Finiteness theorems for the space of holomorphic mappings

Jaikrishnan Janardhanan Indian Institute of Technology Madras

jaikrishnan@iitm.ac.in

Notation

- Let *X* and *Y* be complex manifolds. We will use the following notations:
 - O(X, Y) denotes the space of holomorphic mappings from X into Y.
 - $O_*(X, Y)$ denotes the space of non-constant holomorphic mappings from X into Y.
 - O_{dom}(X, Y) denotes the space of dominant holomorphic mappings from X into Y, i.e., those mappings for which the range has a non-empty interior.
- All function spaces will given the compact-open topology.

Some classical finiteness/non-existence theorems

- Our objective is to study scenarios under which the cardinality of $O_*(X, Y)$ or $O_{\text{dom}}(X, Y)$ is finite.
- **Q Liouville's Theorem:** If *D* is a bounded planar domain then $O_*(\mathbb{C}, D) = \emptyset$.
- **3** Little Picard Theorem: $O_*(\mathbb{C}, \mathbb{C} \setminus \{0, 1\}) = \emptyset$.
- **Theorem of de Franchis:** If R and S are compact Riemann surfaces both of genus at least 2 then $O_*(R, S)$ is a finite set.
- $O_*(\mathbb{C} \setminus \{0, 1\}, \mathbb{C} \setminus \{0, 1\})$ is a finite set.

Imayoshi's Theorem

Result (Imayoshi, 1982)

Let R be a Riemann surface of finite type and let S be a Riemann surface of finite type (g, n) with 2g - 2 + n > 0. Then $O_*(R, S)$ is a finite set.

A Riemann surface of finite type (g, n) is a Riemann surface that is biholomorphic to a Riemann surface obtained by removing n points from a compact Riemann surface of genus g.

Our main result

Theorem (Divakaran and Jaikrishnan, 2017, IJM)

Let $X := X_1 \times \cdots \times X_n$ be a product of hyperbolic Riemann surfaces of finite type and let $Y = \Omega/\Gamma$ be an m-dimensional complex manifold where $\Omega \subset \mathbb{C}^m$ is a bounded domain and Γ is fixed-point-free discrete subgroup of $Aut(\Omega)$.

- If N is a tautly embedded complex submanifold of Y then $O_{dom}(X, N)$ is a finite set.
- **2** If Y is geometrically finite and Ω is complete hyperbolic then $O_{dom}(X, Y)$ is a finite set.
- **1** In addition to the conditions in (2), if the essential boundary dimension of Ω is zero, then $O_*(X,Y)$ is a finite set.

Tautness and normal families

• If M and N are two Kobayashi hyperbolic complex manifolds, then by the distance decreasing property of the Kobayashi distance, the space O(M, N) is an equicontinuous family.

Definition

A subset $\mathcal{F} \subset C(M, N)$ is said to be a *normal family* if every sequence $\{f_n\} \subset \mathcal{F}$ has either a subsequence that converges uniformly on compacts to a function in C(M, N) or has a compactly divergent subsequence.

A complex manifold N is said to be *taut* if for every complex manifold M the set O(M, N) is a normal family.

Let N be a complex manifold and let Y be a complex submanifold. We say that Y is *tautly embedded* in N if every sequence of holomorphic mappings $\{f_n : M \to Y\}$, where M is any complex manifold, admits a subsequence that converges uniformly on compacts to a holomorphic map $f: M \to N$.

• Complete hyperbolic manifolds are taut.

Meaning of technical terms

Instead of giving of precise definitions, we will try to explain, loosely, the meanings of the various technical terms.

- Every topological manifold can be assigned a space of ends which is roughly the various connected components after excising a suitably large connected compact set.
- A geometrically finite complex manifold is one that has only finitely many ends each of which satisfies a certain technical condition.
- Riemann surfaces of finite type are geometrically finite.
- **●** The essential boundary dimension of a bounded domain in \mathbb{C}^n is roughly the maximal dimension of analytic sets sitting in ∂D . The unit ball in \mathbb{C}^n and more generally strictly pseudoconvex domains have essential boundary dimension 0 whereas the polydisk has essential boundary dimension n-1.

A rigidity result

We will now give a sketch of our proof in the special case that *X* and *Y* are compact hyperbolic Riemann surfaces. We need a rigidity result.

Theorem

Let $X := \mathbb{D}/G$ and $Y := \mathbb{D}/\Gamma$ be compact hyperbolic Riemann surfaces. If non-constant holomorphic mappings $\phi, \psi : X \to Y$ induce the same homomorphisms from G to Γ then $\phi = \psi$.

What is the induced homomorphism?

Let $\widetilde{x} \in \mathbb{D}$ and $g \in G$. Let $\widetilde{\phi}$ be a lift. This lifting induces a homomorphism $\chi: G \to \Gamma$ which can be described in two ways:

• There is an unique element $h \in \Gamma$ that takes $\widetilde{\phi}(\widetilde{x})$ to $\widetilde{\phi}(g(\widetilde{x}))$. The choice of h is independent of the choice of \widetilde{x} and we get a homomorphism χ of groups. We have the following relationship

$$\widetilde{\phi}\circ g=\chi(g)\circ\widetilde{\phi}.$$

② Let $x \in X$ be the image of \widetilde{x} under the quotient map and let $y := \phi(x)$. Let $\Phi : G \to \pi_1(X, x)$ and $\Lambda : \pi_1(Y, y) \to \Gamma$ be the natural isomorphisms. Then $\Lambda \circ \phi_* \circ \Phi$, where $\phi_* : \pi_1(X, x) \to \pi_1(Y, y)$ is the induced map on fundamental groups, is the required homomorphism.

Proof sketch

- Let $\{f_k\} \subseteq O(X, Y)$ be a sequence of distinct non-constant holomorphic mappings. We may assume that the sequence $\{f_k\}$ converges in the compact-open topology to a map $f: X \to Y$.
- We show that for suitably large k, we can find lifts \widetilde{f}_k and \widetilde{f} that induce the same homomorphism on G.
- We first choose k suitably large so that $z_k := f_k(x)$ and y := f(x) belong to an evenly covered coordinate ball in Y, say U.
- Choose \widetilde{f} and $\widetilde{f_k}$ to be the lifts of f and f_k , respectively, such that $\widetilde{f}(\widetilde{x}), \widetilde{f_k}(\widetilde{x}) \in \widetilde{U}$.
- Let χ and χ_k be the homomorphism induced by \widetilde{f} and \widetilde{f}_k , respectively.
- Each $g \in G$ can be represented by a closed loop based at x, say γ . Then $f \circ \gamma$ and $f_k \circ \gamma$ are loops in Y based at y and z_k , respectively.

Proof sketch...

- Let $\sigma := f \circ \gamma$ and $\sigma_k := \overline{\delta}_k * (f_k \circ \gamma) * \delta_k$ be two loops based at the point y, where δ_k is a curve lying in U that connects y to z_k .
- Now $\sigma_k \to \sigma$ uniformly. Therefore σ and σ_k are equivalent in $\pi_1(Y,y)$ for suitably large k.
- Let $\widetilde{\sigma}$ and $\widetilde{\sigma}_k$ be the lifts of σ and σ_k , respectively, that start at $\widetilde{f}(\widetilde{x})$. As σ and σ_k represent the same element in $\pi_1(Y, y)$, the endpoints of $\widetilde{\sigma}$ and $\widetilde{\sigma}_k$ must be the same and equal to $\chi(g)\left(\widetilde{f}(\widetilde{x})\right)$.

Conclusion of proof sketch

Since the quotient map is a homeomorphism from \widetilde{U} to U and δ_k lies entirely in U, a lift of δ_k starting at $\widetilde{f}(\widetilde{x})$ ends in \widetilde{U} . Similarly, a lift of $\overline{\delta}_k$ that ends in $\chi(g)\left(\widetilde{U}\right)$ has to begin in $\chi(g)\left(\widetilde{U}\right)$. Thus a lift of $f_k \circ \gamma$ starting in \widetilde{U} (at $\delta_k(1)$) has to end in $\chi(g)\left(\widetilde{U}\right)$. Thus, $\chi_k(g)\left(\widetilde{U}\right) \cap \chi(g)\left(\widetilde{U}\right) \neq \emptyset$. Since U is an evenly covered neighborhood, it follows that $\chi_k(g) = \chi(g)$.

