb{C}^2 admits the non-wandering phenomenon? In particular, the **Hénon maps**.

• The automorphisms of $\mathbb C$ are affine maps, i.e., of the form az+b where $a\in\mathbb C^*$ and $b\in\mathbb C$.

- The automorphisms of $\mathbb C$ are affine maps, i.e., of the form az+b where $a\in\mathbb C^*$ and $b\in\mathbb C$.
- A **Hénon map** is an automorphism of \mathbb{C}^2 of the form $\mathbf{H}(\mathbf{x},\mathbf{y})=(\mathbf{y},\mathbf{p}(\mathbf{y})-\mathbf{a}\mathbf{x})$ for $a\neq 0$ and p be a polynomial (or an entire map) in \mathbb{C} .

- The automorphisms of \mathbb{C} are affine maps, i.e., of the form az + bwhere $a \in \mathbb{C}^*$ and $b \in \mathbb{C}$.
- A **Hénon map** is an automorphism of \mathbb{C}^2 of the form $\mathbf{H}(\mathbf{x},\mathbf{y}) = (\mathbf{y},\mathbf{p}(\mathbf{y}) - \mathbf{a}\mathbf{x})$ for $a \neq 0$ and p be a polynomial (or an entire map) in \mathbb{C} . The inverse is $H^{-1}(x,y) = (a^{-1}(y-p(x)),x)$.

- The automorphisms of $\mathbb C$ are affine maps, i.e., of the form az+b where $a\in\mathbb C^*$ and $b\in\mathbb C$.
- A **Hénon map** is an automorphism of \mathbb{C}^2 of the form $\mathbf{H}(\mathbf{x},\mathbf{y})=(\mathbf{y},\mathbf{p}(\mathbf{y})-\mathbf{a}\mathbf{x})$ for $a\neq 0$ and p be a polynomial (or an entire map) in \mathbb{C} . The inverse is $\mathbf{H}^{-1}(\mathbf{x},\mathbf{y})=(\mathbf{a}^{-1}(\mathbf{y}-\mathbf{p}(\mathbf{x})),\mathbf{x})$.
- A map of the form G(x,y) = (ax + p(y), by) is also an automorphism of \mathbb{C}^2 for $a, b \neq 0$ and p an entire map in \mathbb{C} . These are called **elementary maps**.

- The automorphisms of $\mathbb C$ are affine maps, i.e., of the form az+b where $a\in\mathbb C^*$ and $b\in\mathbb C$.
- A **Hénon map** is an automorphism of \mathbb{C}^2 of the form $\mathbf{H}(\mathbf{x},\mathbf{y})=(\mathbf{y},\mathbf{p}(\mathbf{y})-\mathbf{a}\mathbf{x})$ for $a\neq 0$ and p be a polynomial (or an entire map) in \mathbb{C} . The inverse is $\mathbf{H}^{-1}(\mathbf{x},\mathbf{y})=(\mathbf{a}^{-1}(\mathbf{y}-\mathbf{p}(\mathbf{x})),\mathbf{x})$.
- A map of the form G(x, y) = (ax + p(y), by) is also an automorphism of \mathbb{C}^2 for $a, b \neq 0$ and p an entire map in \mathbb{C} . These are called **elementary maps**.
- By Jung's Theorem it is known that elementary maps and Hénon maps generate the polynomial automorphisms of \mathbb{C}^2 .

- The automorphisms of $\mathbb C$ are affine maps, i.e., of the form az+b where $a\in\mathbb C^*$ and $b\in\mathbb C$.
- A **Hénon map** is an automorphism of \mathbb{C}^2 of the form $\mathbf{H}(\mathbf{x},\mathbf{y})=(\mathbf{y},\mathbf{p}(\mathbf{y})-\mathbf{a}\mathbf{x})$ for $a\neq 0$ and p be a polynomial (or an entire map) in \mathbb{C} . The inverse is $\mathbf{H}^{-1}(\mathbf{x},\mathbf{y})=(\mathbf{a}^{-1}(\mathbf{y}-\mathbf{p}(\mathbf{x})),\mathbf{x})$.
- A map of the form G(x, y) = (ax + p(y), by) is also an automorphism of \mathbb{C}^2 for $a, b \neq 0$ and p an entire map in \mathbb{C} . These are called **elementary maps**.
- By Jung's Theorem it is known that elementary maps and Hénon maps generate the polynomial automorphisms of \mathbb{C}^2 .
- By a result of Friedland-Milnor, Hénon maps or finite composition of Hénon maps are the only polynomial automorphisms that have interesting dynamics in C².

Non-wandering phenomenon for Hénon maps

A **Hénon map** is an automorphism of \mathbb{C}^2 of the form

$$H(x,y) = (y,p(y) - ax)$$

for $a \neq 0$ and p be a polynomial in \mathbb{C} .

Non-wandering phenomenon for Hénon maps

A **Hénon map** is an automorphism of \mathbb{C}^2 of the form

$$H(x,y) = (y,p(y) - ax)$$

for $a \neq 0$ and p be a polynomial in \mathbb{C} .

Theorem (Hubbard–Oberste-Vorth, 1993)

Hénon maps obtained by small enough perturbation of a **hyperbolic** polynomial have **finitely** many Fatou components.

Non-wandering phenomenon for Hénon maps

A **Hénon map** is an automorphism of \mathbb{C}^2 of the form

$$H(x,y) = (y,p(y) - ax)$$

for $a \neq 0$ and p be a polynomial in \mathbb{C} .

Theorem (Hubbard–Oberste-Vorth, 1993)

Hénon maps obtained by small enough perturbation of a **hyperbolic** polynomial have **finitely** many Fatou components.

• If |DetDH(x,y)| = |a| > 1 then the Hénon map has exactly one Fatou component.

A polynomial map p in $\mathbb C$ is said to be dynamically **hyperbolic** if there exists a conformal metric ρ on a neighbourhood of U of the Julia set $\mathcal J_p$ such that p is expanding on $\mathcal U$.

A polynomial map p in $\mathbb C$ is said to be dynamically **hyperbolic** if there exists a conformal metric ρ on a neighbourhood of U of the Julia set $\mathcal J_p$ such that p is expanding on $\mathcal U$.

A smooth diffeomorphism F of a manifold M equipped with a Riemannian norm $|\cdot|$ is said to be **hyperbolic** on a compact subset $S \subset M$ if,

A polynomial map p in $\mathbb C$ is said to be dynamically **hyperbolic** if there exists a conformal metric ρ on a neighbourhood of U of the Julia set $\mathcal J_p$ such that p is expanding on $\mathcal U$.

A smooth diffeomorphism F of a manifold M equipped with a Riemannian norm $|\cdot|$ is said to be **hyperbolic** on a compact subset $S \subset M$ if,

(i) S is completely invariant under F, i.e., $F(S) = S = F^{-1}(S)$.

A polynomial map p in $\mathbb C$ is said to be dynamically **hyperbolic** if there exists a conformal metric ρ on a neighbourhood of U of the Julia set $\mathcal J_p$ such that p is expanding on $\mathcal U$.

A smooth diffeomorphism F of a manifold M equipped with a Riemannian norm $|\cdot|$ is said to be **hyperbolic** on a compact subset $S \subset M$ if,

- (i) S is completely invariant under F, i.e., $F(S) = S = F^{-1}(S)$.
- (ii) There is a continuous splitting of the of the tangent space T_xX for every $x \in S$ into $E_x^s \oplus E_x^u = T_xX$ such that $DF(x)(E_x^s) = E_{F(x)}^s$ and $DF(x)(E_x^u) = E_{F(x)}^u$.

A polynomial map p in $\mathbb C$ is said to be dynamically **hyperbolic** if there exists a conformal metric ρ on a neighbourhood of U of the Julia set $\mathcal J_p$ such that p is expanding on $\mathcal U$.

A smooth diffeomorphism F of a manifold M equipped with a Riemannian norm $|\cdot|$ is said to be **hyperbolic** on a compact subset $S \subset M$ if,

- (i) S is completely invariant under F, i.e., $F(S) = S = F^{-1}(S)$.
- (ii) There is a continuous splitting of the of the tangent space T_xX for every $x \in S$ into $E_x^s \oplus E_x^u = T_xX$ such that $DF(x)(E_x^s) = E_{F(x)}^s$ and $DF(x)(E_x^u) = E_{F(x)}^u$.
- (iii) And there exist constants $\lambda > 1$, C > 0 such that $|DF^n(x)v| \le C\lambda^{-n}|v|$ for $v \in E^s_x$ and $|DF^n(x)v| \ge C^{-1}\lambda^n|v|$ for $v \in E^s_v$.

ullet $J_H^\pm=$ The Julia set of H and H^{-1} .

- $J_H^{\pm} = \text{The Julia set of } H \text{ and } H^{-1}.$
- $\bullet \ J_H = J_H^+ \cap J_H^-.$

- $J_H^{\pm} = \text{The Julia set of } H \text{ and } H^{-1}.$
- $J_H = J_H^+ \cap J_H^-$.
- J_H is compact and invariant under H and H^{-1} .

- $J_H^{\pm} = \text{The Julia set of } H \text{ and } H^{-1}.$
- $J_H = J_H^+ \cap J_H^-$.
- J_H is compact and invariant under H and H^{-1} .

A Hénon map H is said to be **hyperbolic** if J_H is a *hyperbolic set*.

- $J_H^{\pm} =$ The Julia set of H and H^{-1} .
- $J_H = J_H^+ \cap J_H^-$.
- J_H is compact and invariant under H and H^{-1} .

A Hénon map H is said to be **hyperbolic** if J_H is a *hyperbolic set*.

Theorem (Bedford–Smillie, 1993, Invent. Math)

A hyperbolic Hénon map (or a finite composition of Hénon maps) have finitely many Fatou-components.

- $J_H^{\pm} =$ The Julia set of H and H^{-1} .
- $J_H = J_H^+ \cap J_H^-$.
- J_H is compact and invariant under H and H^{-1} .

A Hénon map H is said to be **hyperbolic** if J_H is a *hyperbolic set*.

Theorem (Bedford–Smillie, 1993, Invent. Math)

A hyperbolic Hénon map (or a finite composition of Hénon maps) have finitely many Fatou-components.

 Hénon maps obtained by a small enough perturbation of a hyperbolic polynomial is a hyperbolic Hénon map.

Hénon maps are regular

Hénon maps are regular

Let \mathcal{H} and \mathcal{H}' denote the *homogenization* of H and H^{-1} respectively to obtain maps from \mathbb{P}^2 . Then $I^+ = \mathcal{H}^{-1}[0:0:0] = [1:0:0]$ and $I^- = \mathcal{H'}^{-1}[0:0:0] = [0:1:0]$ are distinct points in \mathbb{P}^2 .

Hénon maps are regular

Let \mathcal{H} and \mathcal{H}' denote the *homogenization* of H and H^{-1} respectively to obtain maps from \mathbb{P}^2 . Then $I^+ = \mathcal{H}^{-1}[0:0:0] = [1:0:0]$ and $I^- = \mathcal{H'}^{-1}[0:0:0] = [0:1:0]$ are distinct points in \mathbb{P}^2 .

Generalization of Hénon maps to higher dimension

• Polynomial automorphisms of \mathbb{C}^k , $k \geq 3$ that are **regular**, i.e., $I^+ \cap I^- = \emptyset$.

Hénon maps are regular

Let \mathcal{H} and \mathcal{H}' denote the *homogenization* of H and H^{-1} respectively to obtain maps from \mathbb{P}^2 . Then $I^+ = \mathcal{H}^{-1}[0:0:0] = [1:0:0]$ and $I^- = \mathcal{H'}^{-1}[0:0:0] = [0:1:0]$ are distinct points in \mathbb{P}^2 .

Generalization of Hénon maps to higher dimension

- Polynomial automorphisms of \mathbb{C}^k , $k \geq 3$ that are **regular**, i.e., $I^+ \cap I^- = \emptyset$.
- (Bedford-Pambuccian) **Shift-like polynomial maps**: For $k \ge 3$ and $1 \le \nu \le k-1$, a shift-map of type ν is defined by

$$F(z_1, z_2, \ldots, z_k) = (z_2, \ldots, z_k, p(z_{k-\nu+1}) - az_1)$$

for a polynomial p and $a \in \mathbb{C}^*$.

Hénon maps are regular

Let \mathcal{H} and \mathcal{H}' denote the *homogenization* of H and H^{-1} respectively to obtain maps from \mathbb{P}^2 . Then $I^+ = \mathcal{H}^{-1}[0:0:0] = [1:0:0]$ and $I^- = \mathcal{H'}^{-1}[0:0:0] = [0:1:0]$ are distinct points in \mathbb{P}^2 .

Generalization of Hénon maps to higher dimension

- Polynomial automorphisms of \mathbb{C}^k , $k \geq 3$ that are **regular**, i.e., $I^+ \cap I^- = \emptyset$.
- (Bedford-Pambuccian) **Shift-like polynomial maps**: For $k \ge 3$ and $1 \le \nu \le k-1$, a shift-map of type ν is defined by

$$F(z_1, z_2, ..., z_k) = (z_2, ..., z_k, p(z_{k-\nu+1}) - az_1)$$

for a polynomial p and $a \in \mathbb{C}^*$.

• An iterate of a shift-like polynomial map is regular.

• (1–Shift) For $\nu=1$ and $a\in\mathbb{C}^*$, $S_a(z_1,z_2,z_3)=(z_2,z_3,az_1+p(z_3)).$

- (1–Shift) For $\nu=1$ and $a\in\mathbb{C}^*$, $S_a(z_1,z_2,z_3)=(z_2,z_3,az_1+p(z_3)).$
- (2–Shift) For $\nu=2$ and $a\in\mathbb{C}^*$, $S_a(z_1,z_2,z_3)=(z_2,z_3,az_1+p(z_2))$.

- (1–Shift) For $\nu = 1$ and $a \in \mathbb{C}^*$, $S_a(z_1, z_2, z_3) = (z_2, z_3, az_1 + p(z_3))$.
- (2–Shift) For $\nu=2$ and $a\in\mathbb{C}^*$, $S_a(z_1,z_2,z_3)=(z_2,z_3,az_1+p(z_2))$.
- Either case S_a is **not** regular but S_a^2 is regular.

- (1–Shift) For $\nu=1$ and $a\in\mathbb{C}^*$, $S_a(z_1,z_2,z_3)=(z_2,z_3,az_1+p(z_3))$.
- (2–Shift) For $\nu=2$ and $a\in\mathbb{C}^*$, $S_a(z_1,z_2,z_3)=(z_2,z_3,az_1+p(z_2)).$
- Either case S_a is **not** regular but S_a^2 is regular.
- If p is a hyperbolic polynomial then there exists A > 0 such that if 0 < |a| < A, then the 1-shift S_a is hyperbolic on J.

- (1–Shift) For $\nu = 1$ and $a \in \mathbb{C}^*$, $S_a(z_1, z_2, z_3) = (z_2, z_3, az_1 + p(z_3))$.
- (2–Shift) For $\nu=2$ and $a\in\mathbb{C}^*$, $S_a(z_1,z_2,z_3)=(z_2,z_3,az_1+p(z_2))$.
- Either case S_a is **not** regular but S_a^2 is regular.
- If p is a hyperbolic polynomial then there exists A > 0 such that if 0 < |a| < A, then the 1-shift S_a is hyperbolic on J.

Theorem (Shafikov-Wolf, 2003, Michigan Math. J.)

A hyperbolic and regular polynomial automorphism of \mathbb{C}^k , $k \geq 2$ has finitely many Fatou–Components, i.e., it do not admit non–wandering phenomenon.

- (1–Shift) For $\nu = 1$ and $a \in \mathbb{C}^*$, $S_a(z_1, z_2, z_3) = (z_2, z_3, az_1 + p(z_3))$.
- (2-Shift) For $\nu = 2$ and $a \in \mathbb{C}^*$, $S_a(z_1, z_2, z_3) = (z_2, z_3, az_1 + p(z_2))$.
- Either case S_a is **not** regular but S_a^2 is regular.
- If p is a hyperbolic polynomial then there exists A > 0 such that if 0 < |a| < A, then the 1-shift S_a is hyperbolic on J.

Theorem (Shafikov–Wolf, 2003, Michigan Math. J.)

A hyperbolic and regular polynomial automorphism of \mathbb{C}^k , k > 2 has finitely many Fatou-Components, i.e., it do not admit non-wandering phenomenon.

A sufficiently small 1-shift of a hyperbolic polynomial in \mathbb{C}^3 does not have wandering domains.

Theorem (

Let p be a hyperbolic polynomial, then there exists A>0 such that for every $\nu-$ shift S_a , $1\leq \nu\leq k-1$, the number of Fatou component for S_a is finite.

Theorem

Let p be a hyperbolic polynomial, then there exists A>0 such that for every $\nu-$ shift S_a , $1\leq \nu\leq k-1$, the number of Fatou component for S_a is finite.

•
$$H_a(x,y) = (y, p(y) - ax) \rightarrow (y, p(y))$$
 as $a \rightarrow 0$.

Theorem

Let p be a hyperbolic polynomial, then there exists A>0 such that for every $\nu-$ shift S_a , $1\leq \nu\leq k-1$, the number of Fatou component for S_a is finite.

- $H_a(x,y) = (y, p(y) ax) \to (y, p(y))$ as $a \to 0$.
- For a 1-shift-like map as $a \to 0$,

$$S_a^2(z_1, z_2, z_3) = \Big(z_3, az_1 + p(z_3), az_2 + p(az_1 + p(z_3))\Big) \rightarrow (z_3, p(z_3), p^2(z_3)).$$

Theorem

Let p be a hyperbolic polynomial, then there exists A>0 such that for every $\nu-$ shift S_a , $1\leq \nu\leq k-1$, the number of Fatou component for S_a is finite.

- $H_a(x,y) = (y,p(y)-ax) \to (y,p(y)) \text{ as } a \to 0.$
- For a 1-shift-like map as $a \to 0$,

$$S_a^2(z_1, z_2, z_3) = (z_3, az_1 + p(z_3), az_2 + p(az_1 + p(z_3))) \rightarrow (z_3, p(z_3), p^2(z_3)).$$

• For a 2-shift-like map as $a \to 0$,

$$S_a^2(z_1, z_2, z_3) = (z_3, az_1 + p(z_2), az_2 + p(z_3)) \rightarrow (z_3, p(z_2), p(z_3)).$$

• For Hénon map J_a is a **hyperbolic set** and the J_a^{\pm} are the stable and unstable sets of J_a , i.e.,

$$J_a^+ = W^s(J_a)$$
 and $J_a^- = W^u(J_a)$.

• For Hénon map J_a is a **hyperbolic set** and the J_a^{\pm} are the stable and unstable sets of J_a , i.e.,

$$J_a^+ = W^s(J_a)$$
 and $J_a^- = W^u(J_a)$.

• For a type 2-shift J_a is not a **hyperbolic set** for S_a .

• For Hénon map J_a is a **hyperbolic set** and the J_a^{\pm} are the stable and unstable sets of J_a , i.e.,

$$J_a^+ = W^s(J_a) \text{ and } J_a^- = W^u(J_a).$$

• For a type 2-shift J_a is not a **hyperbolic set** for S_a . However, $J_a^1 \sqcup J_a^2 \sqcup J_a^3 \subset J_a$ and there exist neighbourhoods U_i , $1 \leq i \leq 3$ such that

• For Hénon map J_a is a **hyperbolic set** and the J_a^{\pm} are the stable and unstable sets of J_a , i.e.,

$$J_a^+ = W^s(J_a) \text{ and } J_a^- = W^u(J_a).$$

- For a type 2-shift J_a is not a **hyperbolic set** for S_a . However, $J_a^1 \sqcup J_a^2 \sqcup J_a^3 \subset J_a$ and there exist neighbourhoods U_i , $1 \leq i \leq 3$ such that
 - (i) $J_a^i \subset U_i$ and J_a^i is compact and completely invariant under S_a^2 .

• For Hénon map J_a is a **hyperbolic set** and the J_a^{\pm} are the stable and unstable sets of J_a , i.e.,

$$J_a^+ = W^s(J_a) \text{ and } J_a^- = W^u(J_a).$$

- For a type 2—shift J_a is not a **hyperbolic set** for S_a . However, $J_a^1 \sqcup J_a^2 \sqcup J_a^3 \subset J_a$ and there exist neighbourhoods U_i , $1 \leq i \leq 3$ such that
 - (i) $J_a^i \subset U_i$ and J_a^i is compact and completely invariant under S_a^2 .
 - (ii) There exists a conformal metric ρ_i on U_i such that S_a^2 is hyperbolic on J_a^i .

• For Hénon map J_a is a **hyperbolic set** and the J_a^{\pm} are the stable and unstable sets of J_a , i.e.,

$$J_a^+ = W^s(J_a) \text{ and } J_a^- = W^u(J_a).$$

 $J_a^1\sqcup J_a^2\sqcup J_a^3\subset J_a$ and there exist neighbourhoods $U_i,\ 1\leq i\leq 3$ such that

• For a type 2-shift J_a is not a **hyperbolic set** for S_a . However,

- (i) $J_a^i \subset U_i$ and J_a^i is compact and completely invariant under S_a^2 .
- (ii) There exists a conformal metric ρ_i on U_i such that S_a^2 is hyperbolic on J_a^i .
- (iii) The Julia sets J_a^{\pm} can be recovered as stable unstable sets of J_a^i 's, $1 \le i \le 3$, i.e.,

$$J_a^+ = W^s(J_a^1 \sqcup J_a^2 \sqcup J_a^3)$$
 and $J_a^- = W^u(J_a^1 \sqcup J_a^2 \sqcup J_a^3)$.

Thank You