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Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Moebius group in n dimensions

Moebius group:

Moeb(Rn ∪ {∞}) y R
n ∪ {∞}

= < reflections in hyperplanes, inversions in spheres >

= group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

[ξ, ξ′, η, η′] :=
||ξ − η||||ξ′ − η′||

||ξ − η′||||ξ′ − η||

Moeb(Sn) y Sn

= conjugate of Moeb(Rn ∪ {∞}) by stereographic projection
R

n ∪ {∞} → Sn

= group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal
metric on Sn)

Kingshook Biswas



Isometries of (real) hyperbolic space:

Upper half-space model: Hn = R
n−1 × R

+ , ∂Hn = R
n−1 ∪ {∞}

Isom(Hn) = < reflections/inversions in mirrors ⊥ ∂Hn >

The map

Isom(Hn) → Moeb(Rn−1 ∪ {∞})

f 7→ f|∂Hn

is an isomorphism.

Thus
Isom(Hn) ≃ Moeb(∂Hn)

(also true for ball model of Hn, where ∂Hn = Sn−1)
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Mostow rigidity

Theorem

(Mostow) For n ≥ 3, any isomorphism φ : π1(M) → π1(N)
between fundamental groups of closed hyperbolic n-manifolds
M,N is induced by an isometry f : M → N.

Sketch of proof:

Step 1. Choosing a basepoint x0 ∈ H
n, φ induces an

equivariant quasi-isometry
f0 : π1(M) · x0 → π1(N) · x0,g · x0 7→ φ(g) · x0.

Step 2. f0 extends to an equivariant quasi-conformal
homeomorphism F : ∂Hn → ∂Hn.

Step 3. F equivariant and quasi-conformal implies F
conformal, hence Moebius.

Step 4. F Moebius implies F extends to an equivariant
isometry f : Hn → H

n.
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Marked length spectrum rigidity

X closed negatively curved n-manifold

Each free homotopy class of closed curves contains a unique
closed geodesic

Length function lX : π1(X ) → R
+

Question: Given X ,Y closed negatively curved n-manifolds,
and φ : π1(X ) → π1(Y ) an isomorphism such that lY ◦ φ = lX , is
X isometric to Y ?

Theorem

(Otal) Yes, if n = 2.

Theorem

(Hamenstadt) Marked length spectra of X ,Y are equal iff
geodesic flows of X ,Y are topologically conjugate.
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CAT(-1) spaces

(X ,d) metric space is CAT(-1) if:

(1) X is a length space: For all p,q ∈ X , exists isometric
embedding γ : [0,T = d(p,q)] → X with γ(0) = p, γ(T ) = q.

(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner
than in H

2, d(s, t) ≤ dH2(s, t).

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, K ≤ −1.

X metric tree.
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Boundary at infinity

∂X := {[γ] : γ : [0,∞) → X geodesic ray}, where γ1 ∼ γ2 if
{d(γ1(t), γ2(t)) : t ≥ 0} bounded.

γ(∞) := [γ].

∀x ∈ X , ξ ∈ ∂X ,∃! geodesic ray γ : [0,∞) → X with
γ(0) = x , γ(∞) = ξ.

∀ξ, η ∈ ∂X ,∃! bi-infinite geodesic γ : R → X with
γ(−∞) = ξ, γ(∞) = η.

Cone topology on X = X ∪ ∂X :

Neighbourhoods of ξ = [γ] ∈ ∂X given by "cones" U(γ, r , ǫ)

where U(γ, r , ǫ) = {x ∈ X : d(x , γ(0)) > r ,d(pr (x), γ(r)) < ǫ},
where pr = projection to B(γ(0), r).

X compact iff X proper.
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Examples:

X simply connected complete manifold, K ≤ −1, then the map

T 1
x X → ∂X

v 7→ γ(∞)

(where γ = unique geodesic ray with γ̇(0) = v) is a
homeomorphism, X ∪ ∂X ≃ B

n ∪ ∂Bn.

X metric tree, then ∂X ≃ space of ends of tree.
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Visual metrics

Comparison angle at infinity: For x ∈ X , ξ, η ∈ ∂X , angle
between ξ, η as viewed from x ,

θx(ξ, η) := lim
p→ξ,q→η

θx (p,q)

θx (ξ, η) = 0 iff ξ = η, θx(ξ, η) = π iff x ∈ (ξ, η)

Visual metric based at x :

ρx (ξ, η) = sin
(

1
2
θx (ξ, η)

)

Diameter one metric on ∂X compatible with topology on ∂X .

Example: For X = H
n, ∂X = Sn−1, ρ0 = 1

2× chordal metric on
Sn−1.
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Gromov inner product:
(x |y)z := 1

2(d(x , z) + d(y , z) − d(x , y)), x , y , z ∈ X .

For X metric tree, (x |y)z = length of common segment of
[x , z], [y , z].

For ξ, η ∈ ∂X , (ξ|η)x := limy→ξ,y ′→η(y |y ′)x (y , y ′ converge
radially).

ρx (ξ, η) := exp(−(ξ|η)x )

Example: X rooted binary tree, ∂X = {0,1}N, ρx = standard
ultrametric on Cantor set.
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Moebius and conformal maps between metric spaces

(Z , ρ) metric space, cross-ratio of quadruple of distinct points
ξ, ξ′, η, η′ ∈ Z defined by

[ξ, ξ′, η, η′]ρ :=
ρ(ξ, η)ρ(ξ′, η′)

ρ(ξ, η′)ρ(ξ′, η)

Embedding F : (Z1, ρ1) → (Z2, ρ2) Moebius if it preserves
cross-ratios.

Embedding F : (Z1, ρ1) → (Z2, ρ2) conformal if

dFρ1,ρ2(ξ) := lim
η→ξ

ρ2(F (ξ),F (η))

ρ1(ξ, η)

exists for all ξ ∈ Z1 (assuming Z1 has no isolated points).

F Moebius implies F conformal

Moreover, "Geometric Mean-Value Theorem" holds for Moebius
maps:

ρ2(F (ξ),F (η))2 = dFρ1,ρ2(ξ)dFρ1,ρ2(η)ρ1(ξ, η)
2
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Cross-ratio on ∂X

For Z = ∂X , ρ = ρx , cross-ratio [ ]ρx independent of choice of
x ∈ X .

Common value [ ] given by

[ξ, ξ′, η, η′] = lim exp
(

1
2
(d(a,b) + d(a′,b′)− d(a,b′)− d(a′,b))

)

(where (a,a′,b,b′) → (ξ, ξ′, η, η′) ∈ ∂4X radially).

id : (∂X , ρx ) → (∂X , ρy ) Moebius, derivative given by

dρy

dρx
(ξ) := d idρx ,ρy (ξ) = exp(B(x , y , ξ))

where B(x , y , ξ) =Busemann function, defined by

B(x , y , ξ) := lim
a→ξ

(d(x ,a)− d(y ,a))

Any isometry f : X → Y extends to a Moebius map
F : ∂X → ∂Y .
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Marked length spectrum and Moebius maps

Theorem

(Otal) X ,Y closed negatively curved n-manifolds have same
marked length spectrum ⇔ F : ∂X̃ → ∂Ỹ is Moebius.

Question: For X ,Y CAT(-1) spaces, does a Moebius map
F : ∂X → ∂Y extend to an isometry f : X → Y ?

Theorem

(Bourdon) For X a rank one symmetric space with maximum of
sectional curvatures equal to −1, Y a CAT(-1) space, any
Moebius embedding F : ∂X → ∂Y extends to an isometric
embedding f : X → Y .
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Conformal maps and geodesic conjugacies

X ,Y complete, simply connected manifolds with K ≤ −1, then
any conformal map F : ∂X → ∂Y induces a topological
conjugacy of geodesic flows φ : T 1X → T 1Y :

Given v ∈ T 1X tangent to (ξ, η), define φ(v) to be the unique
w ∈ T 1Y tangent to (F (ξ),F (η)) satisfying

dFρx ,ρy (ξ) = 1

where x = π(v), y = π(w).

Flowing v ,w for time t scales visual metrics at ξ,F (ξ) by same
factor et , so φ preserves time along geodesics.
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If F is Moebius, then φ is flip-equivariant:

dFρx ,ρy (ξ)dFρx ,ρy (η) =
ρy (F (ξ),F (η))2

ρx(ξ, η)2 = 1

so
dFρx ,ρy (ξ) = 1 iff dFρx ,ρy (η) = 1

hence
φ(−v) = −φ(v)
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The integrated Schwarzian of a conformal map

For a conformal map F : ∂X → ∂Y , measure failure of
φ : T 1X → T 1Y to be flip-equivariant:

The integrated Schwarzian of F is the function
S(F ) : ∂2X → R defined by

S(F )(ξ, η) := signed distance between foot of φ(v) and foot of φ(−v)

= − log(dFρx ,ρy (ξ)dFρx ,ρy (η))

where v tangent to (ξ, η), x ∈ (ξ, η), y ∈ (F (ξ),F (η))
(independent of choices of v , x , y).

Cocycle: S(F ◦ G) = S(F ) ◦ (G,G) + S(G)
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The integrated Schwarzian of a conformal map
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Integrated Schwarzian and cross-ratio distortion

Conformal map F : ∂X → ∂Y said to be C1 conformal if dFρx ,ρy

continuous.

Theorem

(B.) Let X be a simply connected complete Riemannian
manifold with sectional curvatures satisfying −b2 ≤ K ≤ −1 for
some b ≥ 1, and let Y be a proper geodesically complete
CAT(-1) space. Let F : U ⊂ ∂X → V ⊂ ∂Y be a C1 conformal
map between open subsets U,V. Then

log
[F (ξ),F (ξ′),F (η),F (η′)]

[ξ, ξ′, η, η′]

=
1
2

(

S(F )(ξ, η) + S(F )(ξ′, η′)− S(F )(ξ, η′)− S(F )(ξ′, η)
)

for all (ξ, ξ′, η, η′) ∈ ∂4U. In particular F is Moebius if and only if
S(F ) ≡ 0.
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Almost-isometric extension of Moebius maps

A map f : X → Y between metric spaces is a
(K , ǫ)-quasi-isometry if

1
K

d(x , y)− ǫ ≤ d(f (x), f (y)) ≤ Kd(x , y) + ǫ

for all x , y ∈ X , and if all points of Y are within bounded
distance from the image of f .

Theorem

(B.) X ,Y proper, geodesically complete CAT(-1) spaces. Then
any Moebius map F : ∂X → ∂Y extends to a
(1, log 2)-quasi-isometry f : X → Y with image 1

2 log 2-dense in
Y .

Theorem

(B.) If X ,Y are in addition metric trees, then f can be taken to
be a surjective isometry.
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Complete, simply connected, negatively curved
manifolds: infinitesimal rigidity

Theorem

(B.) (X ,g0) complete, simply connected manifold with
K (g0) ≤ −1. Suppose (gt) smooth 1-parameter family of
metrics on X such that K (gt) ≤ −1 and gt ≡ g0 outside a
compact C ⊂ X, so id : (X ,g0) → (X ,gt) extends to a
homeomorphism îd t : ∂Xg0 → ∂Xgt .

Suppose îd t is Moebius for all t . Then îd t extends to an
isometry ft : (X ,g0) → (X ,gt) for all t .
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Complete, simply connected, negatively curved
manifolds: local rigidity

Theorem

(B.) (X ,g0) complete, simply connected manifold with
K (g0) ≤ −1. Given compact C ⊂ X, there exists ǫ > 0 such
that if g is a metric on X satisfying

(1) K (g) ≤ −1,g ≡ g0 outside C,

(2) Volg(C) = Volg0(C),

(3) ||g − g0||C3 < ǫ,

then if îd : ∂Xg0 → ∂Xg is Moebius, then îd extends to an
isometry f : (X ,g0) → (X ,g).
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Proof of almost-isometric extension

(Z , ρ0) compact, diameter one, antipodal metric space

Space of Moebius metrics:

M(Z , ρ0) := {ρ metric on Z |[ ]ρ = [ ]ρ0 , ρ diameter one, antipodal}

dM(ρ1, ρ2) := max
ξ∈Z

log
dρ2

dρ1
(ξ)

Step 1. X CAT(-1) space, then the map

iX : X → M(∂X )

x 7→ ρx

is an isometric embedding.
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Step 2. The image of X in M(∂X ) is 1
2 log 2-dense in M(∂X ).

Step 3. Moebius map f : ∂X → ∂Y induces an isometry
f∗ : M(∂X ) → M(∂Y ). Compose maps:

X → M(∂X ) → M(∂Y ) → Y

(where last map is a nearest point projection).
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Proof of infinitesimal rigidity

Step 1. gt ≡ g0 outside compact C implies ˆid t : ∂Xg0 → ∂Xgt

locally Moebius, hence conformal.

Step 2. The integrated Schwarzian measures difference
between lengths of bi-infinite geodesics:

S( ˆid t)(ξ, η) = lim
p→ξ,q→η

(

dgt (p,q)− dg0(p,q)
)

Step 3. First variation of integrated Schwarzian given by
ray-transform:

d
dt |t=0

S(îd t)(ξ, η) =
1
2

I(ġ0)(ξ, η) =
1
2

∫

(ξ,η)
ġ0

Step 4. (Sharafutdinov) Kernel of ray transform equals
infinitesimally trivial deformations:

I(ġt) ≡ 0 ⇔ ġt = LXt gt for some vector field Xt
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S(îd t)(ξ, η) =
1
2
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Step 5. Integrate time-dependent vector field (Xt) to get
1-parameter family of isometries ft : (X ,g0) → (X ,gt).
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