Reionization - III

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research
Pune

Cosmology - The Next Decade ICTS-TIFR, Bangalore 17 January 2019

ı

Topics to be covered

Concentrate on the physics of underlying structure of the IGM

- Observational constraints on reionization
- Theoretical models of reionization
- ► Future probes of reionization

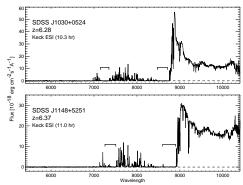
References:

- Textbook: Galaxy Formation and Evolution by Houjun Mo, Frank van den Bosch & Simon White
- ► Review: In the beginning: the first sources of light and the reionization of the universe by Rennan Barkanaa & Abraham Loeb, Phys. Rept., 349, 125 (2001)
- ► Review: Analytical Models of the Intergalactic Medium and Reionization by T. Roy Choudhury, Current Science, 97, 841 (2009)

How to constrain reionization at $z \sim 7$?

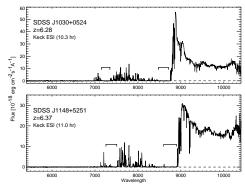
- Galaxy luminosity function: uncertain escape fraction
- Quasar absorption spectra (damping wings/near zones): only a few quasars known till date
- ▶ IGM temperature: systematics, model dependent constraints
- Lyman- α emitters (number density, also clustering)

An "ideal" experiment



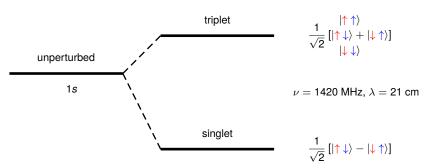
► CMBR probes the "integrated" reionization history. Require a line transition so that observations can be done in different redshifts.

An "ideal" experiment


- ► CMBR probes the "integrated" reionization history. Require a line transition so that observations can be done in different redshifts.
- ▶ Ly α is a line transition, but too "strong" \Longrightarrow lines become saturated for $x_{\rm HI} \gtrsim 10^{-4}$ (i.e., z > 6).

An "ideal" experiment

- ► CMBR probes the "integrated" reionization history. Require a line transition so that observations can be done in different redshifts.
- ▶ Ly α is a line transition, but too "strong" \Longrightarrow lines become saturated for $x_{\rm HI} \gtrsim 10^{-4}$ (i.e., z > 6).



▶ Need a line transition which is "weak"

Future: 21 cm line

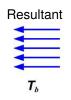
Hydrogen 1s ground state split by the interaction between the electron spin and the nuclear spin.

Line transition \Longrightarrow a transition originating at z will be observed at a frequency $\nu_{\rm obs}=1420/(1+z)$ MHz.

▶ It is a magnetic dipole transition, with transition probability $A_{21} = 2.85 \times 10^{-15} \text{ s}^{-1} \Longrightarrow$ an atom in the upper level is expected to make a downward transition once in 10^7 yr.

For Ly α transition, the corresponding coefficient is $A_{21} \approx 6 \times 10^8 \text{ s}^{-1}$.

How to observe the signal?



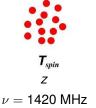
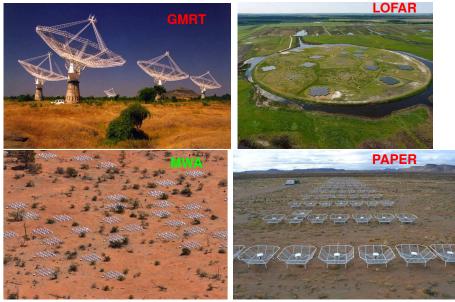

$$\frac{n_2}{n_1} = 3 e^{-T_{\rm spin}/T_{21}}$$

Figure from Zaroubi (2013)

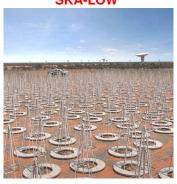
$$\nu = \frac{1420}{1+z} \text{ MHz}$$

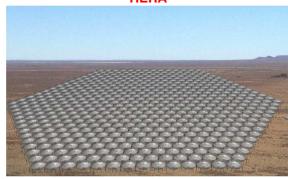


HI

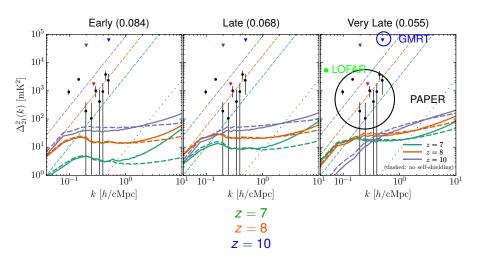
The signal:
$$\delta I_{
u} \propto
ho_{
m HI} \, \left(1 - rac{T_{
m CMB}}{T_{
m spin}}
ight)$$
 $\propto
ho_{
m HI} \, {
m if} \, T_{
m spin} \sim T_{
m gas} \gg T_{
m CMB}$

Low frequency instruments

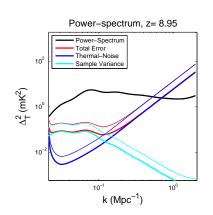


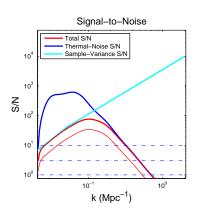


Future telescopes



21 cm power spectra





Kulkarni, TRC, Puchwein & Haehnelt (2016)

SKA1 sensitivity

Koopmans et al (2015)

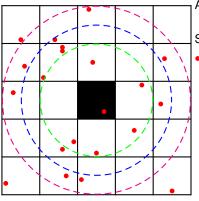
Errors on $P(k) \lesssim 10\%$ (1000 hours of integration)

Modelling the radiative transfer

- Radiative transfer is the most challenging part of theoretical reionization models
- ► Assume that locations of the sources (galaxies in dark matter haloes) and their luminosities are known. For simplicity, assume

$$n_{\gamma}(M_{\mathrm{halo}}) \propto N_{\mathrm{ion}} M_{\mathrm{halo}} \equiv \zeta M_{\mathrm{halo}}$$

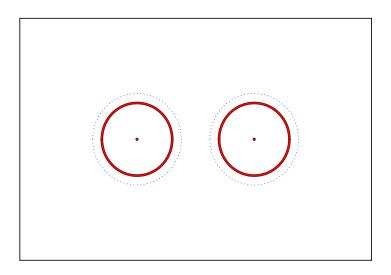
▶ 7-dimensional partial differential equation to determine the intensity $I_{\nu}(t, \mathbf{x}, \hat{\mathbf{n}})$ \Longrightarrow either inaccurate or inefficient


$$\frac{\partial I_{\nu}}{\partial t} + \frac{c}{a(t)} \hat{\mathbf{n}} \cdot \nabla_{\mathbf{x}} I_{\nu} - H(t) \nu \frac{\partial I_{\nu}}{\partial \nu} + 3H(t) I_{\nu} = -c \kappa_{\nu} I_{\nu} + \frac{c}{4\pi} \epsilon_{\nu}$$

- ► Numerical simulations employ some approximate schemes (e.g., spherical symmetry, ray-tracing, Monte-Carlo sampling, ...)
- ► Alternatives: analytical or semi-numerical

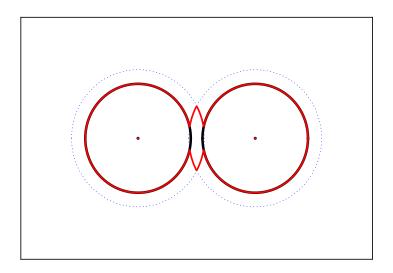
Excursion set based semi-numerical models

naturally accounts for bubble overlap Furlanetto, Zaldarriaga & Hernquist (2004)

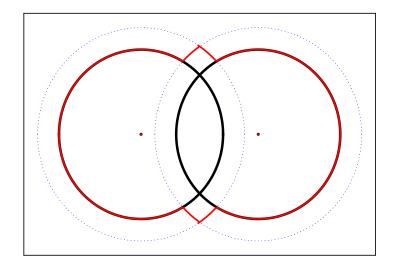

Assume that the density fields and haloes have been obtained from simulations Smooth the fields in uniform grids

- Loop over all grid cells i:
 - Loop over all possible R:
 - is $n_{\gamma}(R) \ge n_H(R)$? which is equivalent to $\zeta f_{\text{coll}}(R) \ge 1$?
 - if yes, then assign ionized fraction $x_i = 1$
 - If the condition is not satisfied for any R then assign $x_i = n_{\gamma,i}/n_{H,i} = \zeta \ f_{\text{coll},i}$

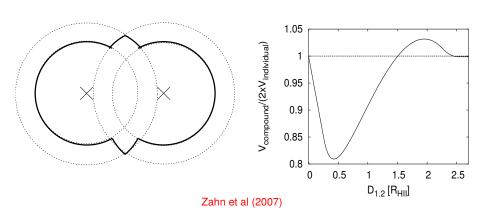
A simple toy model


Two sources of equal strengths in a uniform medium, based on Zahn et al (2007)

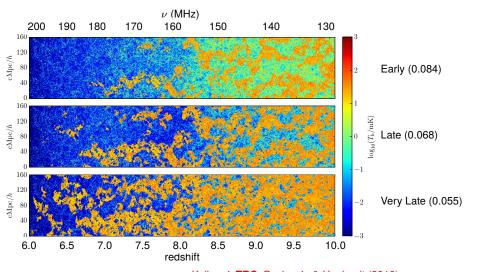
A simple toy model


Two sources of equal strengths in a uniform medium, based on Zahn et al (2007)

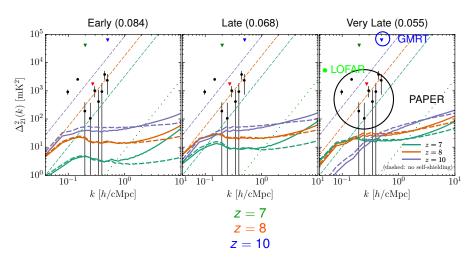
A simple toy model



Two sources of equal strengths in a uniform medium, based on Zahn et al (2007)

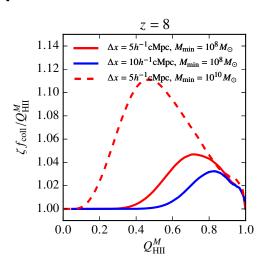

Photon non-conservation

21 cm maps



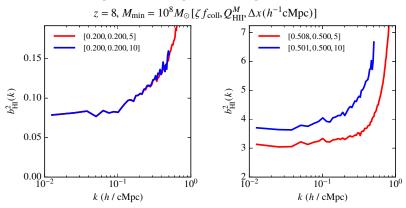
Kulkarni, **TRC**, Puchwein & Haehnelt (2016)

21 cm power spectra



Kulkarni, TRC, Puchwein & Haehnelt (2016)

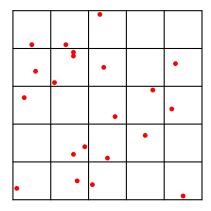
Amount of photon non-conservation



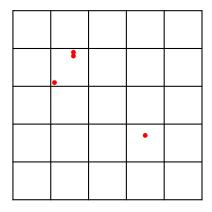
TRC & Paranjape (2018)

ratio =
$$\frac{n_{\gamma}}{n_{\rm HII}~(1+\bar{N}_{\rm rec})}
eq 1$$
, depends on the resolution!

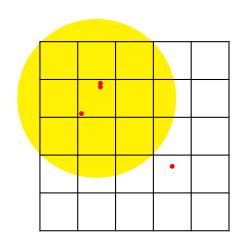
Resolution-dependent power spectrum

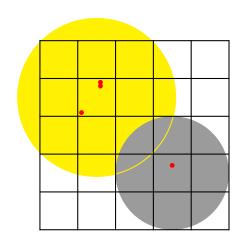


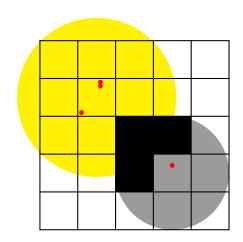
TRC & Paranjape (2018)

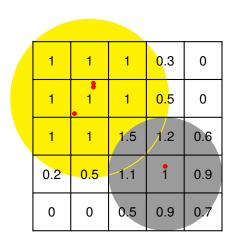

$$b_{\mathrm{HI}}^{2}(k) = \frac{P_{\mathrm{HI}}(k)}{P_{\mathrm{DM}}(k)}$$

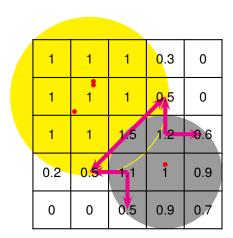
photon non-conservation leads to non-converging power spectrum!

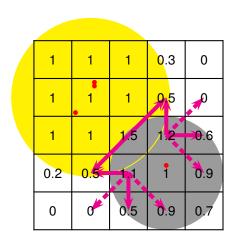


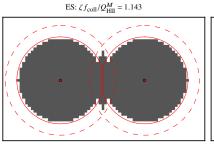


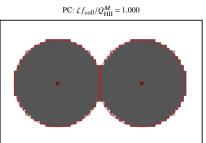




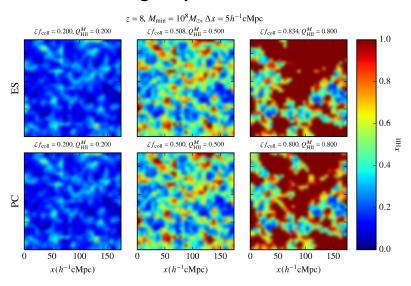




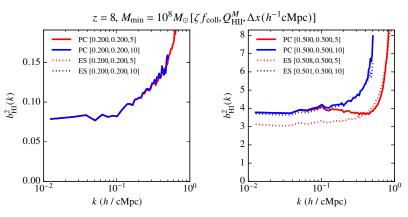




Results for the toy model

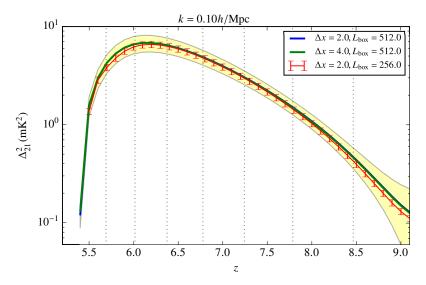

Two sources of equal strengths in a uniform medium

Photon-conserving maps



TRC & Paranjape (2018)

Power spectrum converges



TRC & Paranjape (2018)

$$b_{\mathrm{HI}}^{2}(k) = rac{P_{\mathrm{HI}}(k)}{P_{\mathrm{DM}}(k)}$$

Redshift evolution

Performance

► Excursion set models are extremely efficient, can run under a second in one processor, assuming the density and halo fields are given

Performance

- Excursion set models are extremely efficient, can run under a second in one processor, assuming the density and halo fields are given
- ▶ The photon-conserving model runs $\sim 2-4$ seconds in one processor (again assuming the density and halo fields are given)

Performance

- Excursion set models are extremely efficient, can run under a second in one processor, assuming the density and halo fields are given
- ▶ The photon-conserving model runs $\sim 2-4$ seconds in one processor (again assuming the density and halo fields are given)
- ▶ Can be adapted for exploration of the the astrophysical parameters (e.g., $x_{\rm HI}$, $M_{\rm min}$)

► Currently working on generating the halo catalogue efficiently

- ► Currently working on generating the halo catalogue efficiently
- ► Comparison with full radiative transfer simulations

- Currently working on generating the halo catalogue efficiently
- Comparison with full radiative transfer simulations
- ► Plan to participate in the "simulation challenge" coordinated by the SKA KSP International Science Team (recover the physical parameters by applying the semi-numerical models on radiative transfer simulations)

- Currently working on generating the halo catalogue efficiently
- Comparison with full radiative transfer simulations
- Plan to participate in the "simulation challenge" coordinated by the SKA KSP International Science Team (recover the physical parameters by applying the semi-numerical models on radiative transfer simulations)
- Additional physical effects to be incorporated:
 - (i) line of sight effects (light-cone),
 - (ii) recombinations,
 - (iii) maps based on reionization history