Cosmology and high-redshift universe with the Square Kilometre Array

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research
Pune

Cosmology - The Next Decade ICTS-TIFR, Bangalore 25 January 2019

▶ will be built in two phases: SKA1 should be completed by 2025

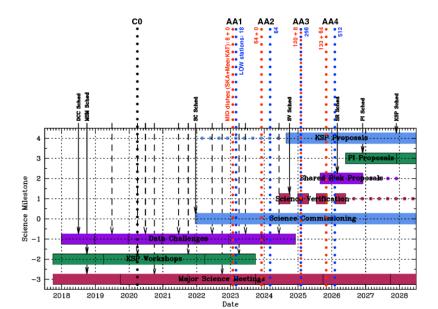
- ▶ will be built in two phases: SKA1 should be completed by 2025
- ▶ dishes in South Africa, called SKA1-MID

- ▶ will be built in two phases: SKA1 should be completed by 2025
- ▶ dishes in South Africa, called SKA1-MID
- ▶ dipoles in Australia, called SKA1-LOW

- ▶ will be built in two phases: SKA1 should be completed by 2025
- ▶ dishes in South Africa, called SKA1-MID
- dipoles in Australia, called SKA1-LOW
- ▶ largest distance between antenna elements: $\sim 60-150$ km

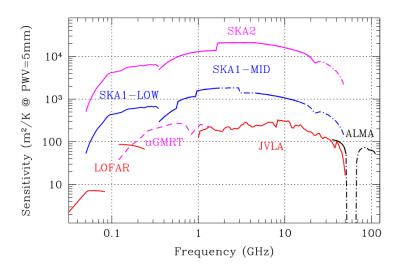
- ▶ will be built in two phases: SKA1 should be completed by 2025
- ▶ dishes in South Africa, called SKA1-MID
- dipoles in Australia, called SKA1-LOW
- lacktriangle largest distance between antenna elements: $\sim 60-150$ km
- \blacktriangleright effective collecting area \sim $km^2=10^6$ $m^2\sim 5-10$ times more collecting area than any existing telescope!

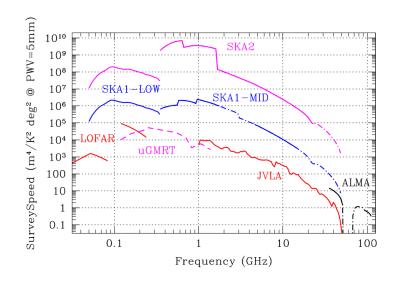
SKA: sites



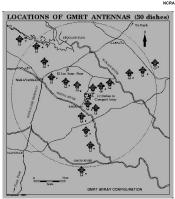
- ► Very low population density
- ► Large amount of empty space
- ► Western Australia, Karoo desert (South Africa)

SKA timeline

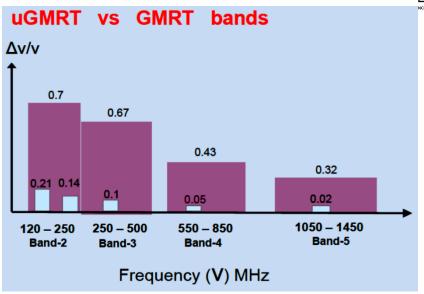

Countries participating in the SKA


SKA1 compared to other telescopes

SKA1 compared to other telescopes



The GMRT



- ► Giant Metrewave Radio Telescope
- \blacktriangleright 30 antennas, 45 m diameter each. works in frequency range $\approx 150-1400~\text{MHz}$
- ▶ situated at *Narayangaon*, about 80 km from Pune.
- ► Currently being upgraded to uGMRT, one of the SKA pathfinders

$\mathsf{GMRT} \to \mathsf{uGMRT}$

Courtesy: Ruta Kale

Advantages of the uGMRT

- ► **Spectral lines:** broadband coverage will give significant increase in the redshift space for HI lines & access to other lines
- **Continuum imaging:** sensitivity will improve by factor of ~ 3
- ▶ Pulsar observations: sensitivity will improve by factor of ~ 3
- ▶ Only SKA Phase 1 will do better than uGMRT at metre wavelengths

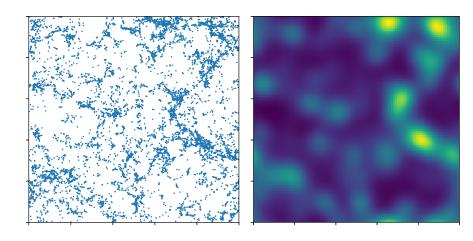
SKA: Indian involvement

- ▶ India has been associated with the SKA from the beginning
- ▶ India formally joined the SKA on Oct 5, 2015
- ► The activities within India are coordinated by the SKA-India Consortium
- ightharpoonup \sim 20 organisations are members of the Consortium
- ► Science activities coordinated by eight SKA-India Science Working Groups
- ▶ India involved in all the key science projects in the SKA

	SKA1	SKA2
	Proto-planetary disks;	Proto-planetary disks;
The Cradle of Life & Astrobiology	imaging snow/ice line (@ < 100pc),	sub-AU imaging (@ < 150 pc),
Hoare, M. et al. 2015	Searches for amino acids.	Studies of amino acids.
PoS(AASKA14)115	Targeted SETI:	Ultra-sensitive SETI: airport radar
100(111011111)110	airport radar 10 ⁴ nearby stars.	10 ⁵ nearby star, TV ~10 stars.
	amport mann to nemoy stars.	Gravitational wave astronomy of
	1st detection of nHz-stochastic	discrete sources: constraining galaxy
Strong-field Tests of Gravity with	gravitational wave background.	evolution, cosmological GWs and
Pulsars and Black Holes Kramer, M. & Stappers, B. 2015 PoS(AASKA14)036	gravitational wave ouekground.	cosmic strings.
	Discover and use NS-NS and PSR-	Find all ~40,000 visible pulsars in
	BH binaries to provide the best tests	the Galaxy, use the most relativistic
	of gravity theories and General	systems to test cosmic censorship
	Relativity.	and the no-hair theorem.
	The role of magnetism from sub-	The origin and amplification of
The Origin and Evolution of	galactic to Cosmic Web scales,	cosmic magnetic fields,
Cosmic Magnetism	the RM-grid @ 300/deg ² .	the RM-grid @ 5000/deg ² .
Johnston-Hollitt, M. et al. 2015	Faraday tomography of extended	Faraday tomography of extended
PoS(AASKA14)092	sources, 100pc resolution at 14Mpc.	sources, 100pc resolution at 50Mpc,
1 00(1110101111)032	1 kpc @ z ≈ 0.04.	1 kpc @ z ≈ 0.13.
	Gas properties of 10 ⁷ galaxies,	Gas properties of 109 galaxies,
	$\langle z \rangle \approx 0.3$, evolution to $z \approx 1$.	$\langle z \rangle \approx 1$, evolution to $z \approx 5$.
Galaxy Evolution probed by	BAO complement to Euclid.	world-class precision cosmology.
Neutral Hydrogen	Detailed interstellar medium of	Detailed interstellar medium of
Staveley-Smith, L. & Oosterloo, T.	nearby galaxies (3 Mpc) at 50pc	nearby galaxies (10 Mpc) at 50pc
2015, PoS(AASKA14)167	resolution, diffuse IGM down to	resolution, diffuse IGM down to
	$N_H < 10^{17}$ at 1 kpc.	$N_H \le 10^{17}$ at 1 kpc.
	· · · · · · · · · · · · · · · · · · ·	Fast radio bursts as unique probes of
	Use fast radio bursts to uncover the	fundamental cosmological
	missing "normal" matter in the	parameters and intergalactic
The Transient Radio Sky	universe.	magnetic fields.
Fender, R. et al. 2015 PoS(AASKA14)051	Study feedback from the most	Exploring the unknown: new exotic
F05(AA5KA14)051	energetic cosmic explosions and the	astrophysical phenomena in
	disruption of stars by super-massive	discovery phase space.
	black holes.	discovery phase space.
Galaxy Evolution probed in the Radio Continuum	Star formation rates	Star formation rates
	(10 M _∞ /yr to z ~ 4).	$(10 \text{ M}_{\alpha}/\text{yr to z} \sim 10).$
Prandoni, I. & Seymour, N. 2015		
PoS(AASKA14)067	Resolved star formation astrophysics	Resolved star formation astrophysics
	(sub-kpc active regions at z ~ 1).	(sub-kpc active regions at z ~ 6).
Cosmology & Dark Energy Maartens, R. et al. 2015	Constraints on DE, modified gravity,	Constraints on DE, modified gravity,
	the distribution & evolution of	the distribution & evolution of
	matter on super-horizon scales:	matter on super-horizon scales:
	competitive to Euclid.	redefines state-of-art.
Maartens, R. et al. 2015 PoS(AASKA14)016	Primordial non-Gaussianity and the	Primordial non-Gaussianity and the
		Primordial non-Gaussianity and the matter dipole: 10× Euclid.
	Primordial non-Gaussianity and the matter dipole: 2× Euclid.	Primordial non-Gaussianity and the matter dipole: 10× Euclid. Direct imaging of Cosmic Dawn
PoS(AASKA14)016	Primordial non-Gaussianity and the matter dipole: 2× Euclid. Direct imaging of EoR structures	Primordial non-Gaussianity and the matter dipole: 10× Euclid. Direct imaging of Cosmic Dawn structures
	Primordial non-Gaussianity and the matter dipole: 2× Euclid. Direct imaging of EoR structures (z = 6 - 12).	Primordial non-Gaussianity and the matter dipole: 10× Euclid. Direct imaging of Cosmic Dawn
PoS(AASKA14)016 Cosmic Dawn and the Epoch of Reionization	Primordial non-Gaussianity and the matter dipole: 2× Euclid. Direct imaging of EoR structures (z = 6 - 12). Power spectra of Cosmic Dawn	Primordial non-Gaussianity and the matter dipole: 10× Euclid. Direct imaging of Cosmic Dawn structures (z = 12 - 30).
PoS(AASKA14)016 Cosmic Dawn and the Epoch of	Primordial non-Gaussianity and the matter dipole: 2× Euclid. Direct imaging of EoR structures (z = 6 - 12).	Primordial non-Gaussianity and the matter dipole: 10× Euclid. Direct imaging of Cosmic Dawn structures

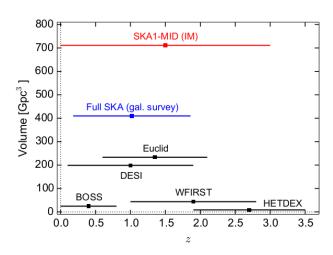
	Gas properties of 107 galaxies,	Gas properties of 109 galaxies,
Galaxy Evolution probed by Neutral Hydrogen Staveley-Smith, L. & Oosterloo, T. 2015, PoS(AASKA14)167	<z> ≈ 0.3, evolution to z ≈ 1, BAO complement to Euclid.</z>	<z>≈ 1, evolution to z ≈ 5, world-class precision cosmology.</z>
	Detailed interstellar medium of nearby galaxies (3 Mpc) at 50pc resolution, diffuse IGM down to $N_{\rm H} < 10^{17}$ at 1 kpc.	Detailed interstellar medium of nearby galaxies (10 Mpc) at 50pc resolution, diffuse IGM down to N _H < 10 ¹⁷ at 1 kpc.

Galaxy Evolution probed in the Radio Continuum Prandoni, I. & Seymour, N. 2015 PoS(AASKA14)067	Star formation rates (10 M_{\odot}/yr to $z \sim 4$).	Star formation rates $(10 \text{ M}_{\odot}/\text{yr to z} \sim 10).$
	Resolved star formation astrophysics (sub-kpc active regions at z ~ 1).	Resolved star formation astrophysics (sub-kpc active regions at $z \sim 6$).


	Cosmology & Dark Energy Maartens, R. et al. 2015 PoS(AASKA14)016	Constraints on DE, modified gravity, the distribution & evolution of matter on super-horizon scales: competitive to Euclid.	Constraints on DE, modified gravity, the distribution & evolution of matter on super-horizon scales: redefines state-of-art.
1		Primordial non-Gaussianity and the	Primordial non-Gaussianity and the
ı		matter dipole: 2× Euclid.	matter dipole: 10× Euclid.

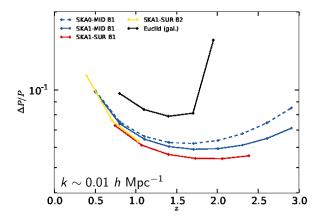
Cosmic Dawn and the Epoch of Reionization Koopmans, L. et al. 2015 PoS(AASKA14)001	Direct imaging of EoR structures $(z = 6 - 12)$.	Direct imaging of Cosmic Dawn structures (z = 12 - 30).
	Power spectra of Cosmic Dawn down to arcmin scales, possible imaging at 10 arcmin.	First glimpse of the Dark Ages $(z > 30)$.

HI intensity mapping



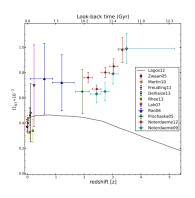
Based on ideas presented in Bharadwaj & Sethi (2001)

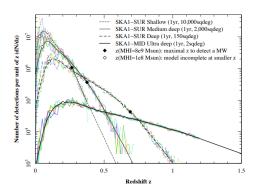
Cosmology with HI intensity mapping



Maartens et al (2015)

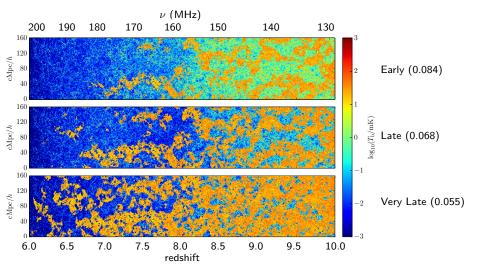
Cosmology with HI intensity mapping





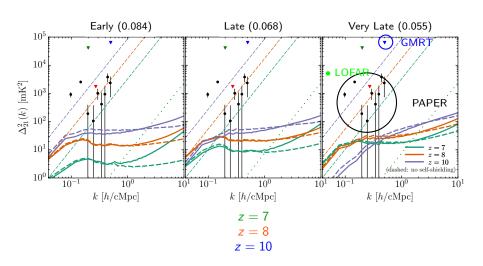
Maartens et al (2015)

HI absorbers and galaxy evolution



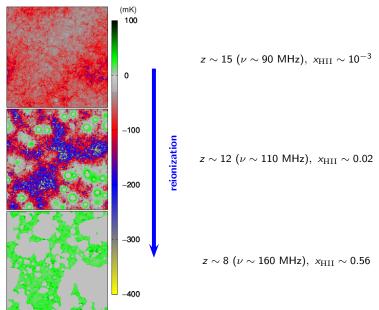
Blyth et al (2015)

21 cm signal from EoR



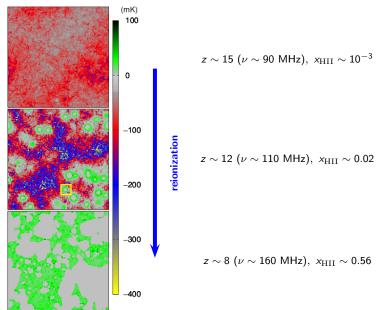
Kulkarni, TRC, Puchwein & Haehnelt (2016)

EoR 21 cm power spectra



Kulkarni, TRC, Puchwein & Haehnelt (2016)

21 cm signal from the cosmic dawn


Ghara, TRC & Datta (2014)

21 cm signal from the cosmic dawn

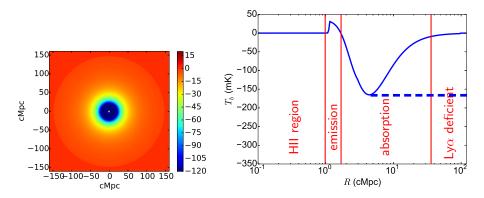
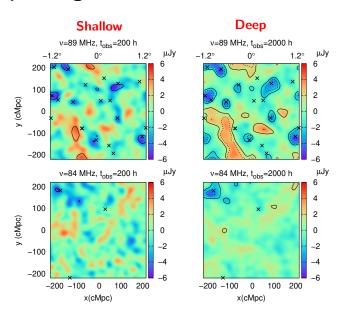

Ghara, TRC & Datta (2014)

Image of the 21cm pattern


Galaxy + power-law X-ray source ($M_{\star} \sim 10^7 M_{\odot}, f_{\rm esc} \sim 0.1, t_{\rm age} \sim 10^7$ yr)

Alvarez, Pen & Chang (2010) Yajima & Li (2014) Ghara, TRC & Datta (2015) Ghara & TRC (in prep)

Survey planning

Summary: Square Kilometre Array

Galaxy Evolution probed by Neutral Hydrogen Staveley-Smith, L. & Oosterloo, T. 2015, PoS(AASKA14)167	Gas properties of $10'$ galaxies, $<\!\!>> \approx 0.3$, evolution to $z\approx 1$, BAO complement to Euclid. Detailed interstellar medium of nearby galaxies (3 Mpc) at 50pc resolution, diffuse $15M$ GM down to $N_{\rm H} < 10^{17}$ at 1 kpc.	Gas properties of 10^{9} galaxies, $<\!\!>> 1$, evolution to $z \approx 5$, world-class precision cosmology. Detailed interstellar medium of nearby galaxies (10 Mpc) at 50 pc resolution, diffuse 15 M down to $N_{\rm H} < 10^{17}$ at 1 kpc.
Galaxy Evolution probed in the Radio Continuum Prandoni, I. & Seymour, N. 2015	Star formation rates (10 M_{\odot}/yr to $z \sim 4$).	Star formation rates $(10 \text{ M}_{\odot}/\text{yr to z} \sim 10).$
PoS(AASKA14)067	Resolved star formation astrophysics (sub-kpc active regions at $z \sim 1$).	Resolved star formation astrophysics (sub-kpc active regions at $z \sim 6$).
Cosmology & Dark Energy Martens, R. et al. 2015	Constraints on DE, modified gravity, the distribution & evolution of matter on super-horizon scales: competitive to Euclid.	Constraints on DE, modified gravity, the distribution & evolution of matter on super-horizon scales: redefines state-of-art.
PoS(AASKA14)016	Primordial non-Gaussianity and the matter dipole: 2× Euclid.	Primordial non-Gaussianity and the matter dipole: 10× Euclid.
Cosmic Dawn and the Epoch of Reionization Koopmans, L. et al. 2015 PoS(AASKA14)001	Direct imaging of EoR structures $(z = 6 - 12)$.	Direct imaging of Cosmic Dawn structures (z = 12 - 30).
	Power spectra of Cosmic Dawn down to arcmin scales, possible imaging at 10 arcmin.	First glimpse of the Dark Ages $(z > 30)$.