Moebius and Conformal Maps Between Boundaries of CAT(-1) Spaces

Kingshook Biswas, RKM Vivekananda University.

Moebius group:

$$\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms preserving cross-ratio

where cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $Moeb(S^n) \cap S^n$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to S^n$
- = group of homeomorphisms preserving cross-ratio (where cross-ratio defined by same formula using chordal metric on S^n)

Moebius group:

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms preserving **cross-ratio**

where cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $Moeb(S^n) \cap S^r$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to S^n$
- = group of homeomorphisms preserving cross-ratio (where cross-ratio defined by same formula using chordal metric on S^n)

Moebius group:

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$

- = < reflections in hyperplanes, inversions in spheres >
- group of homeomorphisms preserving cross-ratiowhere cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $Moeb(S^n) \cap S^r$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to \mathbb{S}^n$
- = group of homeomorphisms preserving cross-ratio (where cross-ratio defined by same formula using chordal metric on S^n)

Moebius group:

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms preserving **cross-ratio**

where cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $Moeb(S^n) \cap S^r$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to S^n$
- = group of homeomorphisms preserving cross-ratio
 (where cross-ratio defined by same formula using chord

Moebius group:

$$\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$$

- = < reflections in hyperplanes, inversions in spheres >
- group of homeomorphisms preserving cross-ratiowhere cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $\mathsf{Moeb}(\mathsf{S}^n) \curvearrowright \mathsf{S}^n$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to S^n$
- = group of homeomorphisms preserving cross-ratio (where cross-ratio defined by same formula using chordal metric on S^n)

Moebius group:

$$\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$$

- = < reflections in hyperplanes, inversions in spheres >
- group of homeomorphisms preserving cross-ratiowhere cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $\mathsf{Moeb}(\mathsf{S}^n) \curvearrowright \mathsf{S}^n$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to \mathbb{S}^n$
- = group of homeomorphisms preserving cross-ratio (where cross-ratio defined by same formula using chorda metric on S^n)

Moebius group:

$$\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$$

- = < reflections in hyperplanes, inversions in spheres >
- group of homeomorphisms preserving cross-ratiowhere cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $\mathsf{Moeb}(S^n) \curvearrowright S^n$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to S^n$
- = group of homeomorphisms preserving cross-ratio (where cross-ratio defined by same formula using chordal metric on S^n)

Moebius group:

$$\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$$

- = < reflections in hyperplanes, inversions in spheres >
- group of homeomorphisms preserving cross-ratio
 where cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $\mathsf{Moeb}(\mathsf{S}^n) \curvearrowright \mathsf{S}^n$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to \mathcal{S}^n$
- = group of homeomorphisms preserving cross-ratio

(where cross-ratio defined by same formula using chordal metric on S^n)

Moebius group:

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\}) \curvearrowright \mathbb{R}^n \cup \{\infty\}$

- = < reflections in hyperplanes, inversions in spheres >
- group of homeomorphisms preserving cross-ratio
 where cross-ratio of a quadruple of distinct points defined by

$$[\xi, \xi', \eta, \eta'] := \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

 $\mathsf{Moeb}(S^n) \curvearrowright S^n$

- = conjugate of Moeb($\mathbb{R}^n \cup \{\infty\}$) by stereographic projection $\mathbb{R}^n \cup \{\infty\} \to S^n$
- = group of homeomorphisms preserving cross-ratio (where cross-ratio defined by same formula using chordal metric on S^n)

Upper half-space model:
$$\mathbb{H}^n = \mathbb{R}^{n-1} \times \mathbb{R}^+$$
, $\partial \mathbb{H}^n = \mathbb{R}^{n-1} \cup \{\infty\}$

 $\operatorname{H}^{(n)} = \langle \operatorname{reflections/inversions in mirrors} \perp \partial \operatorname{H}^{(n)} \rangle$ The map

$$\mathsf{Isom}(\mathbb{H}^n) o \mathit{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\}) \ f \mapsto f_{|\partial \mathbb{H}^n}$$

is an isomorphism.

Thus

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\partial \mathbb{H}^n)$$

Upper half-space model: $\mathbb{H}^n=\mathbb{R}^{n-1}\times\mathbb{R}^+$, $\partial\mathbb{H}^n=\mathbb{R}^{n-1}\cup\{\infty\}$ Isom(\mathbb{H}^n) = < reflections/inversions in mirrors $\perp\partial\mathbb{H}^n$ >

$$\mathsf{Isom}(\mathbb{H}^n) o \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\}) \ f \mapsto f_{|\partial \mathbb{H}^n}$$

is an isomorphism.

Thus

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\partial \mathbb{H}^n)$$

Upper half-space model: $\mathbb{H}^n=\mathbb{R}^{n-1}\times\mathbb{R}^+$, $\partial\mathbb{H}^n=\mathbb{R}^{n-1}\cup\{\infty\}$ Isom $(\mathbb{H}^n)=<$ reflections/inversions in mirrors $\perp\partial\mathbb{H}^n>$ The map

$$\mathsf{Isom}(\mathbb{H}^n) \to \mathit{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$
$$f \mapsto f_{|\partial \mathbb{H}^n}$$

is an isomorphism.

Thus

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\partial \mathbb{H}^n)$$

Upper half-space model: $\mathbb{H}^n=\mathbb{R}^{n-1}\times\mathbb{R}^+$, $\partial\mathbb{H}^n=\mathbb{R}^{n-1}\cup\{\infty\}$ Isom $(\mathbb{H}^n)=<$ reflections/inversions in mirrors $\perp\partial\mathbb{H}^n>$ The map

$$\mathsf{Isom}(\mathbb{H}^n) \to \mathit{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$
$$f \mapsto f_{|\partial \mathbb{H}^n}$$

is an isomorphism.

Thus

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\partial \mathbb{H}^n)$$

Upper half-space model: $\mathbb{H}^n=\mathbb{R}^{n-1}\times\mathbb{R}^+$, $\partial\mathbb{H}^n=\mathbb{R}^{n-1}\cup\{\infty\}$ Isom $(\mathbb{H}^n)=<$ reflections/inversions in mirrors $\perp\partial\mathbb{H}^n>$ The map

$$\mathsf{Isom}(\mathbb{H}^n) o \mathit{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$
 $f \mapsto f_{|\partial \mathbb{H}^n}$

is an isomorphism.

Thus

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\partial \mathbb{H}^n)$$

Upper half-space model: $\mathbb{H}^n=\mathbb{R}^{n-1}\times\mathbb{R}^+$, $\partial\mathbb{H}^n=\mathbb{R}^{n-1}\cup\{\infty\}$ Isom $(\mathbb{H}^n)=$ < reflections/inversions in mirrors $\perp\partial\mathbb{H}^n>$ The map

$$\mathsf{Isom}(\mathbb{H}^n) \to \mathit{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$
$$f \mapsto f_{|\partial \mathbb{H}^n}$$

is an isomorphism.

Thus

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\partial \mathbb{H}^n)$$

Theorem

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_0 \in \mathbb{H}^n$, ϕ induces an equivariant quasi-isometry

$$f_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot x_0, g \cdot x_0 \mapsto \phi(g) \cdot x_0.$$

Step 2. f_0 extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. *F* equivariant and quasi-conformal implies *F* conformal, hence Moebius.

Theorem

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_0 \in \mathbb{H}^n$, ϕ induces an equivariant quasi-isometry

$$f_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot x_0, g \cdot x_0 \mapsto \phi(g) \cdot x_0.$$

Step 2. f_0 extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. *F* equivariant and quasi-conformal implies *F* conformal, hence Moebius.

Theorem

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_0 \in \mathbb{H}^n$, ϕ induces an equivariant quasi-isometry

$$f_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot x_0, g \cdot x_0 \mapsto \phi(g) \cdot x_0.$$

Step 2. f_0 extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. *F* equivariant and quasi-conformal implies *F* conformal, hence Moebius.

Theorem

(Mostow) For $n \geq 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_0 \in \mathbb{H}^n$, ϕ induces an equivariant quasi-isometry

$$f_0: \pi_1(M) \cdot \mathbf{x}_0 \to \pi_1(N) \cdot \mathbf{x}_0, \mathbf{g} \cdot \mathbf{x}_0 \mapsto \phi(\mathbf{g}) \cdot \mathbf{x}_0.$$

Step 2. f_0 extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. *F* equivariant and quasi-conformal implies *F* conformal, hence Moebius.

Theorem

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_0 \in \mathbb{H}^n$, ϕ induces an equivariant quasi-isometry

$$f_0: \pi_1(M) \cdot \mathbf{x}_0 \to \pi_1(N) \cdot \mathbf{x}_0, \mathbf{g} \cdot \mathbf{x}_0 \mapsto \phi(\mathbf{g}) \cdot \mathbf{x}_0.$$

Step 2. f_0 extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. *F* equivariant and quasi-conformal implies *F* conformal, hence Moebius.

Theorem

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_0 \in \mathbb{H}^n$, ϕ induces an equivariant quasi-isometry

$$f_0: \pi_1(M) \cdot \mathbf{x}_0 \to \pi_1(N) \cdot \mathbf{x}_0, \mathbf{g} \cdot \mathbf{x}_0 \mapsto \phi(\mathbf{g}) \cdot \mathbf{x}_0.$$

- **Step 2.** f_0 extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.
- **Step 3.** *F* equivariant and quasi-conformal implies *F* conformal, hence Moebius.

Theorem

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_0 \in \mathbb{H}^n$, ϕ induces an equivariant quasi-isometry

$$f_0: \pi_1(M) \cdot \mathbf{x}_0 \to \pi_1(N) \cdot \mathbf{x}_0, \mathbf{g} \cdot \mathbf{x}_0 \mapsto \phi(\mathbf{g}) \cdot \mathbf{x}_0.$$

- **Step 2.** f_0 extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.
- **Step 3.** *F* equivariant and quasi-conformal implies *F* conformal, hence Moebius.
- **Step 4.** *F* Moebius implies *F* extends to an equivariant isometry $f : \mathbb{H}^n \to \mathbb{H}^n$.

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

Theorem

X closed negatively curved n-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n=2.

Theorem

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theore

(Otal) Yes, if n=2.

Theorer

X closed negatively curved n-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

(Otal) Yes, if n=2.

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

Theorem

(X, d) metric space is CAT(-1) if:

- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

CAT(-1) spaces

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

X metric tree

CAT(-1) spaces

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

X metric tree

CAT(-1) spaces

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

X metric tree.

 $\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \}, \text{ where } \gamma_1 \sim \gamma_2 \text{ if } \{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \} \text{ bounded.}$

$$\gamma(\infty) := [\gamma].$$

 $\forall x \in X, \xi \in \partial X, \exists ! \text{ geodesic ray } \gamma : [0, \infty) \to X \text{ with } \gamma(0) = x, \gamma(\infty) = \xi.$

 $\forall \xi, \eta \in \partial X, \exists !$ bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhoods of $\xi = [\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $U(\gamma, r, \epsilon) = \{x \in \overline{X} : d(x, \gamma(0)) > r, d(p_r(x), \gamma(r)) < \epsilon\},$ where $p_r =$ projection to $\overline{B(\gamma(0), r)}$.

 $\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \}, \text{ where } \gamma_1 \sim \gamma_2 \text{ if } \{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \} \text{ bounded.}$

 $\gamma(\infty) := [\gamma].$

 $\forall x \in X, \xi \in \partial X, \exists ! \text{ geodesic ray } \gamma : [0, \infty) \to X \text{ with } \gamma(0) = x, \gamma(\infty) = \xi.$

 $\forall \xi, \eta \in \partial X, \exists !$ bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhoods of $\xi = [\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $U(\gamma, r, \epsilon) = \{x \in \overline{X} : d(x, \gamma(0)) > r, d(p_r(x), \gamma(r)) < \epsilon\},$ where $p_r =$ projection to $\overline{B(\gamma(0), r)}$.


```
\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \}, \text{ where } \gamma_1 \sim \gamma_2 \text{ if } \{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \} \text{ bounded.}
```

$$\gamma(\infty) := [\gamma].$$

$$\forall x \in X, \xi \in \partial X, \exists ! \text{ geodesic ray } \gamma : [0, \infty) \to X \text{ with } \gamma(0) = x, \gamma(\infty) = \xi.$$

$$\forall \xi, \eta \in \partial X, \exists !$$
 bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhoods of $\xi = [\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $U(\gamma, r, \epsilon) = \{x \in \overline{X} : d(x, \gamma(0)) > r, d(p_r(x), \gamma(r)) < \epsilon\},$ where $p_r = \text{projection to } \overline{B(\gamma(0), r)}.$

 $\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \}, \text{ where } \gamma_1 \sim \gamma_2 \text{ if } \{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \} \text{ bounded.}$

$$\gamma(\infty) := [\gamma].$$

 $\forall x \in X, \xi \in \partial X, \exists ! \text{ geodesic ray } \gamma : [0, \infty) \to X \text{ with } \gamma(0) = x, \gamma(\infty) = \xi.$

 $\forall \xi, \eta \in \partial X, \exists !$ bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhoods of $\xi = [\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $U(\gamma, r, \epsilon) = \{x \in \overline{X} : d(x, \gamma(0)) > r, d(p_r(x), \gamma(r)) < \epsilon\}$, where $p_r =$ projection to $\overline{B(\gamma(0), r)}$.

 $\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \}, \text{ where } \gamma_1 \sim \gamma_2 \text{ if } \{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \} \text{ bounded.}$

$$\gamma(\infty) := [\gamma].$$

 $\forall x \in X, \xi \in \partial X, \exists ! \text{ geodesic ray } \gamma : [0, \infty) \to X \text{ with } \gamma(0) = x, \gamma(\infty) = \xi.$

 $\forall \xi, \eta \in \partial X, \exists !$ bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhoods of $\xi = [\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $U(\gamma, r, \epsilon) = \{x \in \overline{X} : d(x, \gamma(0)) > r, d(p_r(x), \gamma(r)) < \epsilon\}$, where $p_r =$ projection to $\overline{B(\gamma(0), r)}$.

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \}, \text{ where } \gamma_1 \sim \gamma_2 \text{ if } \{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \} \text{ bounded.}$$

$$\gamma(\infty):=[\gamma].$$

$$\forall x \in X, \xi \in \partial X, \exists ! \text{ geodesic ray } \gamma : [0, \infty) \to X \text{ with } \gamma(0) = x, \gamma(\infty) = \xi.$$

$$\forall \xi, \eta \in \partial X, \exists !$$
 bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhoods of $\xi = [\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $U(\gamma, r, \epsilon) = \{x \in \overline{X} : d(x, \gamma(0)) > r, d(p_r(x), \gamma(r)) < \epsilon\}$, where $p_r =$ projection to $\overline{B(\gamma(0), r)}$.

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \}, \text{ where } \gamma_1 \sim \gamma_2 \text{ if } \{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \} \text{ bounded.}$$

$$\gamma(\infty):=[\gamma].$$

$$\forall x \in X, \xi \in \partial X, \exists ! \text{ geodesic ray } \gamma : [0, \infty) \to X \text{ with } \gamma(0) = x, \gamma(\infty) = \xi.$$

$$\forall \xi, \eta \in \partial X, \exists !$$
 bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhoods of $\xi = [\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where
$$U(\gamma, r, \epsilon) = \{x \in \overline{X} : d(x, \gamma(0)) > r, d(p_r(x), \gamma(r)) < \epsilon\}$$
, where $p_r =$ projection to $\overline{B(\gamma(0), r)}$.

Examples:

X simply connected complete manifold, $K \leq -1$, then the map

$$T_X^1 X \to \partial X$$
$$V \mapsto \gamma(\infty)$$

(where $\gamma =$ unique geodesic ray with $\dot{\gamma}(0) = \nu$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^n \cup \partial \mathbb{B}^n$.

X metric tree, then $\partial X \simeq$ space of ends of tree.

Examples:

X simply connected complete manifold, $K \leq -1$, then the map

$$T_X^1 X \to \partial X$$

 $V \mapsto \gamma(\infty)$

(where $\gamma =$ unique geodesic ray with $\dot{\gamma}(0) = v$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^n \cup \partial \mathbb{B}^n$.

X metric tree, then $\partial X \simeq$ space of ends of tree.

Examples:

X simply connected complete manifold, $K \leq -1$, then the map

$$T_X^1 X \to \partial X$$

 $V \mapsto \gamma(\infty)$

(where $\gamma =$ unique geodesic ray with $\dot{\gamma}(0) = v$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^n \cup \partial \mathbb{B}^n$.

X metric tree, then $\partial X \simeq$ space of ends of tree.

Comparison angle at infinity: For $x \in X, \xi, \eta \in \partial X$, angle between ξ, η as viewed from x,

$$\theta_{\mathsf{X}}(\xi,\eta) := \lim_{\mathbf{p} \to \xi, \mathbf{q} \to \eta} \theta_{\mathsf{X}}(\mathbf{p},\mathbf{q})$$

$$\theta_{\mathbf{X}}(\xi,\eta) = 0 \text{ iff } \xi = \eta, \ \theta_{\mathbf{X}}(\xi,\eta) = \pi \text{ iff } \mathbf{X} \in (\xi,\eta)$$

Visual metric based at x:

$$\rho_X(\xi,\eta) = \sin\left(\frac{1}{2}\theta_X(\xi,\eta)\right)$$

Diameter one metric on ∂X compatible with topology on ∂X .

Comparison angle at infinity: For $x \in X$, ξ , $\eta \in \partial X$, angle between ξ , η as viewed from x,

$$\theta_{\mathbf{X}}(\xi,\eta) := \lim_{\mathbf{p} \to \xi, \mathbf{q} \to \eta} \theta_{\mathbf{X}}(\mathbf{p},\mathbf{q})$$

$$\theta_{\mathbf{x}}(\xi,\eta) = 0 \text{ iff } \xi = \eta, \, \theta_{\mathbf{x}}(\xi,\eta) = \pi \text{ iff } \mathbf{x} \in (\xi,\eta)$$

Visual metric based at x:

$$\rho_{\mathsf{X}}(\xi,\eta) = \sin\left(\frac{1}{2}\theta_{\mathsf{X}}(\xi,\eta)\right)$$

Diameter one metric on ∂X compatible with topology on ∂X .

Comparison angle at infinity: For $x \in X$, ξ , $\eta \in \partial X$, angle between ξ , η as viewed from x,

$$\theta_{\mathsf{X}}(\xi,\eta) := \lim_{\mathsf{p} o \xi, \mathsf{q} o \eta} \theta_{\mathsf{X}}(\mathsf{p},\mathsf{q})$$

$$\theta_{\mathbf{x}}(\xi,\eta) = 0 \text{ iff } \xi = \eta, \, \theta_{\mathbf{x}}(\xi,\eta) = \pi \text{ iff } \mathbf{x} \in (\xi,\eta)$$

Visual metric based at x:

$$\rho_{\mathbf{X}}(\xi,\eta) = \sin\left(\frac{1}{2}\theta_{\mathbf{X}}(\xi,\eta)\right)$$

Diameter one metric on ∂X compatible with topology on ∂X .

Comparison angle at infinity: For $x \in X$, ξ , $\eta \in \partial X$, angle between ξ , η as viewed from x,

$$\theta_{\mathbf{X}}(\xi,\eta) := \lim_{\mathbf{p} \to \xi, \mathbf{q} \to \eta} \theta_{\mathbf{X}}(\mathbf{p},\mathbf{q})$$

$$\theta_{\mathbf{x}}(\xi,\eta) = 0 \text{ iff } \xi = \eta, \, \theta_{\mathbf{x}}(\xi,\eta) = \pi \text{ iff } \mathbf{x} \in (\xi,\eta)$$

Visual metric based at x:

$$\rho_{\mathbf{X}}(\xi,\eta) = \sin\left(\frac{1}{2}\theta_{\mathbf{X}}(\xi,\eta)\right)$$

Diameter one metric on ∂X compatible with topology on ∂X .

Comparison angle at infinity: For $x \in X, \xi, \eta \in \partial X$, angle between ξ, η as viewed from x,

$$\theta_{\mathsf{X}}(\xi,\eta) := \lim_{\mathbf{p} \to \xi, \mathbf{q} \to \eta} \theta_{\mathsf{X}}(\mathbf{p},\mathbf{q})$$

$$\theta_{\mathbf{x}}(\xi,\eta) = 0 \text{ iff } \xi = \eta, \, \theta_{\mathbf{x}}(\xi,\eta) = \pi \text{ iff } \mathbf{x} \in (\xi,\eta)$$

Visual metric based at x:

$$\rho_{\mathbf{X}}(\xi,\eta) = \sin\left(\frac{1}{2}\theta_{\mathbf{X}}(\xi,\eta)\right)$$

Diameter one metric on ∂X compatible with topology on ∂X .

$$(x|y)_z := \frac{1}{2}(d(x,z) + d(y,z) - d(x,y)), x, y, z \in X.$$

For X metric tree, $(x|y)_Z$ = length of common segment of [x,z],[y,z].

For $\xi, \eta \in \partial X$, $(\xi|\eta)_X := \lim_{y \to \xi, y' \to \eta} (y|y')_X$ $(y, y')_X$ converge radially).

$$\rho_X(\xi,\eta) := \exp(-(\xi|\eta)_X)$$

$$(x|y)_z := \frac{1}{2}(d(x,z) + d(y,z) - d(x,y)), x, y, z \in X.$$

For X metric tree, $(x|y)_z$ = length of common segment of [x,z],[y,z].

For $\xi, \eta \in \partial X$, $(\xi|\eta)_X := \lim_{y \to \xi, y' \to \eta} (y|y')_X$ $(y, y')_X$ converge radially).

$$\rho_X(\xi,\eta) := \exp(-(\xi|\eta)_X)$$

$$(x|y)_z := \frac{1}{2}(d(x,z) + d(y,z) - d(x,y)), x, y, z \in X.$$

For X metric tree, $(x|y)_z$ = length of common segment of [x,z],[y,z].

For $\xi, \eta \in \partial X$, $(\xi|\eta)_x := \lim_{y \to \xi, y' \to \eta} (y|y')_x$ $(y, y')_x$ converge radially).

$$\rho_X(\xi,\eta) := \exp(-(\xi|\eta)_X)$$

$$(x|y)_z := \frac{1}{2}(d(x,z) + d(y,z) - d(x,y)), x, y, z \in X.$$

For X metric tree, $(x|y)_z$ = length of common segment of [x,z],[y,z].

For $\xi, \eta \in \partial X$, $(\xi|\eta)_x := \lim_{y \to \xi, y' \to \eta} (y|y')_x$ $(y, y')_x$ converge radially).

$$\rho_{\mathsf{X}}(\xi,\eta) := \exp(-(\xi|\eta)_{\mathsf{X}})$$

$$(x|y)_z := \frac{1}{2}(d(x,z) + d(y,z) - d(x,y)), x, y, z \in X.$$

For X metric tree, $(x|y)_z$ = length of common segment of [x,z],[y,z].

For $\xi, \eta \in \partial X$, $(\xi|\eta)_x := \lim_{y \to \xi, y' \to \eta} (y|y')_x$ $(y, y')_x$ converge radially).

$$\rho_{\mathsf{X}}(\xi,\eta) := \exp(-(\xi|\eta)_{\mathsf{X}})$$

 (Z, ρ) metric space, cross-ratio of quadruple of distinct points $\xi, \xi', \eta, \eta' \in Z$ defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)}$$

Embedding $F: (Z_1, \rho_1) \to (Z_2, \rho_2)$ Moebius if it preserves cross-ratios.

Embedding $F:(Z_1,\rho_1)\to (Z_2,\rho_2)$ conformal if

$$dF_{
ho_1,
ho_2}(\xi) := \lim_{\eta o \xi} rac{
ho_2(F(\xi),F(\eta))}{
ho_1(\xi,\eta)}$$

exists for all $\xi \in Z_1$ (assuming Z_1 has no isolated points).

F Moebius implies F conformal

$$\rho_2(F(\xi), F(\eta))^2 = dF_{\rho_1, \rho_2}(\xi) dF_{\rho_1, \rho_2}(\eta) \rho_1(\xi, \eta)^2$$

 (Z, ρ) metric space, cross-ratio of quadruple of distinct points $\xi, \xi', \eta, \eta' \in Z$ defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)}$$

Embedding $F: (Z_1, \rho_1) \to (Z_2, \rho_2)$ **Moebius** if it preserves cross-ratios.

Embedding $F:(Z_1,\rho_1) \rightarrow (Z_2,\rho_2)$ conformal if

$$extit{d} F_{
ho_1,
ho_2}(\xi) := \lim_{\eta o \xi} rac{
ho_2(F(\xi),F(\eta))}{
ho_1(\xi,\eta)}$$

exists for all $\xi \in Z_1$ (assuming Z_1 has no isolated points).

F Moebius implies F conformal

$$\rho_2(F(\xi), F(\eta))^2 = dF_{\rho_1, \rho_2}(\xi) dF_{\rho_1, \rho_2}(\eta) \rho_1(\xi, \eta)^2$$

 (Z,ρ) metric space, cross-ratio of quadruple of distinct points $\xi,\xi',\eta,\eta'\in Z$ defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)}$$

Embedding $F: (Z_1, \rho_1) \to (Z_2, \rho_2)$ **Moebius** if it preserves cross-ratios.

Embedding $F: (Z_1, \rho_1) \rightarrow (Z_2, \rho_2)$ conformal if

$$dF_{\rho_1,\rho_2}(\xi) := \lim_{\eta \to \xi} \frac{\rho_2(F(\xi),F(\eta))}{\rho_1(\xi,\eta)}$$

exists for all $\xi \in Z_1$ (assuming Z_1 has no isolated points).

F Moebius implies F conformal

$$\rho_2(F(\xi), F(\eta))^2 = dF_{\rho_1, \rho_2}(\xi) dF_{\rho_1, \rho_2}(\eta) \rho_1(\xi, \eta)^2$$

 (Z,ρ) metric space, cross-ratio of quadruple of distinct points $\xi,\xi',\eta,\eta'\in Z$ defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)}$$

Embedding $F: (Z_1, \rho_1) \to (Z_2, \rho_2)$ **Moebius** if it preserves cross-ratios.

Embedding $F: (Z_1, \rho_1) \rightarrow (Z_2, \rho_2)$ conformal if

$$dF_{\rho_1,\rho_2}(\xi) := \lim_{\eta \to \xi} \frac{\rho_2(F(\xi),F(\eta))}{\rho_1(\xi,\eta)}$$

exists for all $\xi \in Z_1$ (assuming Z_1 has no isolated points).

F Moebius implies F conformal

$$\rho_2(F(\xi), F(\eta))^2 = dF_{\rho_1, \rho_2}(\xi) dF_{\rho_1, \rho_2}(\eta) \rho_1(\xi, \eta)^2$$

 (Z,ρ) metric space, cross-ratio of quadruple of distinct points $\xi,\xi',\eta,\eta'\in Z$ defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)}$$

Embedding $F: (Z_1, \rho_1) \to (Z_2, \rho_2)$ **Moebius** if it preserves cross-ratios.

Embedding $F: (Z_1, \rho_1) \rightarrow (Z_2, \rho_2)$ conformal if

$$dF_{\rho_1,\rho_2}(\xi) := \lim_{\eta \to \xi} \frac{\rho_2(F(\xi),F(\eta))}{\rho_1(\xi,\eta)}$$

exists for all $\xi \in Z_1$ (assuming Z_1 has no isolated points).

F Moebius implies F conformal

$$\rho_2(F(\xi), F(\eta))^2 = dF_{\rho_1, \rho_2}(\xi) dF_{\rho_1, \rho_2}(\eta) \rho_1(\xi, \eta)^2$$

For $Z = \partial X$, $\rho = \rho_X$, cross-ratio $[]_{\rho_X}$ independent of choice of $X \in X$.

Common value [] given by

$$[\xi, \xi', \eta, \eta'] = \lim \exp \left(\frac{1}{2} (d(a, b) + d(a', b') - d(a, b') - d(a', b)) \right)$$

(where $(a, a', b, b') \rightarrow (\xi, \xi', \eta, \eta') \in \partial^4 X$ radially).

id : $(\partial X,
ho_{\mathsf{X}}) o (\partial X,
ho_{\mathsf{y}})$ Moebius, derivative given by

$$\frac{d\rho_y}{d\rho_x}(\xi) := did_{\rho_x,\rho_y}(\xi) = \exp(B(x,y,\xi))$$

where $B(x, y, \xi)$ =Busemann function, defined by

$$B(x, y, \xi) := \lim_{a \to \xi} (d(x, a) - d(y, a))$$

Any isometry $f: X \to Y$ extends to a Moebius map

For $Z = \partial X$, $\rho = \rho_X$, cross-ratio $[]_{\rho_X}$ independent of choice of $X \in X$.

Common value [] given by

$$[\xi,\xi',\eta,\eta'] = \lim \exp\left(\frac{1}{2}(d(a,b) + d(a',b') - d(a,b') - d(a',b))\right)$$

(where $(a, a', b, b') \rightarrow (\xi, \xi', \eta, \eta') \in \partial^4 X$ radially).

id : $(\partial X,
ho_{\mathsf{x}}) o (\partial X,
ho_{\mathsf{y}})$ Moebius, derivative given by

$$\frac{d\rho_y}{d\rho_x}(\xi) := did_{\rho_x,\rho_y}(\xi) = \exp(B(x,y,\xi))$$

where $B(x, y, \xi)$ =Busemann function, defined by

$$B(x, y, \xi) := \lim_{a \to \xi} (d(x, a) - d(y, a))$$

Any isometry $f: X \to Y$ extends to a Moebius map

For $Z = \partial X$, $\rho = \rho_X$, cross-ratio $[]_{\rho_X}$ independent of choice of $X \in X$.

Common value [] given by

$$[\xi,\xi',\eta,\eta'] = \lim \exp\left(\frac{1}{2}(d(a,b) + d(a',b') - d(a,b') - d(a',b))\right)$$

(where $(a, a', b, b') \rightarrow (\xi, \xi', \eta, \eta') \in \partial^4 X$ radially).

id : $(\partial X, \rho_x) \rightarrow (\partial X, \rho_y)$ Moebius, derivative given by

$$\frac{d\rho_y}{d\rho_x}(\xi) := did_{\rho_x,\rho_y}(\xi) = \exp(B(x,y,\xi))$$

where $B(x, y, \xi)$ =Busemann function, defined by

$$B(x,y,\xi) := \lim_{a \to \xi} (d(x,a) - d(y,a))$$

Any isometry $f: X \to Y$ extends to a Moebius map

For $Z = \partial X$, $\rho = \rho_X$, cross-ratio $[]_{\rho_X}$ independent of choice of $X \in X$.

Common value [] given by

$$[\xi,\xi',\eta,\eta'] = \lim \exp\left(\frac{1}{2}(d(a,b) + d(a',b') - d(a,b') - d(a',b))\right)$$

(where $(a, a', b, b') \rightarrow (\xi, \xi', \eta, \eta') \in \partial^4 X$ radially).

id : $(\partial X, \rho_x) \rightarrow (\partial X, \rho_y)$ Moebius, derivative given by

$$\frac{d\rho_y}{d\rho_x}(\xi) := did_{\rho_x,\rho_y}(\xi) = \exp(B(x,y,\xi))$$

where $B(x, y, \xi)$ =Busemann function, defined by

$$B(x,y,\xi) := \lim_{a \to \xi} (d(x,a) - d(y,a))$$

Any isometry $f: X \to Y$ extends to a Moebius map $F: \partial X \to \partial Y$.

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \to \partial Y$ extend to an isometry $f: X \to Y$?

(Bourdon) For X a rank one symmetric space with maximum of sectional curvatures equal to -1, Y a CAT(-1) space, any Moebius embedding $F: \partial X \to \partial Y$ extends to an isometric embedding $f: X \to Y$.

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \to \partial Y$ extend to an isometry $f: X \to Y$?

(Bourdon) For X a rank one symmetric space with maximum of sectional curvatures equal to -1, Y a CAT(-1) space, any Moebius embedding $F: \partial X \to \partial Y$ extends to an isometric embedding $f: X \to Y$.

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \to \partial Y$ extend to an isometry $f: X \to Y$?

(Bourdon) For X a rank one symmetric space with maximum of sectional curvatures equal to -1, Y a CAT(-1) space, any Moebius embedding $F: \partial X \to \partial Y$ extends to an isometric embedding $f: X \to Y$

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \to \partial Y$ extend to an isometry $f: X \to Y$?

Theorem

(Bourdon) For X a rank one symmetric space with maximum of sectional curvatures equal to -1, Y a CAT(-1) space, any Moebius embedding $F: \partial X \to \partial Y$ extends to an isometric embedding $f: X \to Y$.

Conformal maps and geodesic conjugacies

X, Y complete, simply connected manifolds with $K \le -1$, then any conformal map $F : \partial X \to \partial Y$ induces a topological conjugacy of geodesic flows $\phi : T^1X \to T^1Y$:

Given $v \in T^1 X$ tangent to (ξ, η) , define $\phi(v)$ to be the unique $w \in T^1 Y$ tangent to $(F(\xi), F(\eta))$ satisfying

$$dF_{\rho_X,\rho_Y}(\xi)=1$$

where $x = \pi(v), y = \pi(w)$.

Flowing v, w for time t scales visual metrics at ξ , $F(\xi)$ by same factor e^t , so ϕ preserves time along geodesics.

Conformal maps and geodesic conjugacies

X, Y complete, simply connected manifolds with $K \le -1$, then any conformal map $F : \partial X \to \partial Y$ induces a topological conjugacy of geodesic flows $\phi : T^1X \to T^1Y$:

Given $v \in T^1 X$ tangent to (ξ, η) , define $\phi(v)$ to be the unique $w \in T^1 Y$ tangent to $(F(\xi), F(\eta))$ satisfying

$$dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\xi)=1$$

where $x = \pi(v), y = \pi(w)$.

Flowing v, w for time t scales visual metrics at ξ , $F(\xi)$ by same factor e^t , so ϕ preserves time along geodesics.

Conformal maps and geodesic conjugacies

X, Y complete, simply connected manifolds with $K \le -1$, then any conformal map $F : \partial X \to \partial Y$ induces a topological conjugacy of geodesic flows $\phi : T^1X \to T^1Y$:

Given $v \in T^1 X$ tangent to (ξ, η) , define $\phi(v)$ to be the unique $w \in T^1 Y$ tangent to $(F(\xi), F(\eta))$ satisfying

$$dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\xi)=1$$

where $x = \pi(v), y = \pi(w)$.

Flowing v, w for time t scales visual metrics at ξ , $F(\xi)$ by same factor e^t , so ϕ preserves time along geodesics.

$$dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\xi)dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\eta) = \frac{\rho_{\mathbf{y}}(F(\xi),F(\eta))^2}{\rho_{\mathbf{x}}(\xi,\eta)^2} = 1$$

SO

$$dF_{
ho_{\mathbf{x}},
ho_{\mathbf{y}}}(\xi)=$$
 1 iff $dF_{
ho_{\mathbf{x}},
ho_{\mathbf{y}}}(\eta)=$ 1

$$\phi(-v) = -\phi(v)$$

$$dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\xi)dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\eta) = \frac{\rho_{\mathbf{y}}(F(\xi),F(\eta))^2}{\rho_{\mathbf{x}}(\xi,\eta)^2} = 1$$

SO

$$dF_{
ho_{\mathsf{x}},
ho_{\mathsf{y}}}(\xi)=\mathsf{1}$$
 iff $dF_{
ho_{\mathsf{x}},
ho_{\mathsf{y}}}(\eta)=\mathsf{1}$

$$\phi(-V) = -\phi(V)$$

$$dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\xi)dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\eta) = \frac{\rho_{\mathbf{y}}(F(\xi),F(\eta))^2}{\rho_{\mathbf{x}}(\xi,\eta)^2} = 1$$

SO

$$dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\xi) = 1 \text{ iff } dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\eta) = 1$$

$$\phi(-V) = -\phi(V)$$

$$dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\xi)dF_{\rho_{\mathbf{x}},\rho_{\mathbf{y}}}(\eta) = \frac{\rho_{\mathbf{y}}(F(\xi),F(\eta))^2}{\rho_{\mathbf{x}}(\xi,\eta)^2} = 1$$

SO

$$dF_{\rho_x,\rho_y}(\xi) = 1$$
 iff $dF_{\rho_x,\rho_y}(\eta) = 1$

$$\phi(-\mathbf{v}) = -\phi(\mathbf{v})$$

For a conformal map $F : \partial X \to \partial Y$, measure failure of $\phi : T^1X \to T^1Y$ to be flip-equivariant:

The integrated Schwarzian of F is the function $S(F): \partial^2 X \to \mathbb{R}$ defined by

$$S(F)(\xi, \eta) :=$$
 signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$
= $-\log(dF_{\rho_x,\rho_y}(\xi)dF_{\rho_x,\rho_y}(\eta))$

where v tangent to (ξ, η) , $x \in (\xi, \eta)$, $y \in (F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle:
$$S(F \circ G) = S(F) \circ (G, G) + S(G)$$

For a conformal map $F : \partial X \to \partial Y$, measure failure of $\phi : T^1X \to T^1Y$ to be flip-equivariant:

The **integrated Schwarzian** of F is the function $S(F): \partial^2 X \to \mathbb{R}$ defined by

 $S(F)(\xi, \eta) :=$ signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$ = $-\log(dF_{ov,ov}(\xi)dF_{ov,ov}(\eta))$

where v tangent to (ξ, η) , $x \in (\xi, \eta)$, $y \in (F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle: $S(F \circ G) = S(F) \circ (G, G) + S(G)$

For a conformal map $F : \partial X \to \partial Y$, measure failure of $\phi : T^1X \to T^1Y$ to be flip-equivariant:

The **integrated Schwarzian** of F is the function $S(F): \partial^2 X \to \mathbb{R}$ defined by

$$S(F)(\xi, \eta) :=$$
 signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$
= $-\log(dF_{\rho_X,\rho_Y}(\xi)dF_{\rho_X,\rho_Y}(\eta))$

where v tangent to (ξ, η) , $x \in (\xi, \eta)$, $y \in (F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle:
$$S(F \circ G) = S(F) \circ (G, G) + S(G)$$

For a conformal map $F : \partial X \to \partial Y$, measure failure of $\phi : T^1X \to T^1Y$ to be flip-equivariant:

The **integrated Schwarzian** of F is the function $S(F): \partial^2 X \to \mathbb{R}$ defined by

$$S(F)(\xi, \eta) :=$$
 signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$
= $-\log(dF_{\rho_X,\rho_Y}(\xi)dF_{\rho_X,\rho_Y}(\eta))$

where v tangent to (ξ, η) , $x \in (\xi, \eta)$, $y \in (F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle:
$$S(F \circ G) = S(F) \circ (G, G) + S(G)$$

Integrated Schwarzian and cross-ratio distortion

Conformal map $F : \partial X \to \partial Y$ said to be C^1 conformal if dF_{ρ_x,ρ_y} continuous.

(B.) Let X be a simply connected complete Riemannian manifold with sectional curvatures satisfying $-b^2 \le K \le -1$ for some $b \ge 1$, and let Y be a proper geodesically complete CAT(-1) space. Let $F: U \subset \partial X \to V \subset \partial Y$ be a \mathbb{C}^1 conformal map between open subsets U, V. Then

$$\log \frac{[F(\xi), F(\xi'), F(\eta), F(\eta')]}{[\xi, \xi', \eta, \eta']}$$

$$=\frac{1}{2}\left(S(F)(\xi,\eta)+S(F)(\xi',\eta')-S(F)(\xi,\eta')-S(F)(\xi',\eta)\right)$$

for all $(\xi,\xi',\eta,\eta')\in\partial^4 U$. In particular F is Moebius if and only if $S(F)\equiv 0$.

Integrated Schwarzian and cross-ratio distortion

Conformal map $F : \partial X \to \partial Y$ said to be C^1 conformal if dF_{ρ_x,ρ_y} continuous.

Theorem

(B.) Let X be a simply connected complete Riemannian manifold with sectional curvatures satisfying $-b^2 \le K \le -1$ for some $b \ge 1$, and let Y be a proper geodesically complete CAT(-1) space. Let $F: U \subset \partial X \to V \subset \partial Y$ be a C^1 conformal map between open subsets U, V. Then

$$\log \frac{[F(\xi), F(\xi'), F(\eta), F(\eta')]}{[\xi, \xi', \eta, \eta']}$$

$$=\frac{1}{2}\left(S(F)(\xi,\eta)+S(F)(\xi',\eta')-S(F)(\xi,\eta')-S(F)(\xi',\eta)\right)$$

for all $(\xi, \xi', \eta, \eta') \in \partial^4 U$. In particular F is Moebius if and only if $S(F) \equiv 0$.

A map $f: X \to Y$ between metric spaces is a (K, ϵ) -quasi-isometry if

$$\frac{1}{K}d(x,y) - \epsilon \leq d(f(x),f(y)) \leq Kd(x,y) + \epsilon$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

- (B.) X, Y proper, geodesically complete CAT(-1) spaces. Then any Moebius map $F: \partial X \to \partial Y$ extends to a
- (1, log 2)-quasi-isometry $f:X\to Y$ with image $\frac{1}{2}$ log 2-dense in Y.

Theorem

A map $f: X \to Y$ between metric spaces is a (K, ϵ) -quasi-isometry if

$$\frac{1}{K}d(x,y) - \epsilon \leq d(f(x),f(y)) \leq Kd(x,y) + \epsilon$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

Theorem

(B.) X, Y proper, geodesically complete CAT(-1) spaces. Then any Moebius map $F: \partial X \to \partial Y$ extends to a (1, log 2)-quasi-isometry $f: X \to Y$ with image $\frac{1}{2} \log 2$ -dense in Y.

Theorem

A map $f: X \to Y$ between metric spaces is a (K, ϵ) -quasi-isometry if

$$\frac{1}{K}d(x,y) - \epsilon \leq d(f(x),f(y)) \leq Kd(x,y) + \epsilon$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

Theorem

(B.) X, Y proper, geodesically complete CAT(-1) spaces. Then any Moebius map $F: \partial X \to \partial Y$ extends to a (1, log 2)-quasi-isometry $f: X \to Y$ with image $\frac{1}{2} \log 2$ -dense in Y.

Theorem

A map $f: X \to Y$ between metric spaces is a (K, ϵ) -quasi-isometry if

$$\frac{1}{K}d(x,y) - \epsilon \leq d(f(x),f(y)) \leq Kd(x,y) + \epsilon$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

Theorem

(B.) X, Y proper, geodesically complete CAT(-1) spaces. Then any Moebius map $F: \partial X \to \partial Y$ extends to a (1, log 2)-quasi-isometry $f: X \to Y$ with image $\frac{1}{2} \log 2$ -dense in Y.

Theorem

Complete, simply connected, negatively curved manifolds: infinitesimal rigidity

Theorem

(B.) (X,g_0) complete, simply connected manifold with $K(g_0) \leq -1$. Suppose (g_t) smooth 1-parameter family of metrics on X such that $K(g_t) \leq -1$ and $g_t \equiv g_0$ outside a compact $C \subset X$, so id : $(X,g_0) \to (X,g_t)$ extends to a homeomorphism $\hat{id}_t : \partial X_{g_0} \to \partial X_{g_t}$.

Suppose \hat{id}_t is Moebius for all t. Then \hat{id}_t extends to an isometry $f_t: (X, g_0) \to (X, g_t)$ for all t.

Complete, simply connected, negatively curved manifolds: local rigidity

Theorem

- (B.) (X, g_0) complete, simply connected manifold with $K(g_0) \le -1$. Given compact $C \subset X$, there exists $\epsilon > 0$ such that if g is a metric on X satisfying
- (1) $K(g) \leq -1, g \equiv g_0$ outside C,
- (2) $Vol_g(C) = Vol_{g_0}(C)$,
- (3) $||g g_0||_{C^3} < \epsilon$,

then if $\hat{id}: \partial X_{g_0} \to \partial X_g$ is Moebius, then \hat{id} extends to an isometry $f: (X, g_0) \to (X, g)$.

Proof of almost-isometric extension

 (Z, ρ_0) compact, diameter one, antipodal metric space

Space of Moebius metrics:

$$\mathfrak{M}(Z, \rho_0) := \{ \rho \text{ metric on } Z | [\,]_{\rho} = [\,]_{\rho_0}, \rho \text{ diameter one, antipodal} \}$$

$$d_{\mathbb{M}}(\rho_1, \rho_2) := \max_{\xi \in \mathcal{Z}} \log \frac{d\rho_2}{d\rho_1}(\xi)$$

Step 1. X CAT(-1) space, then the map

$$i_X: X \to \mathfrak{M}(\partial X)$$

 $x \mapsto \rho_X$

is an **isometric embedding**.

Proof of almost-isometric extension

 (Z, ρ_0) compact, diameter one, antipodal metric space

Space of Moebius metrics:

 $\mathcal{M}(Z, \rho_0) := \{ \rho \text{ metric on } Z | []_{\rho} = []_{\rho_0}, \rho \text{ diameter one, antipodal} \}$

$$d_{\mathbb{M}}(\rho_1, \rho_2) := \max_{\xi \in \mathcal{Z}} \log \frac{d\rho_2}{d\rho_1}(\xi)$$

Step 1. X CAT(-1) space, then the map

$$i_X: X \to \mathfrak{M}(\partial X)$$

 $x \mapsto \rho_X$

is an isometric embedding.

Proof of almost-isometric extension

 (Z, ρ_0) compact, diameter one, antipodal metric space

Space of Moebius metrics:

 $\mathfrak{M}(\mathbf{Z}, \rho_0) := \{ \rho \text{ metric on } \mathbf{Z} | [\,]_{\rho} = [\,]_{\rho_0}, \rho \text{ diameter one, antipodal} \}$

$$d_{\mathbb{M}}(\rho_1, \rho_2) := \max_{\xi \in \mathcal{Z}} \log \frac{d\rho_2}{d\rho_1}(\xi)$$

Step 1. X CAT(-1) space, then the map

$$i_X: X \to \mathcal{M}(\partial X)$$

 $x \mapsto \rho_X$

is an isometric embedding.

Step 2. The image of X in $\mathcal{M}(\partial X)$ is $\frac{1}{2} \log 2$ -dense in $\mathcal{M}(\partial X)$.

Step 3. Moebius map $f: \partial X \to \partial Y$ induces an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$. Compose maps:

$$X \to \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y) \to Y$$

(where last map is a nearest point projection).

Step 2. The image of X in $\mathcal{M}(\partial X)$ is $\frac{1}{2} \log 2$ -dense in $\mathcal{M}(\partial X)$.

Step 3. Moebius map $f: \partial X \to \partial Y$ induces an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$. Compose maps:

$$X \to \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y) \to Y$$

(where last map is a nearest point projection).

Step 1. $g_t \equiv g_0$ outside compact C implies $\hat{id}_t : \partial X_{g_0} \to \partial X_{g_t}$ locally Moebius, hence conformal.

Step 2. The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

$$S(\hat{id}_t)(\xi,\eta) = \lim_{oldsymbol{p} o \xi, oldsymbol{q} o \eta} \left(d_{g_t}(oldsymbol{p},oldsymbol{q}) - d_{g_0}(oldsymbol{p},oldsymbol{q})
ight)$$

Step 3. First variation of integrated Schwarzian given by ray-transform:

$$\frac{d}{dt}_{|t=0} S(\hat{id}_t)(\xi, \eta) = \frac{1}{2} I(\dot{g}_0)(\xi, \eta) = \frac{1}{2} \int_{(\xi, \eta)} \dot{g}_0$$

$$I(\dot{g}_t) \equiv 0 \Leftrightarrow \dot{g}_t = \mathcal{L}_{X_t} g_t$$
 for some vector field X_t

Step 1. $g_t \equiv g_0$ outside compact C implies $\hat{id}_t : \partial X_{g_0} \to \partial X_{g_t}$ locally Moebius, hence conformal.

Step 2. The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

$$S(\hat{\textit{id}}_t)(\xi,\eta) = \lim_{oldsymbol{p} o \xi, oldsymbol{q} o \eta} \left(\textit{d}_{g_t}(oldsymbol{p},oldsymbol{q}) - \textit{d}_{g_0}(oldsymbol{p},oldsymbol{q})
ight)$$

Step 3. First variation of integrated Schwarzian given by ray-transform:

$$\frac{d}{dt}_{|t=0} S(\hat{id}_t)(\xi, \eta) = \frac{1}{2} I(\dot{g}_0)(\xi, \eta) = \frac{1}{2} \int_{(\xi, \eta)} \dot{g}_0$$

$$I(\dot{g}_t) \equiv 0 \Leftrightarrow \dot{g}_t = \mathcal{L}_{X_t} g_t$$
 for some vector field X_t

Step 1. $g_t \equiv g_0$ outside compact C implies $\hat{id}_t : \partial X_{g_0} \to \partial X_{g_t}$ locally Moebius, hence conformal.

Step 2. The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

$$S(\hat{\textit{id}}_t)(\xi,\eta) = \lim_{oldsymbol{p} o \xi, oldsymbol{q} o \eta} \left(\textit{d}_{g_t}(oldsymbol{p},oldsymbol{q}) - \textit{d}_{g_0}(oldsymbol{p},oldsymbol{q})
ight)$$

Step 3. First variation of integrated Schwarzian given by ray-transform:

$$\frac{d}{dt}_{|t=0} S(\hat{id}_t)(\xi, \eta) = \frac{1}{2} I(\dot{g_0})(\xi, \eta) = \frac{1}{2} \int_{(\xi, \eta)} \dot{g_0}$$

$$I(\dot{g}_t) \equiv 0 \Leftrightarrow \dot{g}_t = \mathcal{L}_{X_t} g_t$$
 for some vector field X_t

- **Step 1.** $g_t \equiv g_0$ outside compact C implies $\hat{id}_t : \partial X_{g_0} \to \partial X_{g_t}$ locally Moebius, hence conformal.
- **Step 2.** The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

$$S(\hat{\textit{id}}_t)(\xi,\eta) = \lim_{oldsymbol{p} o \xi, oldsymbol{q} o \eta} \left(d_{g_t}(oldsymbol{p},oldsymbol{q}) - d_{g_0}(oldsymbol{p},oldsymbol{q})
ight)$$

Step 3. First variation of integrated Schwarzian given by ray-transform:

$$\frac{d}{dt}_{|t=0} S(\hat{id}_t)(\xi, \eta) = \frac{1}{2} I(\dot{g_0})(\xi, \eta) = \frac{1}{2} \int_{(\xi, \eta)} \dot{g_0}$$

$$I(\dot{g_t}) \equiv 0 \Leftrightarrow \dot{g_t} = \mathcal{L}_{X_t} g_t$$
 for some vector field X_t

Step 5. Integrate time-dependent vector field (X_t) to get 1-parameter family of isometries $f_t : (X, g_0) \to (X, g_t)$.