Moebius and Conformal Maps Between Boundaries of CAT(-1) Spaces

Kingshook Biswas, RKM Vivekananda University.

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=<$ reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]:=\frac{\|\xi-\eta\|\| \| \xi^{\prime}-\eta^{\prime} \|}{\left\|\xi-\eta^{\prime}\right\|\left\|\xi^{\prime}-\eta\right\|}
$$

$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
= conjugate of Moeb $\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection $\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal
metric on S^{n})
Kingshook Biswas

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=<$ reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct noints defined by

$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
= conjugate of Moeb $\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection
$\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal
metric on S^{n})

Kingshook Biswas

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=<$ reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by
$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
= conjugate of $\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection
$\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal
metric on S^{n})
Kingshook Biswas

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=$ < reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by
$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
$=$ conjugate of $\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection $\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal
metric on S^{n}

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=$ < reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]:=\frac{\|\xi-\eta\|\left\|\xi^{\prime}-\eta^{\prime}\right\|}{\left\|\xi-\eta^{\prime}\right\|\left\|\xi^{\prime}-\eta\right\|}
$$

$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
$=$ conjugate of $\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection $\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal
metric on S^{n})

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=$ < reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]:=\frac{\|\xi-\eta\|\left\|\xi^{\prime}-\eta^{\prime}\right\|}{\left\|\xi-\eta^{\prime}\right\|\left\|\xi^{\prime}-\eta\right\|}
$$

$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
$=$ conjugate of $\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection $\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal metric on S^{n})

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=$ < reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]:=\frac{\|\xi-\eta\|\left\|\xi^{\prime}-\eta^{\prime}\right\|}{\left\|\xi-\eta^{\prime}\right\|\left\|\xi^{\prime}-\eta\right\|}
$$

$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
$=$ conjugate of $\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection $\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
$=<$ reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]:=\frac{\|\xi-\eta\|\| \| \xi^{\prime}-\eta^{\prime} \|}{\left\|\xi-\eta^{\prime}\right\|\left\|\xi^{\prime}-\eta\right\|}
$$

$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
= conjugate of $\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection $\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal

Moebius group in n dimensions

Moebius group:

$\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right) \curvearrowright \mathbb{R}^{n} \cup\{\infty\}$
= < reflections in hyperplanes, inversions in spheres >
= group of homeomorphisms preserving cross-ratio
where cross-ratio of a quadruple of distinct points defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]:=\frac{\|\xi-\eta\|\left\|\xi^{\prime}-\eta^{\prime}\right\|}{\left\|\xi-\eta^{\prime}\right\|\left\|\xi^{\prime}-\eta\right\|}
$$

$\operatorname{Moeb}\left(S^{n}\right) \curvearrowright S^{n}$
$=$ conjugate of $\operatorname{Moeb}\left(\mathbb{R}^{n} \cup\{\infty\}\right)$ by stereographic projection $\mathbb{R}^{n} \cup\{\infty\} \rightarrow S^{n}$
= group of homeomorphisms preserving cross-ratio
(where cross-ratio defined by same formula using chordal metric on S^{n})

Isometries of (real) hyperbolic space:

Upper half-space model: $\mathbb{H}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}^{+}, \partial \mathbb{H}^{n}=\mathbb{R}^{n-1} \cup\{\infty\}$ Isom $\left(\mathbb{H}^{n}\right)=<$ reflections/inversions in mirrors $\perp \partial \mathbb{H}^{n}>$
The map
$\operatorname{lsom}\left(\mathbb{H}^{n}\right) \rightarrow \operatorname{Moeb}\left(\mathbb{R}^{n-1} \cup\{\infty\}\right)$
is an isomorphism.
Thus
$\operatorname{lsom}\left(\mathbb{H}^{n}\right) \simeq \operatorname{Moeb}\left(\partial \mathbb{H}^{n}\right)$
(also true for ball model of \mathbb{H}^{n}, where $\partial \mathbb{H}^{n}=S^{n-1}$)

Kingshook Biswas

Isometries of (real) hyperbolic space:

Upper half-space model: $\mathbb{H}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}^{+}, \partial \mathbb{H}^{n}=\mathbb{R}^{n-1} \cup\{\infty\}$ Isom $\left(\mathbb{H}^{n}\right)=$ < reflections/inversions in mirrors $\perp \partial \mathbb{H}^{n}>$
The map
is an isomorphism.
Thus
$\operatorname{lsom}\left(\mathbb{H}^{n}\right) \simeq \operatorname{Moeb}\left(\partial \mathbb{H}^{n}\right)$
(also true for ball model of \mathbb{H}^{n}, where $\partial \mathbb{H}^{n}=S^{n-1}$)

Isometries of (real) hyperbolic space:

Upper half-space model: $\mathbb{H}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}^{+}, \partial \mathbb{H}^{n}=\mathbb{R}^{n-1} \cup\{\infty\}$ Isom $\left(\mathbb{H}^{n}\right)=<$ reflections/inversions in mirrors $\perp \partial \mathbb{H}^{n}>$
The map

$$
\begin{aligned}
\operatorname{Isom}\left(\mathbb{H}^{n}\right) & \rightarrow \operatorname{Moeb}\left(\mathbb{R}^{n-1} \cup\{\infty\}\right) \\
f & \mapsto f_{\mid \partial \mathbb{H}^{n}}
\end{aligned}
$$

is an isomorphism.
Thus
$\operatorname{lsom}\left(\mathbb{H}^{n}\right) \simeq \operatorname{Moeb}\left(\partial \mathbb{H}^{n}\right)$
(also true for ball model of $\mathbb{T I}^{n}$, where $2 \mathbb{H}^{n}=S^{n-1}$)

Isometries of (real) hyperbolic space:

Upper half-space model: $\mathbb{H}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}^{+}, \partial \mathbb{H}^{n}=\mathbb{R}^{n-1} \cup\{\infty\}$ Isom $\left(\mathbb{H}^{n}\right)=<$ reflections/inversions in mirrors $\perp \partial \mathbb{H}^{n}>$
The map

$$
\begin{aligned}
\operatorname{Isom}\left(\mathbb{H}^{n}\right) & \rightarrow \operatorname{Moeb}\left(\mathbb{R}^{n-1} \cup\{\infty\}\right) \\
f & \mapsto f_{\mid \partial \mathbb{H}^{n}}
\end{aligned}
$$

is an isomorphism.
Thus
$\operatorname{lsom}\left(\mathbb{H}^{n}\right) \simeq \operatorname{Moeb}\left(\partial \mathbb{H}^{n}\right)$
(also true for ball model of $\mathbb{T H}^{n}$, where $\partial \mathbb{H}^{n}=S^{n-1}$)

Isometries of (real) hyperbolic space:

Upper half-space model: $\mathbb{H}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}^{+}, \partial \mathbb{H}^{n}=\mathbb{R}^{n-1} \cup\{\infty\}$ Isom $\left(\mathbb{H}^{n}\right)=<$ reflections/inversions in mirrors $\perp \partial \mathbb{H}^{n}>$
The map

$$
\begin{aligned}
\operatorname{Isom}\left(\mathbb{H}^{n}\right) & \rightarrow \operatorname{Moeb}\left(\mathbb{R}^{n-1} \cup\{\infty\}\right) \\
f & \mapsto f_{\mid \partial \mathbb{H}^{n}}
\end{aligned}
$$

is an isomorphism.
Thus

$$
\operatorname{Isom}\left(\mathbb{H}^{n}\right) \simeq \operatorname{Moeb}\left(\partial \mathbb{H}^{n}\right)
$$

(also true for ball model of \mathbb{H}^{n}, where $\partial \mathbb{H}^{n}=S^{n-1}$)

Isometries of (real) hyperbolic space:

Upper half-space model: $\mathbb{H}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}^{+}, \partial \mathbb{H}^{n}=\mathbb{R}^{n-1} \cup\{\infty\}$ Isom $\left(\mathbb{H}^{n}\right)=<$ reflections/inversions in mirrors $\perp \partial \mathbb{H}^{n}>$

The map

$$
\begin{aligned}
\operatorname{Isom}\left(\mathbb{H}^{n}\right) & \rightarrow \operatorname{Moeb}\left(\mathbb{R}^{n-1} \cup\{\infty\}\right) \\
f & \mapsto f_{\mid \partial \mathbb{H}^{n}}
\end{aligned}
$$

is an isomorphism.
Thus

$$
\operatorname{lsom}\left(\mathbb{H}^{n}\right) \simeq \operatorname{Moeb}\left(\partial \mathbb{H}^{n}\right)
$$

(also true for ball model of \mathbb{H}^{n}, where $\partial \mathbb{H}^{n}=S^{n-1}$)

Mostow rigidity

> Theorem
> (Mostow) For $n \geq 3$, any isomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f: M \rightarrow N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_{0} \in \mathbb{H}^{n}, \phi$ induces an
equivariant quasi-isometry
$f_{0}: \pi_{1}(M) \cdot x_{0} \rightarrow \pi_{1}(N) \cdot x_{0}, g \cdot x_{0} \mapsto \phi(g) \cdot x_{0}$.
Step 2. f_{0} extends to an equivariant quasi-conformal
homeomorphism $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$
Step 3. F equivariant and quasi-conformal implies F
conformal, hence Moebius.
Step 4. F Moebius implies F extends to an equivariant
isometry
Kingshook Biswas

Mostow rigidity

> Theorem
> (Mostow) For $n \geq 3$, any isomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f: M \rightarrow N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_{0} \in \mathbb{H}^{n}, \phi$ induces an
equivariant quasi-isometry
$f_{0}: \pi_{1}(M) \cdot x_{0} \rightarrow \pi_{1}(N) \cdot x_{0}, g \cdot x_{0} \mapsto \phi(g) \cdot x_{0}$.
Step 2. f_{0} extends to an equivariant quasi-conformal
homeomorphism $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$
Step 3. F equivariant and quasi-conformal implies F
conformal, hence Moebius.
Step 4. F Moebius implies F extends to an equivariant
isometry
Kingshook Biswas

Mostow rigidity

Theorem

(Mostow) For $n \geq 3$, any isomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f: M \rightarrow N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_{0} \in \mathbb{H}^{n}, \phi$ induces an
equivariant quasi-isometry
$f_{0}: \pi_{1}(M) \cdot x_{0} \rightarrow \pi_{1}(N) \cdot x_{0}, g \cdot x_{0} \mapsto \phi(g) \cdot x_{0}$.
Step 2. f_{0} extends to an equivariant quasi-conformal
homeomorphism $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$
Step 3. F equivariant and quasi-conformal implies F
conformal, hence Moebius.
Step 4. F Moebius implies F extends to an equivariant

Mostow rigidity

Theorem

(Mostow) For $n \geq 3$, any isomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f: M \rightarrow N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_{0} \in \mathbb{H}^{n}, \phi$ induces an equivariant quasi-isometry
$f_{0}: \pi_{1}(M) \cdot x_{0} \rightarrow \pi_{1}(N) \cdot x_{0}, g \cdot x_{0} \mapsto \phi(g) \cdot x_{0}$.
Step 2. f_{0} extends to an equivariant quasi-conformal
homeomorphism $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$.
Sten 3. F equivariant and quasi-conformal implies F
conformal, hence Moebius.
Step 4. F Moebius implies F extends to an equivariant

Mostow rigidity

Theorem

(Mostow) For $n \geq 3$, any isomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f: M \rightarrow N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_{0} \in \mathbb{H}^{n}, \phi$ induces an equivariant quasi-isometry
$f_{0}: \pi_{1}(M) \cdot x_{0} \rightarrow \pi_{1}(N) \cdot x_{0}, g \cdot x_{0} \mapsto \phi(g) \cdot x_{0}$.
Step 2. f_{0} extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$.

Step 3. F equivariant and quasi-conformal implies F
conformal, hence Moebius.
Sten 4. F Moebius implies F extends to an equivariant

Mostow rigidity

Theorem

(Mostow) For $n \geq 3$, any isomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f: M \rightarrow N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_{0} \in \mathbb{H}^{n}, \phi$ induces an equivariant quasi-isometry
$f_{0}: \pi_{1}(M) \cdot x_{0} \rightarrow \pi_{1}(N) \cdot x_{0}, g \cdot x_{0} \mapsto \phi(g) \cdot x_{0}$.
Step 2. f_{0} extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$.

Step 3. F equivariant and quasi-conformal implies F conformal, hence Moebius.

Step 4. F Moebius implies F extends to an equivariant

Mostow rigidity

Theorem

(Mostow) For $n \geq 3$, any isomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f: M \rightarrow N$.

Sketch of proof:

Step 1. Choosing a basepoint $x_{0} \in \mathbb{H}^{n}, \phi$ induces an equivariant quasi-isometry $f_{0}: \pi_{1}(M) \cdot x_{0} \rightarrow \pi_{1}(N) \cdot x_{0}, g \cdot x_{0} \mapsto \phi(g) \cdot x_{0}$.
Step 2. f_{0} extends to an equivariant quasi-conformal homeomorphism $F: \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$.
Step 3. F equivariant and quasi-conformal implies F conformal, hence Moebius.

Step 4. F Moebius implies F extends to an equivariant isometry $f: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n}$.

Marked length spectrum rigidity

X closed negatively curved n-manifold
Each free homotopy class of closed curves contains a unique closed geodesic
Length function $I_{X}: \pi_{1}(X) \rightarrow \mathbb{R}^{+}$
Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ an isomorphism such that $I_{Y} \circ \phi=I_{X}$, is X isometric to Y ?

Marked length spectrum rigidity

X closed negatively curved n-manifold
Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_{X}: \pi_{1}(X) \rightarrow \mathbb{R}^{+}$
Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ an isomorphism such that $I_{Y} \circ \phi=I_{X}$, is X isometric to Y ?

Marked length spectrum rigidity

X closed negatively curved n-manifold
Each free homotopy class of closed curves contains a unique closed geodesic
Length function $I_{X}: \pi_{1}(X) \rightarrow \mathbb{R}^{+}$
Question: Given X, Y closed negatively curved n-manifolds,
and $\phi: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ an isomorphism such that $I_{Y} \circ \phi=I_{X}$, is
X isometric to Y ?

Marked length spectrum rigidity

X closed negatively curved n-manifold
Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_{X}: \pi_{1}(X) \rightarrow \mathbb{R}^{+}$
Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ an isomorphism such that $I_{Y} \circ \phi=I_{X}$, is X isometric to Y ?

Marked length spectrum rigidity

X closed negatively curved n-manifold
Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_{X}: \pi_{1}(X) \rightarrow \mathbb{R}^{+}$
Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ an isomorphism such that $I_{Y} \circ \phi=I_{X}$, is X isometric to Y ?

Theorem

(Otal) Yes, if $n=2$.

Marked length spectrum rigidity

X closed negatively curved n-manifold
Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_{X}: \pi_{1}(X) \rightarrow \mathbb{R}^{+}$
Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ an isomorphism such that $I_{Y} \circ \phi=I_{X}$, is X isometric to Y ?

Theorem

(Otal) Yes, if $n=2$.

Marked length spectrum rigidity

X closed negatively curved n-manifold
Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_{X}: \pi_{1}(X) \rightarrow \mathbb{R}^{+}$
Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ an isomorphism such that $I_{Y} \circ \phi=I_{X}$, is X isometric to Y ?

Theorem

(Otal) Yes, if $n=2$.

Theorem

(Hamenstadt) Marked length spectra of X, Y are equal iff geodesic flows of X, Y are topologically conjugate.

CAT(-1) spaces

(X, d) metric space is $\operatorname{CAT}(-1)$ if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.
Facts:
Unique geodesic joining any two points.
Contractible.
Examples:
X complete simply connected manifold, $K \leq-1$.
X metric tree.

Kingshook Biswas

CAT(-1) spaces

(X, d) metric space is $\operatorname{CAT}(-1)$ if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.

Facts:
Unique geodesic joining any two points.
Contractible.
Examples:
X complete simply connected manifold, $K \leq-1$
X metric tree.

CAT(-1) spaces

(X, d) metric space is CAT(-1) if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.
Facts:
Unique geodesic joining any two points.
Contractible.
Examples:
X complete simply connected manifold, $K \leq-1$
X metric tree.

CAT(-1) spaces

(X, d) metric space is CAT(-1) if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.
Facts:
Unique geodesic joining any two points.
Contractible.
Examples:
X complete simply connected manifold, $K \leq-1$
X metric tree.

CAT(-1) spaces

(X, d) metric space is CAT(-1) if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.

Facts:

Unique geodesic joining any two points.
Contractible.
Examples:
X complete simply connected manifold, $K \leq-1$
X metric tree.

CAT(-1) spaces

(X, d) metric space is CAT(-1) if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.

Facts:

Unique geodesic joining any two points.
Contractible.
Examples:
X complete simply connected manifold, $K \leq-1$
X metric tree.

CAT(-1) spaces

(X, d) metric space is CAT(-1) if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.
Facts:
Unique geodesic joining any two points.
Contractible.

Examples:

X complete simply connected manifold, $K \leq-1$
X metric tree.

CAT(-1) spaces

(X, d) metric space is CAT(-1) if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.
Facts:
Unique geodesic joining any two points.
Contractible.

Examples:

X complete simply connected manifold, $K \leq-1$.
X metric tree.

CAT(-1) spaces

(X, d) metric space is CAT(-1) if:
(1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma:[0, T=d(p, q)] \rightarrow X$ with $\gamma(0)=p, \gamma(T)=q$.
(2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in $\mathbb{H}^{2}, d(s, t) \leq d_{\mathbb{H}^{2}}(\bar{s}, \bar{t})$.
Facts:
Unique geodesic joining any two points.
Contractible.

Examples:

X complete simply connected manifold, $K \leq-1$.
X metric tree.

Boundary at infinity

$\partial X:=\{[\gamma]: \gamma:[0, \infty) \rightarrow X \quad$ geodesic ray $\}$, where $\gamma_{1} \sim \gamma_{2}$ if $\left\{d\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \geq 0\right\}$ bounded.

$\forall x \in X, \xi \in \partial X, \exists!$ geodesic ray $\gamma:[0, \infty) \rightarrow X$ with $\gamma(0)=x, \gamma(\infty)=\xi$. $\forall \xi, \eta \in \partial X, \exists!$ bi-infinite geodesic $\gamma: \mathbb{R} \rightarrow X$ with $\gamma(-\infty)=\xi, \gamma(\infty)=\eta$.

Cone topology on $\bar{X}=\chi \cup \partial X$

Neighbourhoods of $\xi=[\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $p_{r}=$ projection to $\overline{B(\gamma(0), r)}$.
\bar{X} compact iff X proper.

Boundary at infinity

$\partial X:=\{[\gamma]: \gamma:[0, \infty) \rightarrow X \quad$ geodesic ray $\}$, where $\gamma_{1} \sim \gamma_{2}$ if $\left\{d\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \geq 0\right\}$ bounded.
$\gamma(\infty):=[\gamma]$.
$\forall x \in X, \xi \in \partial X, \exists!$ geodesic ray $\gamma:[0, \infty) \rightarrow X$ with
$\gamma(0)=x, \gamma(\infty)=\xi$.
$\forall \varepsilon, \eta \in \partial X, \exists$! bi-infinite geodesic $\gamma: \mathbb{R} \rightarrow X$ with

Cone topology on $\bar{X}=X \cup \partial X$:

Neiahbourhoods of $\xi=[\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $p_{r}=$ projection to $\bar{B}(\gamma(0), r)$.

\bar{X} compact iff X proper.

Boundary at infinity

$\partial X:=\{[\gamma]: \gamma:[0, \infty) \rightarrow X \quad$ geodesic ray $\}$, where $\gamma_{1} \sim \gamma_{2}$ if $\left\{d\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \geq 0\right\}$ bounded.
$\gamma(\infty):=[\gamma]$.
$\forall x \in X, \xi \in \partial X, \exists$! geodesic ray $\gamma:[0, \infty) \rightarrow X$ with $\gamma(0)=x, \gamma(\infty)=\xi$.
$\forall \xi, \eta \in \partial X, \exists!$ bi-infinite geodesic $\gamma: \mathbb{R} \rightarrow X$ with

Cone topology on $\bar{X}=X \cup \partial X$:

Neiahbourhoods of $\xi=[\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $p_{r}=$ projection to $\bar{B}(\gamma(0), r)$.
\bar{X} compact iff X proper.

Boundary at infinity

$\partial X:=\{[\gamma]: \gamma:[0, \infty) \rightarrow X \quad$ geodesic ray $\}$, where $\gamma_{1} \sim \gamma_{2}$ if $\left\{d\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \geq 0\right\}$ bounded.
$\gamma(\infty):=[\gamma]$.
$\forall x \in X, \xi \in \partial X, \exists$! geodesic ray $\gamma:[0, \infty) \rightarrow X$ with $\gamma(0)=x, \gamma(\infty)=\xi$.
$\forall \xi, \eta \in \partial X, \exists$! bi-infinite geodesic $\gamma: \mathbb{R} \rightarrow X$ with
$\gamma(-\infty)=\xi, \gamma(\infty)=\eta$.
Cone topology on $\bar{X}=X \cup \partial X$
Neighbourhoods of $\xi=[\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$

where $p_{r}=$ projection to $B(\gamma(0), r)$.
\bar{X} compact iff X proper.

Boundary at infinity

$\partial X:=\{[\gamma]: \gamma:[0, \infty) \rightarrow X \quad$ geodesic ray $\}$, where $\gamma_{1} \sim \gamma_{2}$ if $\left\{d\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \geq 0\right\}$ bounded.
$\gamma(\infty):=[\gamma]$.
$\forall x \in X, \xi \in \partial X, \exists$! geodesic ray $\gamma:[0, \infty) \rightarrow X$ with
$\gamma(0)=x, \gamma(\infty)=\xi$.
$\forall \xi, \eta \in \partial X, \exists$! bi-infinite geodesic $\gamma: \mathbb{R} \rightarrow X$ with
$\gamma(-\infty)=\xi, \gamma(\infty)=\eta$.
Cone topology on $\bar{X}=X \cup \partial X$:
Neighbourhoods of $\xi=[\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$
where $U(\gamma, r, \epsilon)=\{x \in \bar{X}: d(x, \gamma(0$
where $p_{r}=$ projection to $\overline{B(\gamma(0), r) .}$
\bar{X} compact iff X proper.

Boundary at infinity

$\partial X:=\{[\gamma]: \gamma:[0, \infty) \rightarrow X \quad$ geodesic ray $\}$, where $\gamma_{1} \sim \gamma_{2}$ if $\left\{d\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \geq 0\right\}$ bounded.
$\gamma(\infty):=[\gamma]$.
$\forall x \in X, \xi \in \partial X, \exists$! geodesic ray $\gamma:[0, \infty) \rightarrow X$ with $\gamma(0)=x, \gamma(\infty)=\xi$.
$\forall \xi, \eta \in \partial X, \exists$! bi-infinite geodesic $\gamma: \mathbb{R} \rightarrow X$ with
$\gamma(-\infty)=\xi, \gamma(\infty)=\eta$.
Cone topology on $\bar{X}=X \cup \partial X$:
Neighbourhoods of $\xi=[\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$ where $U(\gamma, r, \epsilon)=\left\{x \in \bar{X}: d(x, \gamma(0))>r, d\left(p_{r}(x), \gamma(r)\right)<\epsilon\right\}$, where $p_{r}=$ projection to $\overline{B(\gamma(0), r)}$.
\bar{X} compact iff X proper.

Boundary at infinity

$\partial X:=\{[\gamma]: \gamma:[0, \infty) \rightarrow X \quad$ geodesic ray $\}$, where $\gamma_{1} \sim \gamma_{2}$ if $\left\{d\left(\gamma_{1}(t), \gamma_{2}(t)\right): t \geq 0\right\}$ bounded.
$\gamma(\infty):=[\gamma]$.
$\forall x \in X, \xi \in \partial X, \exists$! geodesic ray $\gamma:[0, \infty) \rightarrow X$ with $\gamma(0)=x, \gamma(\infty)=\xi$.
$\forall \xi, \eta \in \partial X, \exists$! bi-infinite geodesic $\gamma: \mathbb{R} \rightarrow X$ with
$\gamma(-\infty)=\xi, \gamma(\infty)=\eta$.
Cone topology on $\bar{X}=X \cup \partial X$:
Neighbourhoods of $\xi=[\gamma] \in \partial X$ given by "cones" $U(\gamma, r, \epsilon)$ where $U(\gamma, r, \epsilon)=\left\{x \in \bar{X}: d(x, \gamma(0))>r, d\left(p_{r}(x), \gamma(r)\right)<\epsilon\right\}$, where $p_{r}=$ projection to $\overline{B(\gamma(0), r)}$.
\bar{X} compact iff X proper.

Examples:

X simply connected complete manifold, $K \leq-1$, then the map

$V \mapsto \gamma(\infty)$
(where $\gamma=$ unique geodesic ray with $\dot{\gamma}(0)=v$) is a
homeomorphism, $X \cup \partial X \simeq \mathbb{B}^{n} \cup \partial \mathbb{B}^{n}$.
X metric tree, then $\partial X \sim$ space of ends of tree.

Examples:

X simply connected complete manifold, $K \leq-1$, then the map

$$
\begin{aligned}
T_{X}^{1} X & \rightarrow \partial X \\
v & \mapsto \gamma(\infty)
\end{aligned}
$$

(where $\gamma=$ unique geodesic ray with $\dot{\gamma}(0)=v$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^{n} \cup \partial \mathbb{B}^{n}$.
X metric tree, then $\partial X \simeq$ space of ends of tree.

Examples:

X simply connected complete manifold, $K \leq-1$, then the map

$$
\begin{aligned}
T_{X}^{1} X & \rightarrow \partial X \\
v & \mapsto \gamma(\infty)
\end{aligned}
$$

(where $\gamma=$ unique geodesic ray with $\dot{\gamma}(0)=v$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^{n} \cup \partial \mathbb{B}^{n}$.
X metric tree, then $\partial X \simeq$ space of ends of tree.

Visual metrics

Comparison angle at infinity: For $x \in X, \xi, \eta \in \partial X$, angle between ξ, η as viewed from x,

$$
\theta_{x}(\xi, \eta):=\lim _{p \rightarrow \xi, q \rightarrow \eta} \theta_{x}(p, q)
$$

$\theta_{x}(\xi, \eta)=0$ iff $\xi=\eta, \theta_{x}(\xi, \eta)=\pi$ iff $x \in(\xi, \eta)$
Visual metric based at x :

Diameter one metric on ∂X compatible with topology on ∂X.
Example: For $X=\mathbb{H}^{n}, \partial X=S^{n-1}, \rho_{0}=\frac{1}{2} \times$ chordal metric on S^{n-1}

Visual metrics

Comparison angle at infinity: For $x \in X, \xi, \eta \in \partial X$, angle between ξ, η as viewed from x,

$$
\theta_{x}(\xi, \eta):=\lim _{p \rightarrow \xi, q \rightarrow \eta} \theta_{x}(p, q)
$$

$\theta_{x}(\xi, \eta)=0$ iff $\xi=\eta, \theta_{x}(\xi, \eta)=\pi$ iff $x \in(\xi, \eta)$
Visual metric based at x :

Diameter one metric on ∂X compatible with topology on ∂X. Example: For $X=\mathbb{H}^{n}, \partial X=S^{n-1}, \rho_{0}=\frac{1}{2} \times$ chordal metric on S^{n-1}

Visual metrics

Comparison angle at infinity: For $x \in X, \xi, \eta \in \partial X$, angle between ξ, η as viewed from x,

$$
\theta_{x}(\xi, \eta):=\lim _{p \rightarrow \xi, q \rightarrow \eta} \theta_{x}(p, q)
$$

$\theta_{x}(\xi, \eta)=0$ iff $\xi=\eta, \theta_{x}(\xi, \eta)=\pi$ iff $x \in(\xi, \eta)$
Visual metric based at x :

$$
\rho_{x}(\xi, \eta)=\sin \left(\frac{1}{2} \theta_{x}(\xi, \eta)\right)
$$

Diameter one metric on ∂X compatible with topology on ∂X. Example: For $X=\mathbb{H}^{n}, \partial X=S^{n-1}, \rho_{0}=\frac{1}{2} \times$ chordal metric on

Visual metrics

Comparison angle at infinity: For $x \in X, \xi, \eta \in \partial X$, angle between ξ, η as viewed from x,

$$
\theta_{x}(\xi, \eta):=\lim _{p \rightarrow \xi, q \rightarrow \eta} \theta_{x}(p, q)
$$

$\theta_{x}(\xi, \eta)=0$ iff $\xi=\eta, \theta_{x}(\xi, \eta)=\pi$ iff $x \in(\xi, \eta)$
Visual metric based at x :

$$
\rho_{x}(\xi, \eta)=\sin \left(\frac{1}{2} \theta_{x}(\xi, \eta)\right)
$$

Diameter one metric on ∂X compatible with topology on ∂X.
Example: For $X=\mathbb{H}^{n}, \partial X=S^{n-1}, \rho_{0}=\frac{1}{2} \times$ chordal metric on S^{n-1}

Visual metrics

Comparison angle at infinity: For $x \in X, \xi, \eta \in \partial X$, angle between ξ, η as viewed from x,

$$
\theta_{x}(\xi, \eta):=\lim _{p \rightarrow \xi, q \rightarrow \eta} \theta_{x}(p, q)
$$

$\theta_{x}(\xi, \eta)=0$ iff $\xi=\eta, \theta_{x}(\xi, \eta)=\pi$ iff $x \in(\xi, \eta)$
Visual metric based at x :

$$
\rho_{\chi}(\xi, \eta)=\sin \left(\frac{1}{2} \theta_{\chi}(\xi, \eta)\right)
$$

Diameter one metric on ∂X compatible with topology on ∂X.
Example: For $X=\mathbb{H}^{n}, \partial X=S^{n-1}, \rho_{0}=\frac{1}{2} \times$ chordal metric on S^{n-1}.

Gromov inner product:
$(x \mid y)_{z}:=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y)), x, y, z \in X$.
For X metric tree, $(x \mid y)_{z}=$ length of common segment of $[x, z],[y, z]$.
For $\xi, \eta \in \partial X,(\xi \mid \eta)_{x}:=\lim _{y \rightarrow \xi y^{\prime} \rightarrow \eta}\left(y \mid y^{\prime}\right)_{x}\left(y, y^{\prime}\right.$ converge radially).

Example: X rooted binary tree, $\partial X=\{0,1\}^{\mathbb{N}}, \rho_{X}=$ standard ultrametric on Cantor set.

Gromov inner product:
$(x \mid y)_{z}:=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y)), x, y, z \in X$.
For X metric tree, $(x \mid y)_{z}=$ length of common segment of $[x, z],[y, z]$.

For $\xi, \eta \in \partial X,(\xi \mid \eta)_{x}:=\lim _{y \rightarrow \xi, y^{\prime} \rightarrow \eta}\left(y \mid y^{\prime}\right)_{x}\left(y, y^{\prime}\right.$ converge radially).

Example: X rooted binary tree, $\partial X=\{0,1\}^{\mathbb{N}}, \rho_{X}=$ standard ultrametric on Cantor set.

Gromov inner product:
$(x \mid y)_{z}:=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y)), x, y, z \in X$.
For X metric tree, $(x \mid y)_{z}=$ length of common segment of $[x, z],[y, z]$.
For $\xi, \eta \in \partial X,(\xi \mid \eta)_{X}:=\lim _{y \rightarrow \xi, y^{\prime} \rightarrow \eta}\left(y \mid y^{\prime}\right)_{X}\left(y, y^{\prime}\right.$ converge radially).

Example: X rooted binary tree, $\partial X=\{0,1\}^{\mathbb{N}}, \rho_{X}=$ standard ultrametric on Cantor set.

Gromov inner product:
$(x \mid y)_{z}:=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y)), x, y, z \in X$.
For X metric tree, $(x \mid y)_{z}=$ length of common segment of $[x, z],[y, z]$.
For $\xi, \eta \in \partial X,(\xi \mid \eta)_{X}:=\lim _{y \rightarrow \xi, y^{\prime} \rightarrow \eta}\left(y \mid y^{\prime}\right)_{X}\left(y, y^{\prime}\right.$ converge radially).

$$
\rho_{X}(\xi, \eta):=\exp \left(-(\xi \mid \eta)_{x}\right)
$$

Example: X rooted binary tree, $\partial X=\{0,1\}^{\mathbb{N}}, \rho_{X}=$ standard ultrametric on Cantor set.

Gromov inner product:
$(x \mid y)_{z}:=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y)), x, y, z \in X$.
For X metric tree, $(x \mid y)_{z}=$ length of common segment of $[x, z],[y, z]$.
For $\xi, \eta \in \partial X,(\xi \mid \eta)_{x}:=\lim _{y \rightarrow \xi, y^{\prime} \rightarrow \eta}\left(y \mid y^{\prime}\right)_{X}\left(y, y^{\prime}\right.$ converge radially).

$$
\rho_{X}(\xi, \eta):=\exp \left(-(\xi \mid \eta)_{x}\right)
$$

Example: X rooted binary tree, $\partial X=\{0,1\}^{\mathbb{N}}, \rho_{X}=$ standard ultrametric on Cantor set.

Moebius and conformal maps between metric spaces

(Z, ρ) metric space, cross-ratio of quadruple of distinct points $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in Z$ defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]_{\rho}:=\frac{\rho(\xi, \eta) \rho\left(\xi^{\prime}, \eta^{\prime}\right)}{\rho\left(\xi, \eta^{\prime}\right) \rho\left(\xi^{\prime}, \eta\right)}
$$

Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ Moebius if it preserves cross-ratios.

Embedding $F:\left(Z_{1}, p_{1}\right) \rightarrow\left(Z_{2}, p_{2}\right)$ conformal if

exists for all $\xi \in Z_{1}$ (assuming Z_{1} has no isolated points).
F Moebius implies F conformal
Moreover, "Geometric Mean-Value Theorem" holds for Moebius maps:

Moebius and conformal maps between metric spaces

(Z, ρ) metric space, cross-ratio of quadruple of distinct points $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in Z$ defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]_{\rho}:=\frac{\rho(\xi, \eta) \rho\left(\xi^{\prime}, \eta^{\prime}\right)}{\rho\left(\xi, \eta^{\prime}\right) \rho\left(\xi^{\prime}, \eta\right)}
$$

Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ Moebius if it preserves cross-ratios.
Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ conformal if
exists for all $\xi \in Z_{1}$ (assuming Z_{1} has no isolated points).
F Moebius implies F conformal
Moreover, "Geometric Mean-Value Theorem" holds for Moebius maps:

Moebius and conformal maps between metric spaces

(Z, ρ) metric space, cross-ratio of quadruple of distinct points $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in Z$ defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]_{\rho}:=\frac{\rho(\xi, \eta) \rho\left(\xi^{\prime}, \eta^{\prime}\right)}{\rho\left(\xi, \eta^{\prime}\right) \rho\left(\xi^{\prime}, \eta\right)}
$$

Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ Moebius if it preserves cross-ratios.
Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ conformal if

$$
d F_{\rho_{1}, \rho_{2}}(\xi):=\lim _{\eta \rightarrow \xi} \frac{\rho_{2}(F(\xi), F(\eta))}{\rho_{1}(\xi, \eta)}
$$

exists for all $\xi \in Z_{1}$ (assuming Z_{1} has no isolated points).
F Moebius implies F conformal
Moreover, "Geometric Mean-Value Theorem" holds for Moebius maps:

Moebius and conformal maps between metric spaces

(Z, ρ) metric space, cross-ratio of quadruple of distinct points $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in Z$ defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]_{\rho}:=\frac{\rho(\xi, \eta) \rho\left(\xi^{\prime}, \eta^{\prime}\right)}{\rho\left(\xi, \eta^{\prime}\right) \rho\left(\xi^{\prime}, \eta\right)}
$$

Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ Moebius if it preserves cross-ratios.
Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ conformal if

$$
d F_{\rho_{1}, \rho_{2}}(\xi):=\lim _{\eta \rightarrow \xi} \frac{\rho_{2}(F(\xi), F(\eta))}{\rho_{1}(\xi, \eta)}
$$

exists for all $\xi \in Z_{1}$ (assuming Z_{1} has no isolated points).
F Moebius implies F conformal
Moreover, "Geometric Mean-Value Theorem" holds for Moebius maps:

Moebius and conformal maps between metric spaces

(Z, ρ) metric space, cross-ratio of quadruple of distinct points $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in Z$ defined by

$$
\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]_{\rho}:=\frac{\rho(\xi, \eta) \rho\left(\xi^{\prime}, \eta^{\prime}\right)}{\rho\left(\xi, \eta^{\prime}\right) \rho\left(\xi^{\prime}, \eta\right)}
$$

Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ Moebius if it preserves cross-ratios.

Embedding $F:\left(Z_{1}, \rho_{1}\right) \rightarrow\left(Z_{2}, \rho_{2}\right)$ conformal if

$$
d F_{\rho_{1}, \rho_{2}}(\xi):=\lim _{\eta \rightarrow \xi} \frac{\rho_{2}(F(\xi), F(\eta))}{\rho_{1}(\xi, \eta)}
$$

exists for all $\xi \in Z_{1}$ (assuming Z_{1} has no isolated points).
F Moebius implies F conformal
Moreover, "Geometric Mean-Value Theorem" holds for Moebius maps:

$$
\rho_{2}(F(\xi), F(\eta))^{2}=d F_{\rho_{1}, \rho_{2}}(\xi) d F_{\rho_{1}, \rho_{2}}(\eta) \rho_{1}(\xi, \eta)^{2}
$$

Cross-ratio on ∂X

For $Z=\partial X, \rho=\rho_{\chi}$, cross-ratio [] $\rho_{\rho_{x}}$ independent of choice of $x \in X$.
Common value [] given by
$\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]=\lim \exp \left(\frac{1}{2}\left(d(a, b)+d\left(a^{\prime}, b^{\prime}\right)-d\left(a, b^{\prime}\right)-d\left(a^{\prime}, b\right)\right)\right)$
(where ($\left.a, a^{\prime}, b, b^{\prime}\right) \rightarrow\left(\xi, \xi^{\prime}, \eta, \eta^{\prime}\right) \in \partial^{4} X$ radially).
id : $\left(\partial X, \rho_{X}\right) \rightarrow\left(\partial X, \rho_{y}\right)$ Moebius, derivative given by

$$
\frac{d \rho_{y}}{d \rho_{x}}(\xi):=\operatorname{did}_{\rho_{x}, \rho_{y}}(\xi)=\exp (B(x, y, \xi))
$$

where $B(x, y, \xi)=$ Busemann function, defined by

$$
B(x, y, \xi):=\lim _{a \rightarrow \xi}(d(x, a)-d(y, a))
$$

Any isometry $f: X \rightarrow Y$ extends to a Moebius map

Kingshook Biswas

Cross-ratio on ∂X

For $Z=\partial X, \rho=\rho_{X}$, cross-ratio [] $]_{\rho_{X}}$ independent of choice of $x \in X$.

Common value [] given by
$\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]=\lim \exp \left(\frac{1}{2}\left(d(a, b)+d\left(a^{\prime}, b^{\prime}\right)-d\left(a, b^{\prime}\right)-d\left(a^{\prime}, b\right)\right)\right)$
(where $\left(a, a^{\prime}, b, b^{\prime}\right) \rightarrow\left(\xi, \xi^{\prime}, \eta, \eta^{\prime}\right) \in \partial^{4} X$ radially).
id : $\left(\partial X, \rho_{X}\right) \rightarrow\left(\partial X, \rho_{y}\right)$ Moebius, derivative given by

$$
\frac{d \rho_{y}}{d \rho_{x}}(\xi):=\operatorname{did}_{\rho_{x}, \rho_{y}}(\xi)=\exp (B(x, y, \xi))
$$

where $B(x, y, \xi)=$ Busemann function, defined by

$$
B(x, y, \xi):=\lim _{a \rightarrow \xi}(d(x, a)-d(y, a))
$$

Any isometry $f: X \rightarrow Y$ extends to a Moebius map

Cross-ratio on ∂X

For $Z=\partial X, \rho=\rho_{\chi}$, cross-ratio [] $\rho_{\rho_{x}}$ independent of choice of $x \in X$.
Common value [] given by
$\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]=\lim \exp \left(\frac{1}{2}\left(d(a, b)+d\left(a^{\prime}, b^{\prime}\right)-d\left(a, b^{\prime}\right)-d\left(a^{\prime}, b\right)\right)\right)$
(where $\left(a, a^{\prime}, b, b^{\prime}\right) \rightarrow\left(\xi, \xi^{\prime}, \eta, \eta^{\prime}\right) \in \partial^{4} X$ radially).
id : $\left(\partial X, \rho_{x}\right) \rightarrow\left(\partial X, \rho_{y}\right)$ Moebius, derivative given by

$$
\frac{d \rho_{y}}{d \rho_{x}}(\xi):=\operatorname{did}_{\rho_{x}, \rho_{y}}(\xi)=\exp (B(x, y, \xi))
$$

where $B(x, y, \xi)=$ Busemann function, defined by

$$
B(x, y, \xi):=\lim _{a \rightarrow \xi}(d(x, a)-d(y, a))
$$

Cross-ratio on ∂X

For $Z=\partial X, \rho=\rho_{X}$, cross-ratio [] $]_{\rho_{X}}$ independent of choice of $x \in X$.

Common value [] given by
$\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]=\lim \exp \left(\frac{1}{2}\left(d(a, b)+d\left(a^{\prime}, b^{\prime}\right)-d\left(a, b^{\prime}\right)-d\left(a^{\prime}, b\right)\right)\right)$
(where $\left(a, a^{\prime}, b, b^{\prime}\right) \rightarrow\left(\xi, \xi^{\prime}, \eta, \eta^{\prime}\right) \in \partial^{4} X$ radially).
id : $\left(\partial X, \rho_{X}\right) \rightarrow\left(\partial X, \rho_{y}\right)$ Moebius, derivative given by

$$
\frac{d \rho_{y}}{d \rho_{x}}(\xi):=\operatorname{did}_{\rho_{x}, \rho_{y}}(\xi)=\exp (B(x, y, \xi))
$$

where $B(x, y, \xi)=$ Busemann function, defined by

$$
B(x, y, \xi):=\lim _{a \rightarrow \xi}(d(x, a)-d(y, a))
$$

Any isometry $f: X \rightarrow Y$ extends to a Moebius map $F: \partial X \rightarrow \partial Y$.

Marked length spectrum and Moebius maps

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F: \partial \tilde{X} \rightarrow \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \rightarrow \partial Y$ extend to an isometry $f: X \rightarrow Y ?$

Marked length spectrum and Moebius maps

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F: \partial \tilde{X} \rightarrow \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \rightarrow \partial Y$ extend to an isometry $f: X \rightarrow Y ?$

Marked length spectrum and Moebius maps

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F: \partial \tilde{X} \rightarrow \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \rightarrow \partial Y$ extend to an isometry $f: X \rightarrow Y$?

Marked length spectrum and Moebius maps

Theorem

(Otal) X, Y closed negatively curved n-manifolds have same marked length spectrum $\Leftrightarrow F: \partial \tilde{X} \rightarrow \partial \tilde{Y}$ is Moebius.

Question: For X, Y CAT(-1) spaces, does a Moebius map $F: \partial X \rightarrow \partial Y$ extend to an isometry $f: X \rightarrow Y$?

Theorem

(Bourdon) For X a rank one symmetric space with maximum of sectional curvatures equal to $-1, Y$ a CAT(-1) space, any Moebius embedding $F: \partial X \rightarrow \partial Y$ extends to an isometric embedding $f: X \rightarrow Y$.

Conformal maps and geodesic conjugacies

X, Y complete, simply connected manifolds with $K \leq-1$, then any conformal map $F: \partial X \rightarrow \partial Y$ induces a topological conjugacy of geodesic flows $\phi: T^{1} X \rightarrow T^{1} Y$:

Given $v \in T^{1} X$ tangent to (ξ, η), define $\phi(v)$ to be the unique $w \in T^{1} Y$ tangent to $(F(\xi), F(\eta))$ satisfying $d F_{p_{x}, \rho_{y}}(\xi)=1$
where $x=\pi(v), y=\pi(w)$.
Flowing v, w for time t scales visual metrics at $\xi, F(\xi)$ by same factor e^{t}, so ϕ preserves time along geodesics.

Conformal maps and geodesic conjugacies

X, Y complete, simply connected manifolds with $K \leq-1$, then any conformal map $F: \partial X \rightarrow \partial Y$ induces a topological conjugacy of geodesic flows $\phi: T^{1} X \rightarrow T^{1} Y$:

Given $v \in T^{1} X$ tangent to (ξ, η), define $\phi(v)$ to be the unique $w \in T^{1} Y$ tangent to $(F(\xi), F(\eta)$) satisfying

$$
d F_{\rho_{x}, \rho_{y}}(\xi)=1
$$

where $x=\pi(v), y=\pi(w)$.
Flowing v, w for time t scales visual metrics at $\xi, F(\xi)$ by same factor e^{t}, so ϕ preserves time along geodesics.

Conformal maps and geodesic conjugacies

X, Y complete, simply connected manifolds with $K \leq-1$, then any conformal map $F: \partial X \rightarrow \partial Y$ induces a topological conjugacy of geodesic flows $\phi: T^{1} X \rightarrow T^{1} Y$:
Given $v \in T^{1} X$ tangent to (ξ, η), define $\phi(v)$ to be the unique $w \in T^{1} Y$ tangent to $(F(\xi), F(\eta)$) satisfying

$$
d F_{\rho_{x}, \rho_{y}}(\xi)=1
$$

where $x=\pi(v), y=\pi(w)$.
Flowing v, w for time t scales visual metrics at $\xi, F(\xi)$ by same factor e^{t}, so ϕ preserves time along geodesics.

If F is Moebius, then ϕ is flip-equivariant:

$$
d F_{\rho_{x}, \rho_{y}}(\xi) d F_{\rho_{x}, \rho_{y}}(\eta)=\frac{\rho_{y}(F(\xi), F(\eta))^{2}}{\rho_{x}(\xi, \eta)^{2}}=1
$$

$$
d F_{\rho_{x}, \rho_{y}}(\xi)=1 \text { iff } d F_{\rho_{x}, \rho_{y}}(\eta)=1
$$

$\phi(-v)=-\phi(v)$

If F is Moebius, then ϕ is flip-equivariant:

$$
d F_{\rho_{x}, \rho_{y}}(\xi) d F_{\rho_{x}, \rho_{y}}(\eta)=\frac{\rho_{y}(F(\xi), F(\eta))^{2}}{\rho_{x}(\xi, \eta)^{2}}=1
$$

$$
d F_{\rho_{x}, \rho_{y}}(\xi)=1 \text { iff } d F_{\rho_{x}}
$$

$$
\phi(-v)=-\phi(v)
$$

If F is Moebius, then ϕ is flip-equivariant:

$$
d F_{\rho_{x}, \rho_{y}}(\xi) d F_{\rho_{x}, \rho_{y}}(\eta)=\frac{\rho_{y}(F(\xi), F(\eta))^{2}}{\rho_{x}(\xi, \eta)^{2}}=1
$$

so

$$
d F_{\rho_{x}, \rho_{y}}(\xi)=1 \text { iff } d F_{\rho_{x}, \rho_{y}}(\eta)=1
$$

If F is Moebius, then ϕ is flip-equivariant:

$$
d F_{\rho_{x}, \rho_{y}}(\xi) d F_{\rho_{x}, \rho_{y}}(\eta)=\frac{\rho_{y}(F(\xi), F(\eta))^{2}}{\rho_{x}(\xi, \eta)^{2}}=1
$$

so

$$
d F_{\rho_{x}, \rho_{y}}(\xi)=1 \text { iff } d F_{\rho_{x}, \rho_{y}}(\eta)=1
$$

hence

$$
\phi(-v)=-\phi(v)
$$

The integrated Schwarzian of a conformal map

For a conformal map $F: \partial X \rightarrow \partial Y$, measure failure of $\phi: T^{1} X \rightarrow T^{1} Y$ to be flip-equivariant:

The integrated Schwarzian of F is the function
$S(F): \partial^{2} X \rightarrow \mathbb{R}$ defined by
$S(F)(\xi, \eta):=$ signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$

$$
=-\log \left(d F_{\rho_{x}, \rho_{y}}(\xi) d F_{\rho_{x}, \rho_{y}}(\eta)\right)
$$

where v tangent to $(\xi, \eta), x \in(\xi, \eta), y \in(F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle: $S(F \circ G)=S(F) \circ(G, G)+S(G)$

The integrated Schwarzian of a conformal map

For a conformal map $F: \partial X \rightarrow \partial Y$, measure failure of
$\phi: T^{1} X \rightarrow T^{1} Y$ to be flip-equivariant:
The integrated Schwarzian of F is the function $S(F): \partial^{2} X \rightarrow \mathbb{R}$ defined by
$S(F)(\xi, \eta):=$ signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$
where v tangent to $(\xi, \eta), x \in(\xi, \eta), y \in(F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle: $S(F \circ G)=S(F) \circ(G, G)+S(G)$

The integrated Schwarzian of a conformal map

For a conformal map $F: \partial X \rightarrow \partial Y$, measure failure of
$\phi: T^{1} X \rightarrow T^{1} Y$ to be flip-equivariant:
The integrated Schwarzian of F is the function $S(F): \partial^{2} X \rightarrow \mathbb{R}$ defined by
$S(F)(\xi, \eta):=$ signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$

$$
=-\log \left(d F_{\rho_{x}, \rho_{y}}(\xi) d F_{\rho_{x}, \rho_{y}}(\eta)\right)
$$

where v tangent to $(\xi, \eta), x \in(\xi, \eta), y \in(F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle: $S(F \circ G)=S(F) \circ(G, G)+S(G)$

The integrated Schwarzian of a conformal map

For a conformal map $F: \partial X \rightarrow \partial Y$, measure failure of
$\phi: T^{1} X \rightarrow T^{1} Y$ to be flip-equivariant:
The integrated Schwarzian of F is the function $S(F): \partial^{2} X \rightarrow \mathbb{R}$ defined by
$S(F)(\xi, \eta):=$ signed distance between foot of $\phi(v)$ and foot of $\phi(-v)$

$$
=-\log \left(d F_{\rho_{x}, \rho_{y}}(\xi) d F_{\rho_{x}, \rho_{y}}(\eta)\right)
$$

where v tangent to $(\xi, \eta), x \in(\xi, \eta), y \in(F(\xi), F(\eta))$ (independent of choices of v, x, y).

Cocycle: $S(F \circ G)=S(F) \circ(G, G)+S(G)$

Integrated Schwarzian and cross-ratio distortion

Conformal map $F: \partial X \rightarrow \partial Y$ said to be C^{1} conformal if $d F_{\rho_{x}, \rho_{y}}$ continuous.

Integrated Schwarzian and cross-ratio distortion

Conformal map $F: \partial X \rightarrow \partial Y$ said to be C^{1} conformal if $d F_{\rho_{x}, \rho_{Y}}$ continuous.

Theorem

(B.) Let X be a simply connected complete Riemannian manifold with sectional curvatures satisfying $-b^{2} \leq K \leq-1$ for some $b \geq 1$, and let Y be a proper geodesically complete CAT(-1) space. Let $F: U \subset \partial X \rightarrow V \subset \partial Y$ be a C^{1} conformal map between open subsets U, V. Then

$$
\begin{gathered}
\log \frac{\left[F(\xi), F\left(\xi^{\prime}\right), F(\eta), F\left(\eta^{\prime}\right)\right]}{\left[\xi, \xi^{\prime}, \eta, \eta^{\prime}\right]} \\
=\frac{1}{2}\left(S(F)(\xi, \eta)+S(F)\left(\xi^{\prime}, \eta^{\prime}\right)-S(F)\left(\xi, \eta^{\prime}\right)-S(F)\left(\xi^{\prime}, \eta\right)\right)
\end{gathered}
$$

for all $\left(\xi, \xi^{\prime}, \eta, \eta^{\prime}\right) \in \partial^{4} U$. In particular F is Moebius if and only if $S(F) \equiv 0$.

Almost-isometric extension of Moebius maps

A map $f: X \rightarrow Y$ between metric spaces is a (K, ϵ)-quasi-isometry if

$$
\frac{1}{K} d(x, y)-\epsilon \leq d(f(x), f(y)) \leq K d(x, y)+\epsilon
$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

Almost-isometric extension of Moebius maps

A map $f: X \rightarrow Y$ between metric spaces is a
(K, ϵ)-quasi-isometry if

$$
\frac{1}{K} d(x, y)-\epsilon \leq d(f(x), f(y)) \leq K d(x, y)+\epsilon
$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

Theorem

(B.) X, Y proper, geodesically complete CAT(-1) spaces. Then any Moebius map $F: \partial X \rightarrow \partial Y$ extends to a
(1, log 2)-quasi-isometry $f: X \rightarrow Y$ with image $\frac{1}{2} \log 2$-dense in Y.

Almost-isometric extension of Moebius maps

A map $f: X \rightarrow Y$ between metric spaces is a
(K, ϵ)-quasi-isometry if

$$
\frac{1}{K} d(x, y)-\epsilon \leq d(f(x), f(y)) \leq K d(x, y)+\epsilon
$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

Theorem

(B.) X, Y proper, geodesically complete CAT(-1) spaces. Then any Moebius map $F: \partial X \rightarrow \partial Y$ extends to a
(1, log 2)-quasi-isometry $f: X \rightarrow Y$ with image $\frac{1}{2} \log 2$-dense in Y.

Almost-isometric extension of Moebius maps

A map $f: X \rightarrow Y$ between metric spaces is a
(K, ϵ)-quasi-isometry if

$$
\frac{1}{K} d(x, y)-\epsilon \leq d(f(x), f(y)) \leq K d(x, y)+\epsilon
$$

for all $x, y \in X$, and if all points of Y are within bounded distance from the image of f.

Theorem

(B.) X, Y proper, geodesically complete CAT(-1) spaces. Then any Moebius map $F: \partial X \rightarrow \partial Y$ extends to a
(1, $\log 2$)-quasi-isometry $f: X \rightarrow Y$ with image $\frac{1}{2} \log 2$-dense in Y.

Theorem

(B.) If X, Y are in addition metric trees, then f can be taken to be a surjective isometry.

Complete, simply connected, negatively curved manifolds: infinitesimal rigidity

Theorem

(B.) $\left(X, g_{0}\right)$ complete, simply connected manifold with $K\left(g_{0}\right) \leq-1$. Suppose $\left(g_{t}\right)$ smooth 1-parameter family of metrics on X such that $K\left(g_{t}\right) \leq-1$ and $g_{t} \equiv g_{0}$ outside a compact $C \subset X$, so id $:\left(X, g_{0}\right) \rightarrow\left(X, g_{t}\right)$ extends to a homeomorphism $\hat{i d}_{t}: \partial X_{g_{0}} \rightarrow \partial X_{g_{t}}$.
Suppose $\hat{i d}_{t}$ is Moebius for all t. Then $\hat{i d}_{t}$ extends to an isometry $f_{t}:\left(X, g_{0}\right) \rightarrow\left(X, g_{t}\right)$ for all t.

Complete, simply connected, negatively curved manifolds: local rigidity

Theorem

(B.) $\left(X, g_{0}\right)$ complete, simply connected manifold with $K\left(g_{0}\right) \leq-1$. Given compact $C \subset X$, there exists $\epsilon>0$ such that if g is a metric on X satisfying
(1) $K(g) \leq-1, g \equiv g_{0}$ outside C,
(2) $\operatorname{Vol}_{g}(C)=\operatorname{Vol}_{g_{0}}(C)$,
(3) $\left\|g-g_{0}\right\|_{C^{3}}<\epsilon$,
then if id : $\partial X_{g_{0}} \rightarrow \partial X_{g}$ is Moebius, then id extends to an isometry $f:\left(X, g_{0}\right) \rightarrow(X, g)$.

Proof of almost-isometric extension

(Z, ρ_{0}) compact, diameter one, antipodal metric space
Space of Moebius metrics:
$\mathcal{M}\left(Z, \rho_{0}\right):=\left\{\rho\right.$ metric on $Z \mid[]_{\rho}=[]_{\rho_{0}}, \rho$ diameter one, antipodal $\}$

Step 1. X CAT(-1) space, then the map

is an isometric embedding.
(Z, ρ_{0}) compact, diameter one, antipodal metric space Space of Moebius metrics:
$\mathcal{M}\left(Z, \rho_{0}\right):=\left\{\rho\right.$ metric on $Z \mid[]_{\rho}=[]_{\rho_{0}}, \rho$ diameter one, antipodal $\}$

$$
d_{\mathcal{M}}\left(\rho_{1}, \rho_{2}\right):=\max _{\xi \in Z} \log \frac{d \rho_{2}}{d \rho_{1}}(\xi)
$$

Step 1. X CAT(-1) space, then the map
is an isometric embedding.
(Z, ρ_{0}) compact, diameter one, antipodal metric space Space of Moebius metrics:
$\mathcal{M}\left(Z, \rho_{0}\right):=\left\{\rho\right.$ metric on $Z \mid[]_{\rho}=[]_{\rho_{0}}, \rho$ diameter one, antipodal $\}$

$$
d_{\mathbb{M}}\left(\rho_{1}, \rho_{2}\right):=\max _{\xi \in Z} \log \frac{d \rho_{2}}{d \rho_{1}}(\xi)
$$

Step 1. x CAT(-1) space, then the map

$$
\begin{aligned}
i_{X}: X & \rightarrow \mathcal{M}(\partial X) \\
x & \mapsto \rho_{X}
\end{aligned}
$$

is an isometric embedding.

Step 2. The image of X in $\mathcal{M}(\partial X)$ is $\frac{1}{2} \log 2$-dense in $\mathcal{M}(\partial X)$.
Step 3. Moebius map $f: \partial X \rightarrow \partial Y$ induces an isometry $f_{*}: \mathcal{M}(\partial X) \rightarrow \mathcal{N}(\partial Y)$. Compose maps:
(where last map is a nearest point projection).

Step 2. The image of X in $\mathcal{M}(\partial X)$ is $\frac{1}{2} \log$ 2-dense in $\mathcal{M}(\partial X)$.
Step 3. Moebius map $f: \partial X \rightarrow \partial Y$ induces an isometry $f_{*}: \mathcal{M}(\partial X) \rightarrow \mathcal{M}(\partial Y)$. Compose maps:

$$
X \rightarrow \mathcal{M}(\partial X) \rightarrow \mathcal{M}(\partial Y) \rightarrow Y
$$

(where last map is a nearest point projection).

Proof of infinitesimal rigidity

Step 1. $g_{t} \equiv g_{0}$ outside compact C implies $\hat{i d}_{t}: \partial X_{g_{0}} \rightarrow \partial X_{g_{t}}$ locally Moebius, hence conformal.

Step 2. The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

Step 3. First variation of integrated Schwarzian given by ray-transform:

Step 4. (Sharafutdinov) Kernel of ray transform equals infinitesimally trivial deformations:

$$
I\left(\dot{g}_{t}\right) \equiv 0 \Leftrightarrow \dot{g}_{t}=\mathcal{L}_{X_{t}} g_{t} \text { for some vector field } X_{t}
$$

Proof of infinitesimal rigidity

Step 1. $g_{t} \equiv g_{0}$ outside compact C implies $\hat{i d}_{t}: \partial X_{g_{0}} \rightarrow \partial X_{g_{t}}$ locally Moebius, hence conformal.
Step 2. The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

$$
S\left(\hat{d d}_{t}\right)(\xi, \eta)=\lim _{p \rightarrow \xi, q \rightarrow \eta}\left(d_{g_{t}}(p, q)-d_{g_{0}}(p, q)\right)
$$

Step 3. First variation of integrated Schwarzian given by ray-transform:

Step 4. (Sharafutdinov) Kernel of ray transform equals infinitesimally trivial deformations:

$$
I\left(\dot{g}_{t}\right) \equiv 0 \Leftrightarrow \dot{g}_{t}=\mathcal{L}_{X_{t}} g_{t} \text { for some vector field } X_{t}
$$

Proof of infinitesimal rigidity

Step 1. $g_{t} \equiv g_{0}$ outside compact C implies $\hat{i d}_{t}: \partial X_{g_{0}} \rightarrow \partial X_{g_{t}}$ locally Moebius, hence conformal.
Step 2. The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

$$
S\left(\hat{d d}_{t}\right)(\xi, \eta)=\lim _{p \rightarrow \xi, q \rightarrow \eta}\left(d_{g_{t}}(p, q)-d_{g_{0}}(p, q)\right)
$$

Step 3. First variation of integrated Schwarzian given by ray-transform:

$$
\left.\frac{d}{d t}\right|_{t=0} S\left(\hat{i d}_{t}\right)(\xi, \eta)=\frac{1}{2} l\left(\dot{g}_{0}\right)(\xi, \eta)=\frac{1}{2} \int_{(\xi, \eta)} \dot{g}_{0}
$$

Step 4. (Sharafutdinov) Kernel of ray transform equals infinitesimally trivial deformations:

Proof of infinitesimal rigidity

Step 1. $g_{t} \equiv g_{0}$ outside compact C implies $\hat{i d}_{t}: \partial X_{g_{0}} \rightarrow \partial X_{g_{t}}$ locally Moebius, hence conformal.
Step 2. The integrated Schwarzian measures difference between lengths of bi-infinite geodesics:

$$
S\left(\hat{d d}_{t}\right)(\xi, \eta)=\lim _{p \rightarrow \xi, q \rightarrow \eta}\left(d_{g_{t}}(p, q)-d_{g_{0}}(p, q)\right)
$$

Step 3. First variation of integrated Schwarzian given by ray-transform:

$$
\left.\frac{d}{d t}\right|_{t=0} S\left(\hat{i d}_{t}\right)(\xi, \eta)=\frac{1}{2} l\left(\dot{g}_{0}\right)(\xi, \eta)=\frac{1}{2} \int_{(\xi, \eta)} \dot{g}_{0}
$$

Step 4. (Sharafutdinov) Kernel of ray transform equals infinitesimally trivial deformations:

$$
I\left(\dot{g}_{t}\right) \equiv 0 \Leftrightarrow \dot{g}_{t}=\mathcal{L}_{X_{t}} g_{t} \text { for some vector field } X_{t}
$$

Step 5. Integrate time-dependent vector field $\left(X_{t}\right)$ to get 1-parameter family of isometries $f_{t}:\left(X, g_{0}\right) \rightarrow\left(X, g_{t}\right)$.

