Reionization - I

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research
Pune

Cosmology - The Next Decade ICTS-TIFR, Bangalore 16 January 2019

ı

Topics to be covered

Concentrate on the physics of underlying structure of the IGM

- Observational constraints on reionization
- ▶ Theoretical models of reionization
- ► Future probes of reionization

References:

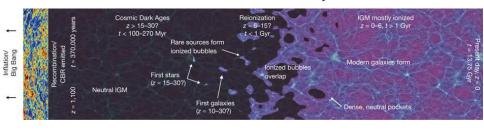
- Textbook: Galaxy Formation and Evolution by Houjun Mo, Frank van den Bosch & Simon White
- ► Review: In the beginning: the first sources of light and the reionization of the universe by Rennan Barkanaa & Abraham Loeb, Phys. Rept., 349, 125 (2001)
- ► Review: Analytical Models of the Intergalactic Medium and Reionization by T. Roy Choudhury, Current Science, 97, 841 (2009)

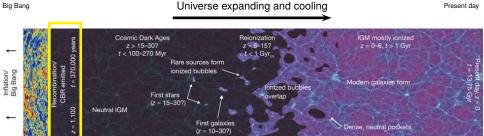
Big Bang

NCRA • TIFR

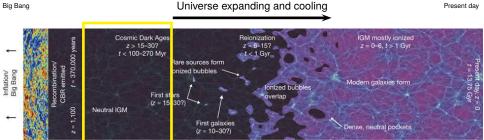
Universe expanding and cooling

Present day

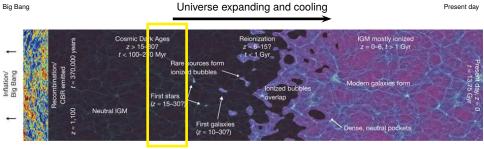




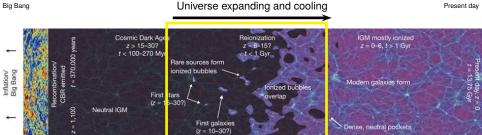
Last scattering epoch First hydrogen atoms form



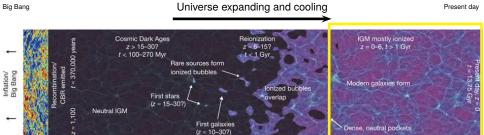
Dark ages



First stars form



Reionization

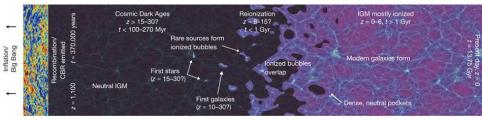


Post-reionization

Bia Bana

Universe expanding and cooling

Present day



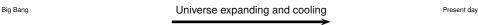
Dark ages Strong probe of cosmology

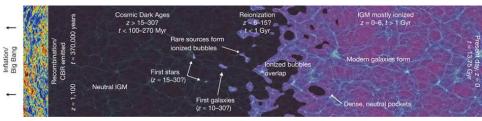
Reionization

- 1. First stars
- 2. Cosmology

Post-reionization

- 1. Galaxy formation
- 2. Cosmology





Dark ages Strong probe of cosmology

Reionization

- 1. First stars
- 2. Cosmology

Post-reionization

- 1. Galaxy formation
- 2. Cosmology

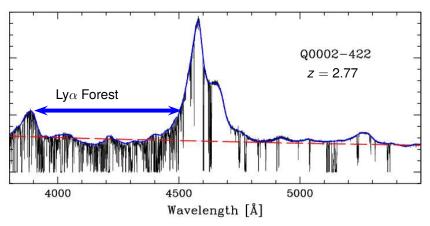
Phase transition
"Final frontier" of observational cosmology

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig_tab/nature09527_F1.html

Issues

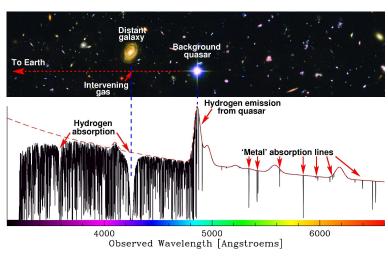
- ▶ Epoch of reionization? When did the sources produce enough photons to ionize the Universe? z = 20 or z = 6?
- Nature of reionization? Sudden or Gradual? Homogeneous or Inhomogeneous?
- ▶ What are the sources responsible? Stars, quasars, Exotic Particles?

Evidence for reionization: Lyman- α forest



The absorption lines blueward of the emission line arise from Ly α transition (n = 1 to n = 2) of neutral hydrogen (HI) present between the quasar and us.

The IGM is detected through the absorption features it produces in the spectrum of a background bright source of light (typically a QSO).



Ground states to higher ones

► In absence of any interaction, hydrogen atoms in the IGM are likely to be in the ground state.

Ground states to higher ones

- ► In absence of any interaction, hydrogen atoms in the IGM are likely to be in the ground state.
- ▶ Lyman series: i = 1 to f = n > 1, absorb one photon of frequency ν_{fi} .

▶ Consider radiation (photons) emitted at the QSO (at $z = z_Q$) rest frame frequency $\nu_Q > \nu_{\rm fi}$. As the universe expands, the frequency will decrease and will reach $\nu_{\rm fi}$ at a redshift z given by

$$\frac{\nu_Q}{1+z_Q} = \frac{\nu_{fi}}{1+z} \Longrightarrow \lambda_Q(1+z_Q) = \lambda_{fi}(1+z)$$

▶ Consider radiation (photons) emitted at the QSO (at $z = z_Q$) rest frame frequency $\nu_Q > \nu_{\rm fi}$. As the universe expands, the frequency will decrease and will reach $\nu_{\rm fi}$ at a redshift z given by

$$\frac{\nu_Q}{1+z_Q} = \frac{\nu_{fi}}{1+z} \Longrightarrow \lambda_Q(1+z_Q) = \lambda_{fi}(1+z)$$

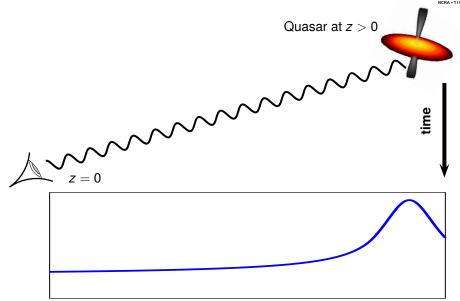
▶ Example: Consider a QSO at $z_Q=3$. Consider a photon emitted at wavelength $\lambda_Q=1187$ Å, then it would reach the Ly α wavelength 1216 Å at $z\approx 1187\times 4/1216-1\approx 2.9$. If there is neutral hydrogen at that position, it will produce an absorption signature.

▶ Consider radiation (photons) emitted at the QSO (at $z = z_Q$) rest frame frequency $\nu_Q > \nu_{\rm fi}$. As the universe expands, the frequency will decrease and will reach $\nu_{\rm fi}$ at a redshift z given by

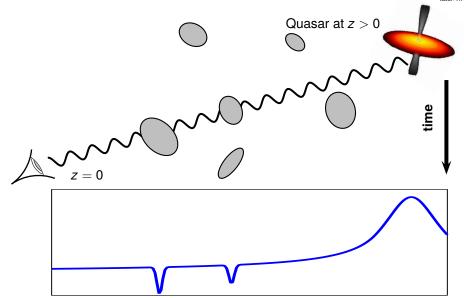
$$\frac{\nu_Q}{1+z_Q} = \frac{\nu_{fi}}{1+z} \Longrightarrow \lambda_Q(1+z_Q) = \lambda_{fi}(1+z)$$

- ▶ Example: Consider a QSO at $z_Q=3$. Consider a photon emitted at wavelength $\lambda_Q=1187$ Å, then it would reach the Ly α wavelength 1216 Å at $z\approx 1187\times 4/1216-1\approx 2.9$. If there is neutral hydrogen at that position, it will produce an absorption signature.
- ▶ We will observe the feature at $\lambda = \lambda_Q(1 + z_Q) \approx 4742$ Å. Thus any absorption arising at a redshift z will show up at $\lambda = \lambda_f(1 + z)$.

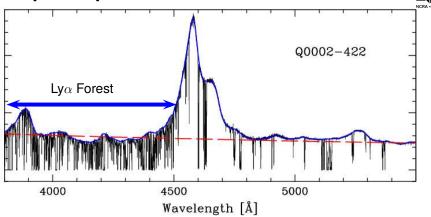
Absorption signatures



Absorption signatures



Absorption spectra



- ▶ The absorption lines blueward of the emission line arise from Ly α transition of neutral hydrogen (HI) present between the QSO and us.
- ► The unabsorbed regions correspond to either ionized regions or no matter at all.

Radiative transfer

▶ The radiative transfer equation, in presence of only absorption, is

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{\mathbf{n}} \cdot \nabla I_{\nu} = \frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = -n_{\mathrm{abs}}\sigma_{\nu}I_{\nu}$$

Radiative transfer

▶ The radiative transfer equation, in presence of only absorption, is

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{\mathbf{n}} \cdot \nabla I_{\nu} = \frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = -n_{\mathrm{abs}}\sigma_{\nu}I_{\nu}$$

► The formal solution:

$$I_{
u}(s,t) = I_{
u}(0,t_{
m ret}) \exp \left[- \int_0^s \mathrm{d}s' \; n_{
m abs}(s') \; \sigma_{
u}
ight]$$

Radiative transfer

▶ The radiative transfer equation, in presence of only absorption, is

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{\mathbf{n}} \cdot \nabla I_{\nu} = \frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = -n_{\mathrm{abs}}\sigma_{\nu}I_{\nu}$$

▶ The formal solution:

$$I_{
u}(s,t) = I_{
u}(0,t_{
m ret}) \exp \left[- \int_0^s {
m d}s' \; n_{
m abs}(s') \; \sigma_{
u}
ight]$$

► Define the optical depth

$$au_
u = \int_0^{s} \mathrm{d} s' \; n_{
m abs}(s') \; \sigma_
u$$

so that the effect of absorption can be written as

$$I_{\nu}(s,t) = I_{\nu}(0,t_{\rm ret}) e^{-\tau_{\nu}}$$

In absence of any absorption $\tau_{\nu} = 0$.

Cosmological radiative transfer

► The radiative transfer equation, in presence of only absorption, is

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \frac{1}{c}\frac{\dot{a}}{a}\left(3I_{\nu} - \nu\frac{\partial I_{\nu}}{\partial \nu}\right) + \hat{\mathbf{n}}\cdot\nabla I_{\nu} = -n_{\rm abs}\sigma_{\nu}I_{\nu}$$

► The formal solution:

$$I_{\nu}(s,t) = I_{\nu_i}(0,t_i) \left(\frac{a_i}{a}\right)^3 \exp\left[-\int_0^s \mathrm{d}s' \; n_{\mathrm{abs}}(s',t') \; \sigma_{\nu'}\right],$$

where $\nu_i = \nu a/a_i$ and $\nu' = \nu a/a(t')$.

► Define the optical depth

$$au_
u = \int_0^{s} \mathrm{d} s' \; n_{
m abs}(s',t') \; \sigma_{
u'}$$

so that the effect of absorption can be written as

$$I_{\nu}(\boldsymbol{s},t) = I_{\nu_i}(0,t_i) \left(\frac{a_i}{a}\right)^3 e^{-\tau_{\nu}}$$

In absence of any absorption $\tau_{\nu} = 0$.

...in terms of redshifts

▶ Observer at z = 0 (i.e., a = 1), QSO at $z = z_Q$:

$$I_{
u} = I_{
u_Q}(t_Q) \left(rac{1}{1+z_Q}
ight)^3 \mathrm{e}^{- au_
u},$$
 $au_
u = \int_0^\mathrm{s} \mathrm{d} \mathbf{s}' \, n_\mathrm{abs}(\mathbf{s}',t') \, \sigma_{
u'}$

where
$$\nu_Q = \nu (1 + z_Q)$$
 and $\nu' = \nu (1 + z')$.

Ly α optical depth

► The observed flux

$$I_{\nu} = I_{\nu_Q}(t_Q) \left(\frac{1}{1+Z_Q}\right)^3 e^{-\tau_{\nu}} \equiv I_{\nu_Q}^{\text{cont}} e^{-\tau_{\nu}}$$

Ly α optical depth

► The observed flux

$$I_{\nu} = I_{\nu_{Q}}(t_{Q}) \left(\frac{1}{1 + Z_{Q}}\right)^{3} e^{-\tau_{\nu}} \equiv I_{\nu_{Q}}^{\text{cont}} e^{-\tau_{\nu}}$$

► The optical depth

$$\tau_{\nu} = \int_{0}^{s} ds' \, n_{abs}(s', t') \, \sigma_{\nu'}$$
$$= \int_{z_{Q}}^{0} dz' \frac{ds'}{dz'} n_{abs}(z') \, \sigma_{\nu'=\nu(1+z')}$$

Ly α optical depth

The observed flux

$$I_{\nu} = I_{\nu_{Q}}(t_{Q}) \left(\frac{1}{1 + Z_{Q}}\right)^{3} e^{-\tau_{\nu}} \equiv I_{\nu_{Q}}^{\text{cont}} e^{-\tau_{\nu}}$$

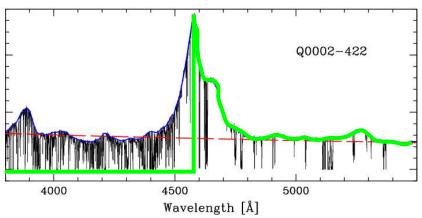
► The optical depth

$$\tau_{\nu} = \int_{0}^{s} ds' \, n_{abs}(s', t') \, \sigma_{\nu'}$$
$$= \int_{z_{Q}}^{0} dz' \frac{ds'}{dz'} n_{abs}(z') \, \sigma_{\nu'=\nu(1+z')}$$

▶ Use ds' = cdt' = -[c/H(z')] dz'/(1+z'), assume the profile to be very narrow (delta function), and calculate the optical depth for a uniform IGM. The result is (at $z \sim 3$)

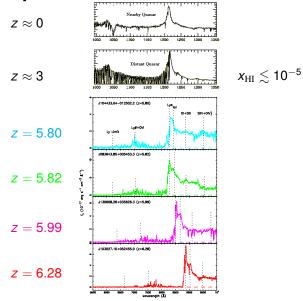
$$au_{
u} pprox 10^5 \left(rac{n_{
m HI}}{n_H}
ight)$$

Gunn-Peterson effect



Observed flux \sim Unabsorbed flux \times exp $\left(-10^5~x_{\rm HI}\right)$, where $x_{\rm HI}=\rho_{\rm HI}/\rho_{\rm H}$. The fact that there is non-zero flux implies that $x_{\rm HI}\simeq 10^{-5}$ Non-zero flux observed till $z\sim 5.5$

QSO absorption lines at $z\sim6$



QSO absorption lines at $z\sim 6$

$$Z \approx 0$$
 $Z \approx 3$

Distant Quasar

 $Z \approx 3$
 $Z \approx 5.80$
 $Z = 5.82$
 $Z = 5.82$
 $Z = 6.28$

$$x_{\rm HI} \lesssim 10^{-5}$$

Does this absorption mean high neutrality?

QSO absorption lines at $z\sim6$

Gunn-Peterson optical depth:

$$au_{\rm GP} pprox \left(rac{ar{x}_{\rm HI}}{10^{-5}}
ight)$$

- ► So, even a neutral fraction $x_{HI} \approx 10^{-4}$ would produce **complete absorption**!
- Lyα transition "too strong", saturates too easily....

Evolution equations

► Evolution equation for $n_H(\mathbf{x},t) \equiv n_H(\mathbf{x},z) = \bar{n}_H(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_H}{\mathrm{d}t}$$

Evolution equations

► Evolution equation for $n_H(\mathbf{x},t) \equiv n_H(\mathbf{x},z) = \bar{n}_H(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_H}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_H$$

Effect of expansion $n_{\rm HI} \propto a^{-3}$.

Evolution equations

► Evolution equation for $n_H(\mathbf{x},t) \equiv n_H(\mathbf{x},z) = \bar{n}_H(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_H}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_H + \dot{\delta}_B\bar{n}_H$$

Effect of expansion $n_{\rm HI} \propto a^{-3}$ Density contrast

► Evolution equation for $n_H(\mathbf{x},t) \equiv n_H(\mathbf{x},z) = \bar{n}_H(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_H}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_H + \dot{\delta}_B\bar{n}_H$$

Effect of expansion $n_{\rm HI} \propto a^{-3}$ —Density contrast

▶ Evolution equation for $n_{\rm HI}(\mathbf{x},t) = \bar{n}_{\rm HI}(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_{\mathrm{HI}}}{\mathrm{d}t} = -3\frac{\dot{a}}{a}\,n_{\mathrm{HI}} + \dot{\delta}_{B}\bar{n}_{\mathrm{HI}}$$

▶ Evolution equation for $n_H(\mathbf{x},t) \equiv n_H(\mathbf{x},z) = \bar{n}_H(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_H}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_H + \dot{\delta}_B\bar{n}_H$$

Effect of expansion $n_{\rm HI} \propto a^{-3}$ Density contrast

▶ Evolution equation for $n_{\rm HI}(\mathbf{x},t) = \bar{n}_{\rm HI}(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_{\mathrm{HI}}}{\mathrm{d}t} = -3\frac{\dot{a}}{a} n_{\mathrm{HI}} + \dot{\delta}_{B}\bar{n}_{\mathrm{HI}} - \Gamma_{\mathrm{HI}} n_{\mathrm{HI}}$$

Photoionization

ightharpoonup Γ_{HI} : photoionization rate of neutral hydrogen, depends on ionizing sources

► Evolution equation for $n_H(\mathbf{x}, t) \equiv n_H(\mathbf{x}, z) = \bar{n}_H(z) [1 + \delta_B(\mathbf{x}, z)]$:

$$\frac{\mathrm{d}n_H}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_H + \dot{\delta}_B\bar{n}_H$$

Effect of expansion $n_{\rm HI} \propto a^{-3}$ Density contrast

▶ Evolution equation for $n_{\rm HI}(\mathbf{x},t) = \bar{n}_{\rm HI}(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_{\mathrm{HI}}}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_{\mathrm{HI}} + \dot{\delta}_{B}\bar{n}_{\mathrm{HI}} - \Gamma_{\mathrm{HI}}n_{\mathrm{HI}} + \alpha(T)n_{\mathrm{HII}}n_{\mathrm{e}}$$

Photoionization Recombination

- \blacktriangleright $\Gamma_{\rm HI}$: photoionization rate of neutral hydrogen, depends on ionizing sources
- α(T): recombination rate of ionized hydrogen with free electrons, known as a function of temperature T

► Evolution equation for $n_H(\mathbf{x},t) \equiv n_H(\mathbf{x},z) = \bar{n}_H(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_H}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_H + \dot{\delta}_B\bar{n}_H$$

Effect of expansion $n_{\rm HI} \propto a^{-3}$ —Density contrast

▶ Evolution equation for $n_{\rm HI}(\mathbf{x},t) = \bar{n}_{\rm HI}(z) [1 + \delta_B(\mathbf{x},z)]$:

$$\frac{\mathrm{d}n_{\mathrm{HI}}}{\mathrm{d}t} = -3\frac{\dot{a}}{a}n_{\mathrm{HI}} + \dot{\delta}_{B}\bar{n}_{\mathrm{HI}} - \Gamma_{\mathrm{HI}}n_{\mathrm{HI}} + \alpha(T)n_{\mathrm{HII}}n_{\mathrm{e}}$$

Photoionization Recombination

- ightharpoonup $\Gamma_{\rm HI}$: photoionization rate of neutral hydrogen, depends on ionizing sources
- ightharpoonup lpha(T): recombination rate of ionized hydrogen with free electrons, known as a function of temperature T
- Collisional ionization is negligible because of small densities

Photoionization rate

▶ Number of photoionizations per hydrogen atom per unit time:

$$\Gamma_{
m HI} = 4\pi \int_{
u_{
m HI}}^{\infty} {
m d}
u rac{J_{
u}}{h
u} \; \sigma_{
m HI}(
u)$$

(units s^{-1})

 J_{ν} : flux of ionizing photons (units erg cm⁻² s⁻¹ Hz⁻¹ sr⁻¹), can be estimated from the emissivity of sources

$$J_{
u} \sim \int c \mathrm{d}t \; \epsilon_{
u'} \; \mathrm{e}^{- au_{
u}}$$

Haardt & Madau (1996)

Photoionization rate

▶ Number of photoionizations per hydrogen atom per unit time:

$$\Gamma_{
m HI} = 4\pi \int_{
u_{
m HI}}^{\infty} {
m d}
u rac{J_
u}{h
u} \; \sigma_{
m HI}(
u)$$

(units s^{-1})

 J_{ν} : flux of ionizing photons (units erg cm⁻² s⁻¹ Hz⁻¹ sr⁻¹), can be estimated from the emissivity of sources

$$J_{
u} \sim \int c \mathrm{d}t \; \epsilon_{
u'} \; \mathrm{e}^{- au_{
u}}$$

Haardt & Madau (1996)

 \blacktriangleright The term $e^{-\tau_{\nu}}$ is significant over a length scale λ_{ν} (the mean free path), then

$$J_{\nu} \sim \epsilon_{\nu} \lambda_{\nu}$$

and

$$\Gamma_{\rm HI} \propto \int_{\nu_{\rm HI}}^{\infty} d\nu \frac{\epsilon_{\nu}}{h\nu} \; \sigma_{\rm HI}(\nu) \; \lambda_{\nu} = \int_{\nu_{\rm HI}}^{\infty} d\nu \; \dot{n}_{\nu} \; \sigma_{\rm HI}(\nu) \; \lambda_{\nu}$$

► Define the neutral fraction

$$x_{\rm HI} \equiv \frac{n_{\rm HI}}{n_H}$$

so that

$$\frac{\mathrm{d}x_{\mathrm{HI}}}{\mathrm{d}t} = -\Gamma_{\mathrm{HI}} x_{\mathrm{HI}} + \alpha(T) (1 - x_{\mathrm{HI}}) n_{\mathrm{e}}$$

Define the neutral fraction

$$x_{\rm HI} \equiv \frac{n_{\rm HI}}{n_H}$$

so that

$$\frac{\mathrm{d}x_{\mathrm{HI}}}{\mathrm{d}t} = -\Gamma_{\mathrm{HI}} x_{\mathrm{HI}} + \alpha(T) (1 - x_{\mathrm{HI}}) n_{\mathrm{e}}$$

▶ For a pure hydrogen gas (i.e., no helium), $n_e = n_{HII}$, then

$$\frac{\mathrm{d}x_{\mathrm{HI}}}{\mathrm{d}t} = -\Gamma_{\mathrm{HI}} x_{\mathrm{HI}} + \alpha(T) (1 - x_{\mathrm{HI}})^2 n_H$$

Define the neutral fraction

$$x_{\rm HI} \equiv \frac{n_{\rm HI}}{n_H}$$

so that

$$\frac{\mathrm{d}x_{\mathrm{HI}}}{\mathrm{d}t} = -\Gamma_{\mathrm{HI}} x_{\mathrm{HI}} + \alpha(T) (1 - x_{\mathrm{HI}}) n_{\mathrm{e}}$$

▶ For a pure hydrogen gas (i.e., no helium), $n_e = n_{HII}$, then

$$\frac{\mathrm{d}x_{\mathrm{HI}}}{\mathrm{d}t} = -\Gamma_{\mathrm{HI}} x_{\mathrm{HI}} + \alpha(T) (1 - x_{\mathrm{HI}})^2 n_H$$

► The equilibrium solution is:

$$\mathbf{x}_{\mathrm{HI}}^{\mathrm{eq}} = \left(1 + \frac{q}{2}\right) - \sqrt{\left(1 + \frac{q}{2}\right)^2 - 1}, \quad q = \frac{\Gamma_{\mathrm{HI}}}{\alpha(T) \, n_H}$$

Define the neutral fraction

$$x_{\rm HI} \equiv \frac{n_{\rm HI}}{n_H}$$

so that

$$\frac{\mathrm{d}x_{\mathrm{HI}}}{\mathrm{d}t} = -\Gamma_{\mathrm{HI}} x_{\mathrm{HI}} + \alpha(T) (1 - x_{\mathrm{HI}}) n_{\mathrm{e}}$$

▶ For a pure hydrogen gas (i.e., no helium), $n_e = n_{HII}$, then

$$\frac{\mathrm{d}x_{\mathrm{HI}}}{\mathrm{d}t} = -\Gamma_{\mathrm{HI}} x_{\mathrm{HI}} + \alpha(T) (1 - x_{\mathrm{HI}})^2 n_H$$

► The equilibrium solution is:

$$x_{\mathrm{HI}}^{\mathrm{eq}} = \left(1 + \frac{q}{2}\right) - \sqrt{\left(1 + \frac{q}{2}\right)^2 - 1}, \quad q = \frac{\Gamma_{\mathrm{HI}}}{\alpha(T) \, n_H}$$

▶ Define the recombination time $t_{\rm rec} = [\alpha(T)n_H]^{-1}$, then $q = \Gamma_{\rm HI}t_{\rm rec}$ represents the number of photoionizations per neutral atom over the recombination time-scale.

▶ Assume q to be independent of time, also let $q\gg$ 1 then the solution to the equation is

$$x_{\rm HI} \approx x_{\rm HI}^{\rm eq} + [x_{\rm HI}(0) - x_{\rm HI}^{\rm eq}(0)] e^{-\Gamma_{\rm HI}t}, \quad x_{\rm HI}^{\rm eq} \approx \frac{1}{q} = \frac{\alpha(T) n_H}{\Gamma_{\rm HI}} \ll 1$$

Hence $x_{\rm HI}$ approaches its equilibrium value in a time-scale $\Gamma_{\rm HI}^{-1}$. Implications for numerical solutions

▶ Assume q to be independent of time, also let $q\gg$ 1 then the solution to the equation is

$$x_{\rm HI} \approx x_{\rm HI}^{\rm eq} + [x_{\rm HI}(0) - x_{\rm HI}^{\rm eq}(0)] e^{-\Gamma_{\rm HI}t}, \quad x_{\rm HI}^{\rm eq} \approx \frac{1}{q} = \frac{\alpha(T) n_H}{\Gamma_{\rm HI}} \ll 1$$

Hence $x_{\rm HI}$ approaches its equilibrium value in a time-scale $\Gamma_{\rm HI}^{-1}$. Implications for numerical solutions

At $z\sim 3$, we have $t_{\rm rec}\sim 10^{18}~{\rm s}\sim 10^{11}$ yr. If we want $x_{\rm HI}^{\rm eq}\sim 10^{-6}$, then $\Gamma_{\rm HI}\sim 10^{-12}~{\rm s}^{-1}$. Thus, the equilibrium value will be achieved within $\sim 10^5$ yrs (quite fast!).

▶ Assume q to be independent of time, also let $q \gg 1$ then the solution to the equation is

$$x_{\rm HI} \approx x_{\rm HI}^{\rm eq} + [x_{\rm HI}(0) - x_{\rm HI}^{\rm eq}(0)] e^{-\Gamma_{\rm HI}t}, \quad x_{\rm HI}^{\rm eq} \approx \frac{1}{q} = \frac{\alpha(T) n_H}{\Gamma_{\rm HI}} \ll 1$$

Hence $x_{\rm HI}$ approaches its equilibrium value in a time-scale $\Gamma_{\rm HI}^{-1}$. Implications for numerical solutions

- At $z\sim 3$, we have $t_{\rm rec}\sim 10^{18}~{\rm s}\sim 10^{11}$ yr. If we want $x_{\rm HI}^{\rm eq}\sim 10^{-6}$, then $\Gamma_{\rm HI}\sim 10^{-12}~{\rm s}^{-1}$. Thus, the equilibrium value will be achieved within $\sim 10^5$ yrs (quite fast!).
- ▶ Also $x_{\rm HI}^{\rm eq} \propto n_H$, thus high density regions tend to remain neutral.

▶ Assume q to be independent of time, also let $q \gg 1$ then the solution to the equation is

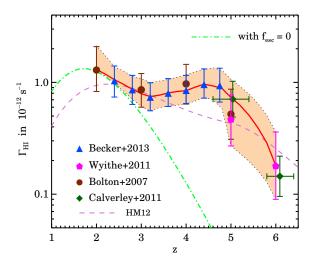
$$x_{\rm HI} \approx x_{\rm HI}^{\rm eq} + [x_{\rm HI}(0) - x_{\rm HI}^{\rm eq}(0)] e^{-\Gamma_{\rm HI}t}, \quad x_{\rm HI}^{\rm eq} \approx \frac{1}{q} = \frac{\alpha(T) n_H}{\Gamma_{\rm HI}} \ll 1$$

Hence $x_{\rm HI}$ approaches its equilibrium value in a time-scale $\Gamma_{\rm HI}^{-1}$. Implications for numerical solutions

- At $z\sim 3$, we have $t_{\rm rec}\sim 10^{18}~{\rm s}\sim 10^{11}$ yr. If we want $x_{\rm HI}^{\rm eq}\sim 10^{-6}$, then $\Gamma_{\rm HI}\sim 10^{-12}~{\rm s}^{-1}$. Thus, the equilibrium value will be achieved within $\sim 10^5$ yrs (quite fast!).
- ▶ Also $x_{\rm HI}^{\rm eq} \propto n_H$, thus high density regions tend to remain neutral.
- ightharpoonup The Lyman- α forest observations can, in principle, provide constraints on Γ_{HI}.

Observational constraints on Γ_{HI}

Khaire, Srianand, TRC & Gaikwad (2016)



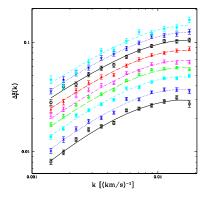
Flux power spectrum

- ▶ Transmitted flux $F(\nu) = e^{-\tau_{\nu}}$.
- ► Convert the independent variable from ν to $\Delta v = c\Delta \nu / \nu$
- ▶ Define the contrast

$$\delta_F(\Delta v) = \frac{F(\Delta v)}{\langle F \rangle} - 1$$

▶ The power spectrum: $P_F(k) = \langle |\delta_F(k)|^2 \rangle$. The dimensionless power spectrum

$$\Delta_F^2(k) = \frac{kP_F(k)}{\pi}$$



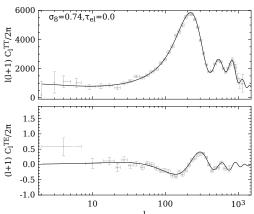
SDSS data $z = 2.2, 2.4, \dots, 4.2$ (bottom to top) McDonald et al. (2006)

CMBR angular power spectrum

- ► CMBR photons scatter off free electrons.
- ► The measured quantity in CMBR observations is the optical depth due to Thomson scattering off **free electrons**:

$$\tau_{\rm el} = \sigma_T c \int_{t_{\rm LSS}}^{t_0} \mathrm{d}t \, n_{\rm e} \, (1+z)^3$$

Provided by reionization-

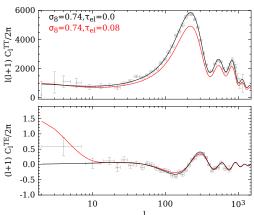


CMBR angular power spectrum

- ► CMBR photons scatter off free electrons.
- ► The measured quantity in CMBR observations is the optical depth due to Thomson scattering off **free electrons**:

$$\tau_{\rm el} = \sigma_T c \int_{t_{\rm LSS}}^{t_0} \mathrm{d}t \, n_{\rm e} \, (1+z)^3$$

Provided by reionization-

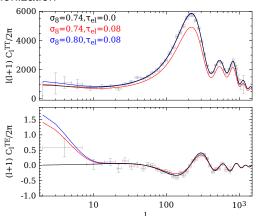


CMBR angular power spectrum

- ► CMBR photons scatter off free electrons.
- ► The measured quantity in CMBR observations is the optical depth due to Thomson scattering off **free electrons**:

$$\tau_{\rm el} = \sigma_T c \int_{t_{\rm LSS}}^{t_0} \mathrm{d}t \, n_{\rm e} \, (1+z)^3$$

Provided by reionization



Current constraints on reionization come from

 polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)

Current constraints on reionization come from

- polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)
- dampening of anisotropies at (almost) all angular scales (effect is degenerate with amplitude of density power spectrum)

Current constraints on reionization come from

- polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)
- dampening of anisotropies at (almost) all angular scales (effect is degenerate with amplitude of density power spectrum)
- ► Planck could break the degeneracy through lensing of the CMBR

Current constraints on reionization come from

- polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)
- dampening of anisotropies at (almost) all angular scales (effect is degenerate with amplitude of density power spectrum)
- Planck could break the degeneracy through lensing of the CMBR
- ▶ The value of $\tau_{\rm el}$ can related to a reionization redshift $z_{\rm re}$. Assume $n_{\rm e} = n_{\rm H}$ for $z < z_{\rm re}$ and $n_{\rm e} = 0$ for $z > z_{\rm re}$, then

$$au_{\rm el} = \sigma_T \ c \ n_H \int_0^{z_{\rm re}} \mathrm{d}z \ \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \ (1+z)^3$$

Usually a slightly generalised tanh form is incorporated in CMBR data analysis.

Current constraints on reionization come from

- ► polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)
- ▶ dampening of anisotropies at (almost) all angular scales (effect is degenerate with amplitude of density power spectrum)
- Planck could break the degeneracy through lensing of the CMBR
- ▶ The value of $\tau_{\rm el}$ can related to a reionization redshift $z_{\rm re}$. Assume $n_{\rm e} = n_{\rm H}$ for $z < z_{\rm re}$ and $n_{\rm e} = 0$ for $z > z_{\rm re}$, then

$$au_{\rm el} = \sigma_T \ c \ n_H \int_0^{z_{\rm re}} \mathrm{d}z \ \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \ (1+z)^3$$

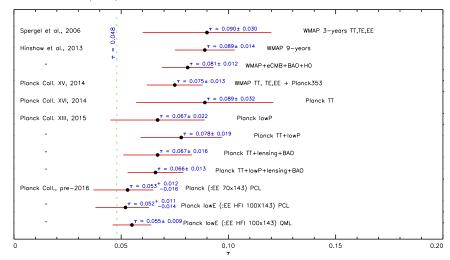
Usually a slightly generalised tanh form is incorporated in CMBR data analysis.

► Current constraints imply $z_{re} \approx 7.5 - 8$

Thomson scattering $au_{\rm el}$ from CMBR

$$\tau_{\rm el} = \sigma_T c \int_0^{z[t]} {\rm d}t \; n_e \; (1+z)^3$$

Planck Collaboration (2016)



► Confusing statements while interpreting the data:

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is z \sim 6. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at z \sim 6!

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6$!
 - CMBR experiments imply that "redshift of reionization" is $z\sim8$. But they assume an instantaneous reionization (or a tanh model) which is clearly too simplistic!

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6$!
 - CMBR experiments imply that "redshift of reionization" is $z \sim 8$. But they assume an instantaneous reionization (or a tanh model) which is clearly too simplistic!
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z \gtrsim 8$ and completing at $z \sim 6$.

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is z ~ 6. No, they only imply that x_{HI} ≥ 10⁻⁴ at z ~ 6!
 CMBR experiments imply that "redshift of reionization" is z ~ 8. But they assume an
 - instantaneous reionization (or a tanh model) which is clearly too simplistic!

 There is a tension between guasar and CMBR data. The data only imply that reionization
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z \gtrsim 8$ and completing at $z \sim 6$.
- ► Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6$!
 - CMBR experiments imply that "redshift of reionization" is z ~ 8. But they assume an instantaneous reionization (or a tanh model) which is clearly too simplistic!
 There is a tension between quasar and CMBR data. The data only imply that reionization.
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z\gtrsim 8$ and completing at $z\sim 6$.
- ► Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,
 - reionization should start early enough to give a sufficiently (but not too) high $\tau_{\rm el}$

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6$!
 - CMBR experiments imply that "redshift of reionization" is z ~ 8. But they assume an instantaneous reionization (or a tanh model) which is clearly too simplistic!
 There is a tension between guasar and CMBR data. The data only imply that reionization
 - There is a tension between quasar and CMBH data. The data only imply that reionization is an extended process, starting at $z \gtrsim 8$ and completing at $z \sim 6$.
- ► Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,
 - reionization should start early enough to give a sufficiently (but not too) high $\tau_{\rm el}$
 - reionization must end before $z \sim 6$

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6$!
 - CMBR experiments imply that "redshift of reionization" is z ~ 8. But they assume an instantaneous reionization (or a tanh model) which is clearly too simplistic!
 There is a tension between quasar and CMBR data. The data only imply that reionization
 - There is a tension between quasar and CMBH data. The data only imply that reionization is an extended process, starting at $z \gtrsim 8$ and completing at $z \sim 6$.
- ► Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,
 - reionization should start early enough to give a sufficiently (but not too) high $\tau_{\rm el}$
 - reionization must end before $z\sim6$
 - the model should produce the right number of photons such that $x_{\rm HI} \gtrsim 10^{-4}$ at $z \sim 6$ (or, equivalently the correct value of $\Gamma_{\rm HI}$)