Reionization - II

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research
Pune

Cosmology - The Next Decade ICTS-TIFR, Bangalore 17 January 2019

ı

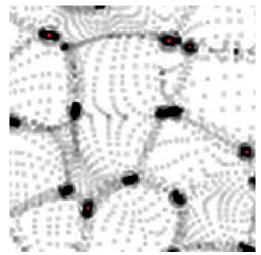
Topics to be covered

Concentrate on the physics of underlying structure of the IGM

- Observational constraints on reionization
- ▶ Theoretical models of reionization
- ► Future probes of reionization

References:

- ► Textbook: *Galaxy Formation and Evolution* by Houjun Mo, Frank van den Bosch & Simon White
- ► Review: In the beginning: the first sources of light and the reionization of the universe by Rennan Barkanaa & Abraham Loeb, Phys. Rept., 349, 125 (2001)
- ► Review: Analytical Models of the Intergalactic Medium and Reionization by T. Roy Choudhury, Current Science, 97, 841 (2009)



 Density distribution: Collapsed Structures and the Intergalactic Medium.

JUST A SKETCH

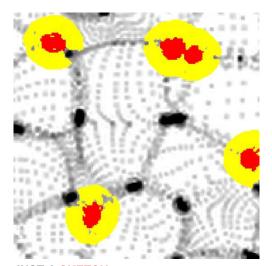
Based on Choudhury, Haehnelt & Regan (2009)



- Density distribution:
 Collapsed Structures
 and the Intergalactic
 Medium.
- Sources of ionizing photons

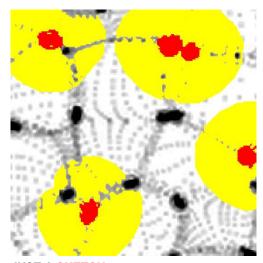
JUST A SKETCH

Based on Choudhury, Haehnelt & Regan (2009)



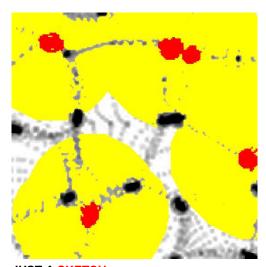
JUST A SKETCH
Based on Choudhury, Haehnelt & Regan (2009)

- Density distribution:
 Collapsed Structures
 and the Intergalactic
 Medium.
- Sources of ionizing photons
- ► Ionized regions



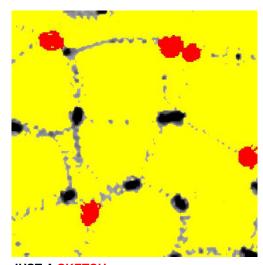
JUST A SKETCH
Based on Choudhury, Haehnelt & Regan (2009)

- Density distribution: Collapsed Structures and the Intergalactic Medium.
- Sources of ionizing photons
- ► Ionized regions
- Started overlapping



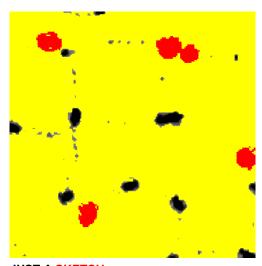
JUST A SKETCH
Based on Choudhury, Haehnelt & Regan (2009)

- Density distribution: Collapsed Structures and the Intergalactic Medium.
- Sources of ionizing photons
- Ionized regions
- Started overlapping
- Approaching reionization



JUST A SKETCH
Based on Choudhury, Haehnelt & Regan (2009)

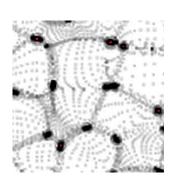
- Density distribution: Collapsed Structures and the Intergalactic Medium.
- Sources of ionizing photons
- Ionized regions
- Started overlapping
- Approaching reionization
- ► Reionization



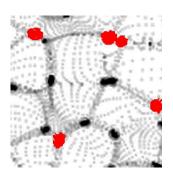
JUST A SKETCH
Based on Choudhury, Haehnelt & Regan (2009)

- Density distribution: Collapsed Structures and the Intergalactic Medium.
- Sources of ionizing photons
- ▶ Ionized regions
- Started overlapping
- Approaching reionization
- ► Reionization
- Post-reionization era

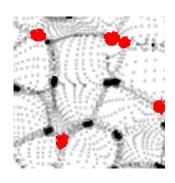
√ Formation of (dark matter) haloes:
Excursion set formalism / simulations



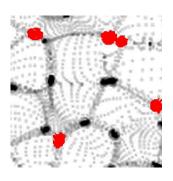
- √ Formation of (dark matter) haloes: Excursion set formalism / simulations
- ► Photon production



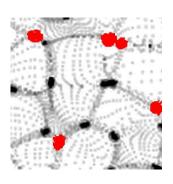
- Formation of (dark matter) haloes: Excursion set formalism / simulations
- ► Photon production
 - X Galaxy/star formation: cooling, fragmentation, feedback



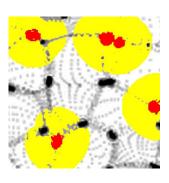
- Formation of (dark matter) haloes: Excursion set formalism / simulations
- ► Photon production
 - X Galaxy/star formation: cooling, fragmentation, feedback
 - √ Radiation from stars: population synthesis



- Formation of (dark matter) haloes: Excursion set formalism / simulations
- ▶ Photon production
 - X Galaxy/star formation: cooling, fragmentation, feedback
 - √ Radiation from stars: population synthesis
 - Escape of photons: neutral hydrogen within the host galaxy

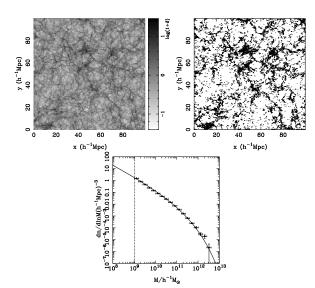


- √ Formation of (dark matter) haloes: Excursion set formalism / simulations
- ▶ Photon production
 - X Galaxy/star formation: cooling, fragmentation, feedback
 - √ Radiation from stars: population synthesis
 - Escape of photons: neutral hydrogen within the host galaxy
- Radiative transfer in the IGM: evolution of ionization fronts



Dark matter haloes

Number of haloes per comoving volume having mass [M, M + dM] at a redshift z: $n(M, z) \equiv dn(z)/dM$.



Star formation

- ▶ Physics of star formation involves cooling of the baryonic gas, fragmentation, formation of molecular clouds etc.
- ▶ Let the star formation rate of a galaxy in a halo be

$$\dot{M}_*(M,t,t_{\mathrm{form}}) = f_*(M,z) \left(\frac{\Omega_b}{\Omega_m}\right) M \Lambda_*(t-t_{\mathrm{form}}),$$

with

$$\int_0^\infty \mathrm{d}t \; \Lambda_*(t) = 1.$$

 t_{form} is the formation time of the halo.

 f_* is the fraction of baryons that goes into stars.

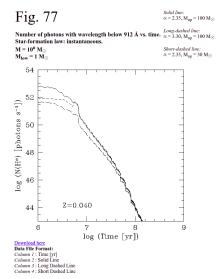
- ► For constant star formation rates, we should have $\Lambda_*(t) = 1/t_{SFR}$, where t_{SFR} is the star formation time scale.
- ▶ On the other extreme, for a starburst, we put $\Lambda_*(t) = \delta_D(t)$.
- If we assume that the star-formation time scale is \sim the dynamical time scale $t_{\rm dyn}$ of the halo, then one can show that

$$rac{t_{
m dyn}}{t_{
m H}} \sim rac{1}{\sqrt{\Delta_{
m halo}}} \sim 0.1$$

Hence one often assumes $\Lambda_*(t) \sim \delta_D(t)$.

Radiation from stars

Given the star formation rate, IMF and the metallicity, it is possible to calculate the radiation from the galaxy using the **population synthesis models**, e.g., STARBURST99.



▶ The population synthesis codes provide the luminosity $l_{\nu}(t)$ per unit mass of stars formed (which is energy per unit time per frequency range) for a burst of star formation at t=0. It is sometimes called the **specific luminosity**.

- ▶ The population synthesis codes provide the luminosity $I_{\nu}(t)$ per unit mass of stars formed (which is energy per unit time per frequency range) for a burst of star formation at t = 0. It is sometimes called the **specific luminosity**.
- ► The number of ionizing photons produced per unit time in a halo is

$$\dot{N}_{\gamma}(M,t,t_{\rm form}) = f_* \left(\frac{\Omega_b}{\Omega_m}\right) M \int_{t_{\rm form}}^{\infty} \mathrm{d}t' \; \Lambda_*(t'-t_{\rm form}) \int_{\nu_H}^{\infty} \mathrm{d}\nu \; \frac{l_{\nu}(t-t')}{h\nu}.$$

- ▶ The population synthesis codes provide the luminosity $I_{\nu}(t)$ per unit mass of stars formed (which is energy per unit time per frequency range) for a burst of star formation at t = 0. It is sometimes called the **specific luminosity**.
- ► The number of ionizing photons produced per unit time in a halo is

$$\dot{N}_{\gamma}(M,t,t_{\mathrm{form}}) = f_* \left(rac{\Omega_b}{\Omega_m}
ight) M \int_{t_{\mathrm{form}}}^{\infty} \mathrm{d}t' \; \Lambda_*(t'-t_{\mathrm{form}}) \int_{
u_H}^{\infty} \mathrm{d}
u \; rac{l_
u(t-t')}{h
u}.$$

▶ For ionizing photons produced by massive stars, we can approximate

$$\int_{\nu_H}^{\infty} \mathrm{d}\nu \; \frac{I_{\nu}(t)}{h\nu} = \eta_{\gamma} \; \delta_D(t)$$

where

$$\eta_{\gamma} = \int_0^{\infty} \mathrm{d}t \, \int_{\nu_H}^{\infty} \mathrm{d}\nu \, \frac{I_{\nu}(t)}{h\nu}$$

is the total number of ionizing photons produced in the halo per unit mass of stars.

- ▶ The population synthesis codes provide the luminosity $I_{\nu}(t)$ per unit mass of stars formed (which is energy per unit time per frequency range) for a burst of star formation at t=0. It is sometimes called the **specific luminosity**.
- ▶ The number of ionizing photons produced per unit time in a halo is

$$\dot{N}_{\gamma}(\textit{M},t,t_{\mathrm{form}}) = f_{*}\left(rac{\Omega_{b}}{\Omega_{m}}
ight) \textit{M} \int_{t_{\mathrm{form}}}^{\infty} \mathrm{d}t' \; \Lambda_{*}(t'-t_{\mathrm{form}}) \int_{
u_{H}}^{\infty} \mathrm{d}
u \; rac{l_{
u}(t-t')}{h
u}.$$

▶ For ionizing photons produced by massive stars, we can approximate

$$\int_{
u_H}^{\infty} \mathrm{d}
u \; rac{I_
u(t)}{h
u} = \eta_\gamma \; \delta_D(t)$$

where

$$\eta_{\gamma} = \int_0^{\infty} \mathrm{d}t \, \int_{
u_{\rm H}}^{\infty} \mathrm{d}
u \, rac{I_{
u}(t)}{h
u}$$

is the total number of ionizing photons produced in the halo per unit mass of stars.

► Hence

$$\dot{N}_{\gamma}(M,t,t_{\mathrm{form}}) = f_* \,\, \eta_{\gamma} \left(\frac{\Omega_b}{\Omega_m}\right) M \,\, \Lambda_*(t-t_{\mathrm{form}}).$$

Global photon production rate

► Haloes once formed may not survive forever, the smaller ones will merge to form larger haloes.

Global photon production rate

- Haloes once formed may not survive forever, the smaller ones will merge to form larger haloes.
- ► The number of ionizing photons produced per unit time per unit comoving volume as

$$\dot{n}_{\gamma}(t) = \int_{0}^{t} \mathrm{d}t_{\mathrm{form}} \int_{M_{\mathrm{min}}}^{\infty} \mathrm{d}M \; \frac{\partial^{2}n}{\partial t_{\mathrm{form}} \; \partial M} \; p(t|t_{\mathrm{form}}) \; \dot{N}_{\gamma}(M,t,t_{\mathrm{form}}),$$

where the mass integral is over all haloes with mass above M_{\min} that can cool and form stars. $p(t|t_{\text{form}})$ be the fraction of haloes that formed at t_{form}) and survive till $t > t_{\text{form}}$.

Global photon production rate

- ► Haloes once formed may not survive forever, the smaller ones will merge to form larger haloes.
- ► The number of ionizing photons produced per unit time per unit comoving volume as

$$\dot{n}_{\gamma}(t) = \int_{0}^{t} \mathrm{d}t_{\mathrm{form}} \int_{M_{\mathrm{min}}}^{\infty} \mathrm{d}M \; \frac{\partial^{2}n}{\partial t_{\mathrm{form}} \; \partial M} \; p(t|t_{\mathrm{form}}) \; \dot{N}_{\gamma}(M,t,t_{\mathrm{form}}),$$

where the mass integral is over all haloes with mass above M_{\min} that can cool and form stars. $p(t|t_{\text{form}})$ be the fraction of haloes that formed at t_{form}) and survive till $t > t_{\text{form}}$.

► Taking $\Lambda_*(t - t_{\rm form}) \approx \delta_D(t - t_{\rm form})$,

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \int_{M_{\min}}^{\infty} \mathrm{d}M \, f_* \, \eta_{\gamma} M \frac{\partial^2 n}{\partial t \, \partial M}.$$

Not all of the photons produced by stars in the halo will escape into the surrounding IGM. A fraction will absorbed by dense neutral hydrogen in the interstellar medium of the galaxy itself.

- Not all of the photons produced by stars in the halo will escape into the surrounding IGM. A fraction will absorbed by dense neutral hydrogen in the interstellar medium of the galaxy itself.
- ▶ Let the fraction of photons that escape into the IGM be denoted as $f_{\rm esc}$. This can, in principle, be a function of M and z (and perhaps other conditions like the environment).

- Not all of the photons produced by stars in the halo will escape into the surrounding IGM. A fraction will absorbed by dense neutral hydrogen in the interstellar medium of the galaxy itself.
- ▶ Let the fraction of photons that escape into the IGM be denoted as $f_{\rm esc}$. This can, in principle, be a function of M and z (and perhaps other conditions like the environment).
- ► This quantity is poorly modelled, and also there are very few observational constraints, particularly at high redshifts.

- Not all of the photons produced by stars in the halo will escape into the surrounding IGM. A fraction will absorbed by dense neutral hydrogen in the interstellar medium of the galaxy itself.
- ▶ Let the fraction of photons that escape into the IGM be denoted as $f_{\rm esc}$. This can, in principle, be a function of M and z (and perhaps other conditions like the environment).
- ► This quantity is poorly modelled, and also there are very few observational constraints, particularly at high redshifts.
- ▶ So, the quantity that is relevant for reionization studies is

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \int_{M_{\min}}^{\infty} \mathrm{d}M \, f_{\mathrm{esc}} \, f_* \, \eta_{\gamma} M \frac{\partial^2 n}{\partial t \, \partial M}.$$

The reionization efficiency parameter

► The number of ionizing photons in the IGM per unit time per unit comoving volume:

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \int_{M_{min}}^{\infty} \mathrm{d}M \ f_{\mathrm{esc}} \ f_* \ \eta_{\gamma} M \frac{\partial^2 n}{\partial t \ \partial M}.$$

The reionization efficiency parameter

► The number of ionizing photons in the IGM per unit time per unit comoving volume:

$$\dot{n}_{\gamma}(t) = \left(rac{\Omega_b}{\Omega_m}
ight) \int_{M_{min}}^{\infty} \mathrm{d}M \ f_{\mathrm{esc}} \ f_* \ \eta_{\gamma} M rac{\partial^2 n}{\partial t \ \partial M}.$$

▶ Note that the unknown quantities $f_{\rm esc}$, f_* and η_γ appear as a combination of multiplicative factors, so we do not need to know them individually.

The reionization efficiency parameter

► The number of ionizing photons in the IGM per unit time per unit comoving volume:

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \int_{M_{\rm min}}^{\infty} \mathrm{d}M \ f_{\rm esc} \ f_* \ \eta_{\gamma} M \frac{\partial^2 n}{\partial t \ \partial M}.$$

- ▶ Note that the unknown quantities $f_{\rm esc}$, f_* and η_γ appear as a combination of multiplicative factors, so we do not need to know them individually.
- ▶ It is customary to define a dimensionless parameter

$$N_{\rm ion} = f_{\rm esc} f_* \eta_{\gamma} m_p$$

so that the expression for the photon production rate becomes

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \int_{M_{\min}}^{\infty} \mathrm{d}M \; \frac{N_{\mathrm{ion}}}{m_p} \; M \frac{\partial^2 n}{\partial t \; \partial M}.$$

 $N_{\rm ion}$ can be interpreted as the number of ionizing photons entering the IGM per baryon in the halo.

▶ Take N_{ion} to be independent of the halo mass M:

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \frac{N_{\rm ion}(t)}{m_p} \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{M_{\rm min}}^{\infty} \mathrm{d}M \ M \ \frac{\mathrm{d}n}{\mathrm{d}M} \right)$$

► Take N_{ion} to be independent of the halo mass M:

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \frac{N_{\rm ion}(t)}{m_p} \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{M_{\rm min}}^{\infty} \mathrm{d}M \ M \ \frac{\mathrm{d}n}{\mathrm{d}M}\right)$$

▶ We can define the collapsed fraction as

$$f_{\mathrm{coll}}(t) = rac{1}{ar{
ho}_m} \int_{M_{\mathrm{min}}}^{\infty} \mathrm{d}M \ M \ rac{\mathrm{d}n}{\mathrm{d}M},$$

where $\bar{\rho}_m$ is the mean comoving density of matter. Note that $\bar{\rho}_m$ does not evolve with time.

▶ Take N_{ion} to be independent of the halo mass M:

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \frac{N_{\rm ion}(t)}{m_p} \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{M_{\rm min}}^{\infty} \mathrm{d}M \ M \ \frac{\mathrm{d}n}{\mathrm{d}M} \right)$$

▶ We can define the collapsed fraction as

$$f_{\rm coll}(t) = rac{1}{ar
ho_m} \int_{M_{
m min}}^{\infty} {
m d} M \ M \ rac{{
m d} n}{{
m d} M},$$

where $\bar{\rho}_m$ is the mean comoving density of matter. Note that $\bar{\rho}_m$ does not evolve with time.

► Keep in mind that $f_{coll}(t)$ depends on the value of M_{min} .

▶ Take N_{ion} to be independent of the halo mass M:

$$\dot{n}_{\gamma}(t) = \left(\frac{\Omega_b}{\Omega_m}\right) \frac{N_{\rm ion}(t)}{m_p} \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{M_{\rm min}}^{\infty} \mathrm{d}M \ M \ \frac{\mathrm{d}n}{\mathrm{d}M}\right)$$

▶ We can define the collapsed fraction as

$$f_{\rm coll}(t) = \frac{1}{\bar{\rho}_m} \int_{M}^{\infty} dM \, M \, \frac{dn}{dM},$$

where $\bar{\rho}_m$ is the mean comoving density of matter. Note that $\bar{\rho}_m$ does not evolve with time.

- ▶ Keep in mind that $f_{coll}(t)$ depends on the value of M_{min} .
- ► We can then write

$$\dot{n}_{\gamma}(t) = N_{\text{ion}}(t) \left(\frac{\Omega_b}{\Omega_m}\right) \frac{\bar{\rho}_m}{m_p} \frac{\mathrm{d}f_{\text{coll}}}{\mathrm{d}t} \\
= N_{\text{ion}}(t) \frac{\bar{\rho}_b}{m_p} \frac{\mathrm{d}f_{\text{coll}}}{\mathrm{d}t} \\
= N_{\text{ion}}(t) \bar{n}_b \frac{\mathrm{d}f_{\text{coll}}}{\mathrm{d}t},$$

where we have used $\bar{n}_b = \bar{\rho}_b/m_p$ and ignored the presence of helium.

(1)

▶ Assume that locations of the sources and their luminosities are known. We can calculate the volume-averaged emissivity $\epsilon_{\nu}(t, \mathbf{x})$.

- Assume that locations of the sources and their luminosities are known. We can calculate the volume-averaged emissivity $\epsilon_{\nu}(t, \mathbf{x})$.
- ▶ 7-dimensional partial differential equation to determine the intensity $I_{\nu}(t, \mathbf{x}, \mathbf{\hat{n}})$ \Longrightarrow either inaccurate or inefficient

$$\frac{\partial I_{\nu}}{\partial t} + \frac{c}{a(t)} \mathbf{\hat{n}} \cdot \nabla_{\mathbf{x}} I_{\nu} - H(t) \nu \frac{\partial I_{\nu}}{\partial \nu} + 3H(t) I_{\nu} = -c \kappa_{\nu} I_{\nu} + \frac{c}{4\pi} \epsilon_{\nu}$$

- ▶ Assume that locations of the sources and their luminosities are known. We can calculate the volume-averaged emissivity $\epsilon_{\nu}(t, \mathbf{x})$.
- ▶ 7-dimensional partial differential equation to determine the intensity $I_{\nu}(t, \mathbf{x}, \mathbf{\hat{n}})$ \Rightarrow either inaccurate or inefficient

$$\frac{\partial I_{\nu}}{\partial t} + \frac{c}{a(t)} \mathbf{\hat{n}} \cdot \nabla_{\mathbf{x}} I_{\nu} - H(t) \nu \frac{\partial I_{\nu}}{\partial \nu} + 3H(t) I_{\nu} = -c \kappa_{\nu} I_{\nu} + \frac{c}{4\pi} \epsilon_{\nu}$$

► Numerical simulations employ some approximate schemes (e.g., spherical symmetry, ray-tracing, Monte-Carlo sampling, ...)

- ▶ Assume that locations of the sources and their luminosities are known. We can calculate the volume-averaged emissivity $\epsilon_{\nu}(t, \mathbf{x})$.
- ▶ 7-dimensional partial differential equation to determine the intensity $I_{\nu}(t,\mathbf{x},\mathbf{\hat{n}})$ \Longrightarrow either inaccurate or inefficient

$$\frac{\partial I_{\nu}}{\partial t} + \frac{c}{a(t)} \mathbf{\hat{n}} \cdot \nabla_{\mathbf{x}} I_{\nu} - H(t) \nu \frac{\partial I_{\nu}}{\partial \nu} + 3H(t) I_{\nu} = -c \kappa_{\nu} I_{\nu} + \frac{c}{4\pi} \epsilon_{\nu}$$

- ► Numerical simulations employ some approximate schemes (e.g., spherical symmetry, ray-tracing, Monte-Carlo sampling, ...)
- ► Alternatives: analytic or semi-numeric

Growth of ionized regions

Number of photons produced per unit volume

$$\dot{n}_{\gamma} \Delta t = \underbrace{n_{H} \Delta Q_{HII}}_{\text{ionization of neutral regions}} + \underbrace{\Gamma_{HI} (n_{HI} Q_{HII}) \Delta t}_{\text{final}}$$

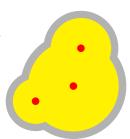
ionizing HI in already ionized regions

Photoionization equilibrium within ionized regions:

$$n_{\rm HI} \; \Gamma_{\rm HI} = \alpha_B \; \left(\mathcal{C} \; n_H^2 \right) \; a^{-3}$$

clumping factor: $C = \langle n_H^2 \rangle / \langle n_H \rangle^2$.

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\gamma}}{n_{\mathrm{H}}} - Q_{\mathrm{HII}} \, \mathcal{C} \, \alpha_{\mathrm{B}} \, n_{\mathrm{H}} \, a^{-3}$$



Photon production

Photon production rate:

$$\frac{\dot{n}_{\gamma}}{n_{H}} = N_{\rm ion} \left(\frac{\mathrm{d}f_{\rm coll}}{\mathrm{d}t} \right)$$

Number of ionizing photons in the IGM per baryons

Collapse rate of dark matter haloes

$$N_{
m ion} = f_* \, f_{
m esc} \, imes \, {
m number \, of \, photons \, per \, baryons \, in \, stars} imes \left(rac{\Omega_b}{\Omega_m}
ight)$$

▶ In case the gas cools only by atomic transitions, $M_{\rm min} \sim 10^8 M_{\odot}$. Presence of molecules makes $M_{\rm min} \sim 10^6 M_{\odot}$.

- ▶ In case the gas cools only by atomic transitions, $M_{\rm min} \sim 10^8 M_{\odot}$. Presence of molecules makes $M_{\rm min} \sim 10^6 M_{\odot}$.
- ▶ Feedback effects can increase the value of M_{\min} .

- ▶ In case the gas cools only by atomic transitions, $M_{\rm min} \sim 10^8 M_{\odot}$. Presence of molecules makes $M_{\rm min} \sim 10^6 M_{\odot}$.
- ▶ Feedback effects can increase the value of M_{\min} .
- ► Radiative feedback: heating due to reionization leads to inefficient cooling in small mass haloes.

- ▶ In case the gas cools only by atomic transitions, $M_{\rm min} \sim 10^8 M_{\odot}$. Presence of molecules makes $M_{\rm min} \sim 10^6 M_{\odot}$.
- ▶ Feedback effects can increase the value of M_{\min} .
- ► Radiative feedback: heating due to reionization leads to inefficient cooling in small mass haloes.
- ► **Mechanical feedback:** energetic events (e.g., supernova explosions) can deplete the gas from shallow potential wells (small mass haloes).

- ▶ In case the gas cools only by atomic transitions, $M_{\rm min} \sim 10^8 M_{\odot}$. Presence of molecules makes $M_{\rm min} \sim 10^6 M_{\odot}$.
- ▶ Feedback effects can increase the value of M_{\min} .
- ► Radiative feedback: heating due to reionization leads to inefficient cooling in small mass haloes.
- ► **Mechanical feedback:** energetic events (e.g., supernova explosions) can deplete the gas from shallow potential wells (small mass haloes).
- ► Chemical feedback: polluting the medium with metals (from supernova explosions) can change the chemistry of star-formation (e.g., PopIII → PopII transition)

The relevant equations

The master equation:

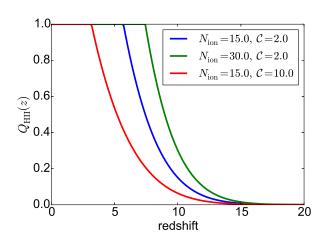
$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{N_{\mathrm{ion}}}{\mathrm{d}t} \frac{\mathrm{d}f_{\mathrm{coll}}}{\mathrm{d}t} - Q_{\mathrm{HII}} \frac{c}{c} \alpha_{B} n_{H} a^{-3}$$

CMBR optical depth

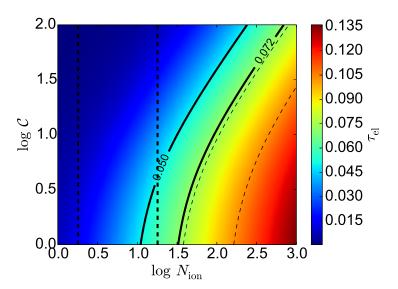
$$au_{\rm el} = c \ \sigma_T \ n_H \int_0^{z_{\rm LSS}} {
m d}t \ Q_{\rm HII}(t) \ a^{-3}$$

Dependence on parameters

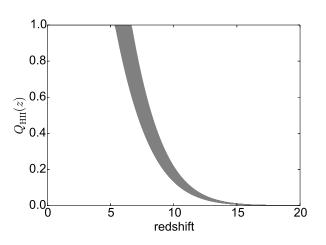
$$M_{\rm min}=10^8h^{-1}M_{\odot}$$



Constraints from $\tau_{\rm el}$ (and quasar spectra)



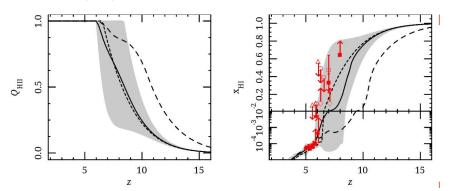
Allowed reionization histories



remember that N_{ion} and C are constants

Data constrained models

Mitra, TRC & Ferrara (2015)



Constraints based on Planck data + quasar absorption line measurements at $z\sim 6$ reionization starts at $z\sim 12$

Reionization effects on cosmological parameter

NCRA • TIFR

Pandolfi, Ferrara, TRC, Melchiorri & Mitra (2012)

Parameter	WMAP7	WMAP7 + ASTRO
Ω_m	0.266 ± 0.029	0.273 ± 0.027
$\Omega_b h^2$	$0.02258^{+0.00057}_{-0.00056}$	0.02183 ± 0.00054
h	0.710 ± 0.025	0.698 ± 0.023
ns	0.963 ± 0.014	0.958 ± 0.013
σ_8	0.801 ± 0.030	0.794 ± 0.027
$ au_{el}$	0.088 ± 0.015	0.080 ± 0.012
	I	I

when astrophysical data sets are included and physically motivated models used, parameters become more constrained

Constraints on non-standard cosmology

► Warm dark matter models Dayal, TRC, Bromm & Pacucci (2017)

Constraints on non-standard cosmology

- ► Warm dark matter models Dayal, TRC, Bromm & Pacucci (2017)
- ► Cosmic magnetic fields Pandey, TRC, Sethi & Ferrara (2015)

Constraints on non-standard cosmology

- ► Warm dark matter models Dayal, TRC, Bromm & Pacucci (2017)
- ► Cosmic magnetic fields Pandey, TRC, Sethi & Ferrara (2015)
- ► Non-flat models Mitra, TRC & Ratra (2018)