Relative Canonical Bundles for families of Calabi-Yau manifolds, twisted Hodge Bundles, and Positivity

ICTS Bangalore
March 2017

Georg Schumacher

Marburg

Hodge metric

Hodge metric

$f: \mathcal{X} \rightarrow S, n=\operatorname{dim}\left(\mathcal{X}_{S}\right)$

Hodge metric

$f: \mathcal{X} \rightarrow S, n=\operatorname{dim}\left(\mathcal{X}_{S}\right)$

Hodge metric

$f: \mathcal{X} \rightarrow S, n=\operatorname{dim}\left(\mathcal{X}_{S}\right)$
Hodge bundles $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}$

Hodge metric

$f: \mathcal{X} \rightarrow S, n=\operatorname{dim}\left(\mathcal{X}_{s}\right)$
Hodge bundles $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}$

Hodge bundle

$$
f_{*} \Omega_{\mathcal{X} / S}^{n}=f_{*} \mathcal{K}_{\mathcal{X} / S}
$$

Hodge metric

$f: \mathcal{X} \rightarrow S, n=\operatorname{dim}\left(\mathcal{X}_{s}\right)$
Hodge bundles $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}$

Hodge bundle

$$
f_{*} \Omega_{\mathcal{X} / S}^{n}=f_{*} \mathcal{K}_{\mathcal{X} / S}
$$

Hodge metric

$f: \mathcal{X} \rightarrow S, n=\operatorname{dim}\left(\mathcal{X}_{s}\right)$

Hodge bundle

$$
f_{*} \Omega_{\mathcal{X} / S}^{n}=f_{*} \mathcal{K}_{\mathcal{X} / S}
$$

Hodge metric on $f_{*} \Omega_{\mathcal{X} / S}^{n}$
L^{2}-inner product/norm of canonical forms η :

$$
(-1)^{n} \int_{\mathcal{X}_{s}} \eta \wedge \bar{\eta}
$$

Hodge bundles $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}$

Griffiths: Curvature of Hodge bundle

Kodaira-Spencer classes: obstructions against splitting of

$$
0 \rightarrow \mathcal{T}_{\mathcal{X} / S} \rightarrow \mathcal{T}_{\mathcal{X}} \rightarrow f^{*} \mathcal{T}_{S} \rightarrow 0
$$

Griffiths: Curvature of Hodge bundle

Kodaira-Spencer classes: obstructions against splitting of

$$
0 \rightarrow \mathcal{T}_{\mathcal{X} / S} \rightarrow \mathcal{T}_{\mathcal{X}} \rightarrow f^{*} \mathcal{T}_{S} \rightarrow 0
$$

Kodaira-Spencer map

$$
\begin{array}{rll}
\rho: T_{S, s_{0}} & \longrightarrow & H^{1}\left(X, \mathcal{T}_{X}\right) \\
\frac{\partial}{\partial s} & \mapsto & {\left[A_{s}\right]=\left[A_{\bar{\beta}}^{\alpha}(z) \frac{\partial}{\partial z^{\alpha}} \overline{d z^{\beta}}\right]}
\end{array}
$$

Griffiths: Curvature of Hodge bundle

Kodaira-Spencer classes: obstructions against splitting of

$$
0 \rightarrow \mathcal{T}_{\mathcal{X} / S} \rightarrow \mathcal{T}_{\mathcal{X}} \rightarrow f^{*} \mathcal{T}_{S} \rightarrow 0
$$

Kodaira-Spencer map

$$
\begin{array}{rll}
\rho: T_{S, s_{0}} & \longrightarrow & H^{1}\left(X, \mathcal{T}_{X}\right) \\
\frac{\partial}{\partial s} & \mapsto & {\left[A_{s}\right]=\left[A_{\bar{\beta}}^{\alpha}(z) \frac{\partial}{\partial z^{\alpha}} \overline{d z^{\beta}}\right]}
\end{array}
$$

Griffiths: Curvature of Hodge bundle

Kodaira-Spencer classes: obstructions against splitting of

$$
0 \rightarrow \mathcal{T}_{\mathcal{X} / S} \rightarrow \mathcal{T}_{\mathcal{X}} \rightarrow f^{*} \mathcal{T}_{S} \rightarrow 0
$$

Kodaira-Spencer map

$$
\left.\begin{array}{rl}
\rho: T_{S, s_{0}} & \longrightarrow H^{1}\left(X, \mathcal{T}_{X}\right) \\
\frac{\partial}{\partial s} & \mapsto
\end{array}\right]\left[A_{S}\right]=\left[A_{\bar{\beta}}^{\alpha}(z) \frac{\partial}{\partial z^{\alpha}} \overline{d z^{\beta}}\right]
$$

The cup product

$$
\begin{aligned}
A \otimes \phi & \mapsto A \cup \phi \\
H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right) \otimes H^{0}\left(\mathcal{X}_{s}, \Omega_{\mathcal{X}_{s}}^{n}\right) & \rightarrow H^{1}\left(\mathcal{X}_{s}, \Omega_{\mathcal{X}_{s}}^{n-1}\right)
\end{aligned}
$$

Griffiths: Curvature of Hodge bundle

Kodaira-Spencer classes: obstructions against splitting of

$$
0 \rightarrow \mathcal{T}_{\mathcal{X} / S} \rightarrow \mathcal{T}_{\mathcal{X}} \rightarrow f^{*} \mathcal{T}_{S} \rightarrow 0
$$

Kodaira-Spencer map

$$
\begin{array}{rll}
\rho: T_{S, s_{0}} & \longrightarrow & H^{1}\left(X, \mathcal{T}_{X}\right) \\
\frac{\partial}{\partial s} & \mapsto & {\left[A_{s}\right]=\left[A_{\bar{\beta}}^{\alpha}(z) \frac{\partial}{\partial z^{\alpha}} \overline{d z^{\beta}}\right]}
\end{array}
$$

The cup product

$$
A \otimes \phi \quad \mapsto \quad A \cup \phi
$$

$$
H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right) \otimes H^{0}\left(\mathcal{X}_{s}, \Omega_{\mathcal{X}_{s}}^{n}\right) \quad \rightarrow \quad H^{1}\left(\mathcal{X}_{s}, \Omega_{\mathcal{X}_{s}}^{n-1}\right)
$$

induces

$$
\sigma_{0}: f_{*} \Omega_{\mathcal{X} / S}^{n} \rightarrow R^{1} f_{*} \Omega_{\mathcal{X} / S}^{n-1} \otimes \mathcal{T}_{\mathcal{S}}^{\vee}
$$

Curvature Θ of $f_{*} \Omega_{\mathcal{X} / S}^{n}$

$$
\left(\Theta e, e^{\prime}\right)=\left(\sigma_{0} e, \sigma_{0} e^{\prime}\right)
$$

with hermitian metric induced by flat metric on $R^{n} f_{*} \mathbb{C}$, i.e. integration over \mathcal{X}_{s},

Curvature Θ of $f_{*} \Omega_{\mathcal{X} / S}^{n}$

$$
\left(\Theta e, e^{\prime}\right)=\left(\sigma_{0} e, \sigma_{0} e^{\prime}\right)
$$

with hermitian metric induced by flat metric on $R^{n} f_{*} \mathbb{C}$, i.e. integration over \mathcal{X}_{s},

Curvature Θ of $f_{*} \Omega_{\mathcal{X} / S}^{n}$

$$
\left(\Theta e, e^{\prime}\right)=\left(\sigma_{0} e, \sigma_{0} e^{\prime}\right)
$$

with hermitian metric induced by flat metric on $R^{n} f_{*} \mathbb{C}$, i.e. integration over \mathcal{X}_{s}, or for $\partial / \partial s, \partial / \partial s^{\prime} \in T_{S, s}$

$$
R\left(\partial / \partial s, \partial / \partial s^{\prime}, e, e^{\prime}\right)=\left(A \cup e, A^{\prime} \cup e^{\prime}\right)
$$

Aim: Construction of an intrinsic metric on the base of holomorphic families, functorial, i.e. compatible with base change \Rightarrow descends to moduli space.

Aim: Construction of an intrinsic metric on the base of holomorphic families, functorial, i.e. compatible with base change \Rightarrow descends to moduli space.

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$

Aim: Construction of an intrinsic metric on the base of holomorphic families, functorial, i.e. compatible with base change \Rightarrow descends to moduli space.

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$

Aim: Construction of an intrinsic metric on the base of holomorphic families, functorial, i.e. compatible with base change \Rightarrow descends to moduli space.

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

Aim: Construction of an intrinsic metric on the base of holomorphic families, functorial, i.e. compatible with base change \Rightarrow descends to moduli space.

Definition
Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:
Notation

$$
\begin{aligned}
\omega_{X}^{n} & =g d V \text { Ricci-flat volume form } \\
0 & =\operatorname{Ric}\left(\omega_{X}\right)=-\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{X}^{n}\right)
\end{aligned}
$$

Polarized families

Polarized families

Definition

Let X Kähler.
A polarization

$$
\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})
$$

is a Kähler class.

Polarized families

Definition

Let X Kähler.
A polarization

$$
\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})
$$

is a Kähler class.

Polarized families

Definition

Let X Kähler.
A polarization

$$
\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})
$$

is a Kähler class.
A polarized family $\left(f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}\right)$ defined by

$$
\lambda_{\mathcal{X} / \mathcal{S}} \in R^{1} f_{*}\left(\Omega_{\mathcal{X} / \mathcal{S}}^{1}\right)(S)
$$

s.t. $\lambda_{\mathcal{X} / S} \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.

Polarized families

Definition

Let X Kähler.
A polarization

$$
\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})
$$

is a Kähler class.
A polarized family $\left(f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}\right)$ defined by

$$
\lambda_{\mathcal{X} / \mathcal{S}} \in R^{1} f_{*}\left(\Omega_{\mathcal{X} / \mathcal{S}}^{1}\right)(S)
$$

s.t. $\lambda_{\mathcal{X} / S} \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.

Yau's theorem states the unique existence of a unique Ricci-flat Kähler form ω_{X} in any Kähler class λ_{X}.

Weil-Petersson metrics

Given a (polarized holomorphic family ($\mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) of Calabi-Yau manifolds:

Weil-Petersson metrics

Given a (polarized holomorphic family $\left(\mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}\right)$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family
Let

$$
\rho(\partial / \partial s)=\left[A_{s}\right] \in H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right) \text { Kodaira-Spencer class }
$$

and A_{s} harmonic w.r. to ω_{X}.

Weil-Petersson metrics

Given a (polarized holomorphic family $\left(\mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}\right)$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family
Let

$$
\rho(\partial / \partial s)=\left[A_{s}\right] \in H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right) \text { Kodaira-Spencer class }
$$

and A_{s} harmonic w.r. to ω_{X}.

Weil-Petersson metrics

Given a (polarized holomorphic family $\left(\mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}\right)$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family
Let

$$
\rho(\partial / \partial s)=\left[A_{s}\right] \in H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right) \text { Kodaira-Spencer class }
$$

and A_{s} harmonic w.r. to ω_{X}.
Then

$$
\|\partial / \partial s\|_{W P}^{2}:=\left\|A_{s}\right\|^{2}:=\int_{\mathcal{X}_{s}} A_{s} \cdot \bar{A}_{s} g d V
$$

Weil-Petersson metrics

Given a (polarized holomorphic family $\left(\mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}\right)$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family
Let

$$
\rho(\partial / \partial s)=\left[A_{s}\right] \in H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right) \text { Kodaira-Spencer class }
$$

and A_{s} harmonic w.r. to ω_{X}.
Then

$$
\|\partial / \partial s\|_{W P}^{2}:=\left\|A_{s}\right\|^{2}:=\int_{\mathcal{X}_{s}} A_{s} \cdot \bar{A}_{s} g d V
$$

Known:

$$
\omega_{W P} \text { is Kähler. }
$$

Identification of Weil-Petersson metric for families of CY manifolds

Identification of Weil-Petersson metric for families of CY manifolds

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_{s}}:=\Omega_{\mathcal{X}_{s}}^{n}$ on fibers are \mathcal{X}_{s} trivial, and let $\phi \neq 0$ be a section.

Identification of Weil-Petersson metric for families of CY manifolds

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_{s}}:=\Omega_{\mathcal{X}_{s}}^{n}$ on fibers are \mathcal{X}_{s} trivial, and let $\phi \neq 0$ be a section.
G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$
\left(A_{s}, A_{s}\right)_{W P}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cdot A_{\bar{s}}\right) \phi \wedge \bar{\phi}}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cup \phi\right) \wedge\left(A_{\bar{s}} \cup \bar{\phi}\right)}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}
$$

Identification of Weil-Petersson metric for families of CY manifolds

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_{s}}:=\Omega_{\mathcal{X}_{s}}^{n}$ on fibers are \mathcal{X}_{s} trivial, and let $\phi \neq 0$ be a section.
G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$
\left(A_{s}, A_{s}\right)_{W P}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cdot A_{\bar{s}}\right) \phi \wedge \bar{\phi}}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cup \phi\right) \wedge\left(A_{\bar{s}} \cup \bar{\phi}\right)}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}
$$

Identification of Weil-Petersson metric for families of CY manifolds

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_{s}}:=\Omega_{\mathcal{X}_{s}}^{n}$ on fibers are \mathcal{X}_{s} trivial, and let $\phi \neq 0$ be a section.
G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$
\left(A_{s}, A_{s}\right)_{W P}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cdot A_{\bar{s}}\right) \phi \wedge \bar{\phi}}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cup \phi\right) \wedge\left(A_{\bar{s}} \cup \bar{\phi}\right)}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}
$$

The latter formula shows that the Weil-Petersson form is the pull-back of the invariant form on the period domain under the period mapping.

Identification of Weil-Petersson metric for families of CY manifolds

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_{s}}:=\Omega_{\mathcal{X}_{s}}^{n}$ on fibers are \mathcal{X}_{s} trivial, and let $\phi \neq 0$ be a section.
G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$
\left(A_{s}, A_{s}\right)_{W P}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cdot A_{\bar{s}}\right) \phi \wedge \bar{\phi}}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}=\frac{\int_{\mathcal{X}_{s}}\left(A_{s} \cup \phi\right) \wedge\left(A_{\bar{s}} \cup \bar{\phi}\right)}{\int_{\mathcal{X}_{s}} \phi \wedge \bar{\phi}}
$$

The latter formula shows that the Weil-Petersson form is the pull-back of the invariant form on the period domain under the period mapping.

Consequence

$$
\omega_{W P}(s)=-\sqrt{-1} \partial \bar{\partial} \log (-1)^{n} \int_{\mathcal{X}_{s}}(\phi \wedge \bar{\phi})
$$

i.e. the Weil-Petersson form is the curvature of the Hodge metric on $f_{*}\left(\mathcal{K}_{\mathcal{X} / S}\right)$

Consequence

$$
\omega_{W P}(s)=-\sqrt{-1} \partial \bar{\partial} \log (-1)^{n} \int_{\mathcal{X}_{s}}(\phi \wedge \bar{\phi})
$$

i.e. the Weil-Petersson form is the curvature of the Hodge metric on $f_{*}\left(\mathcal{K}_{\mathcal{X} / S}\right)$

Consequence

$$
\omega_{W P}(s)=-\sqrt{-1} \partial \bar{\partial} \log (-1)^{n} \int_{\mathcal{X}_{s}}(\phi \wedge \bar{\phi})
$$

i.e. the Weil-Petersson form is the curvature of the Hodge metric on $f_{*}\left(\mathcal{K}_{\mathcal{X} / S}\right)$

Now turn to $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$ rather than $f_{*}\left(\mathcal{K}_{\mathcal{X} / S}\right)$.

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z)
$$

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$.

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$.

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)$.
We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is $\omega_{W P}$.

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)$.
We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is $\omega_{W P}$.
More is true:

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)$.
We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is $\omega_{W P}$.
More is true: ${ }_{\text {back }}$

Fact (cf. M. Braun - G. Sch. '16)

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms $\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z)$.

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)$.
We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is $\omega_{W P}$.
More is true: ${ }_{\text {back }}$

Fact (cf. M. Braun - G. Sch. '16)

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms $\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z)$.

Curvature of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)$.
We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is $\omega_{W P}$.
More is true: ${ }_{\text {back }}$

Fact (cf. M. Braun - G. Sch. '16)

Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms $\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z)$. Then

$$
\Theta_{\mathcal{X}}=\frac{1}{\operatorname{vol}\left(\mathcal{X}_{s}\right)} f^{*} \omega_{W P}
$$

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{\mathcal{X} / \mathcal{S}}$ be represented by a closed, real $(1,1)$-form on the total space?

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{\mathcal{X} / \mathrm{S}}$ be represented by a closed, real (1,1)-form on the total space?

Proposition (A. Fujiki - G.Sch. '90)

($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) a polarized family of Calabi-Yau manifolds, and $\omega_{\mathcal{X}_{s}} \in \lambda_{\mathcal{X}_{s}}$ the Kähler-Einstein forms. Then locally with respect to S there exists a d-closed (1,1)-form $\omega_{\mathcal{X}}$ on the total space \mathcal{X} such that

$$
\omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}} .
$$

If the polarization can be represented by a closed, real (1,1)-form, then $\omega_{\mathcal{X}}$ can be chosen globally as a (1,1)-form.
Let $n=\operatorname{dim} \mathcal{X}_{s}$. Then such a form is uniquely determined by the equation

$$
\int_{\mathcal{X} / \mathrm{S}} \omega_{\mathcal{X}}^{n+1}=0 .
$$

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{\mathcal{X} / \mathrm{S}}$ be represented by a closed, real (1,1)-form on the total space?

Proposition (A. Fujiki - G.Sch. '90)

($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) a polarized family of Calabi-Yau manifolds, and $\omega_{\mathcal{X}_{s}} \in \lambda_{\mathcal{X}_{s}}$ the Kähler-Einstein forms. Then locally with respect to S there exists a d-closed (1,1)-form $\omega_{\mathcal{X}}$ on the total space \mathcal{X} such that

$$
\omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}} .
$$

If the polarization can be represented by a closed, real (1,1)-form, then $\omega_{\mathcal{X}}$ can be chosen globally as a (1,1)-form.
Let $n=\operatorname{dim} \mathcal{X}_{s}$. Then such a form is uniquely determined by the equation

$$
\int_{\mathcal{X} / \mathrm{S}} \omega_{\mathcal{X}}^{n+1}=0 .
$$

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{\mathcal{X} / \mathrm{S}}$ be represented by a closed, real (1,1)-form on the total space?

Proposition (A. Fujiki - G.Sch. '90)

($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) a polarized family of Calabi-Yau manifolds, and $\omega_{\mathcal{X}_{s}} \in \lambda_{\mathcal{X}_{s}}$ the Kähler-Einstein forms. Then locally with respect to S there exists a d-closed (1,1)-form $\omega_{\mathcal{X}}$ on the total space \mathcal{X} such that

$$
\omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}} .
$$

If the polarization can be represented by a closed, real (1,1)-form, then $\omega_{\mathcal{X}}$ can be chosen globally as a (1,1)-form.
Let $n=\operatorname{dim} \mathcal{X}_{s}$. Then such a form is uniquely determined by the equation

$$
\int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}=0 .
$$

Question. Is there a Kähler form on \mathcal{X}, whose restriction to all fibers is Ricci-flat?

Question. Is there a Kähler form on \mathcal{X}, whose restriction to all fibers is Ricci-flat?
Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}}+f^{*} \omega_{S}$.

Question. Is there a Kähler form on \mathcal{X}, whose restriction to all fibers is Ricci-flat?
Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}}+f^{*} \omega_{S}$.
Theorem (M. Braun-G. Sch. '16)
Let \mathcal{X} be Kähler ($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) holomorphic, polarized family of Calabi-Yau manifolds.
Assume that the Green's functions of \square for functions on fibers \mathcal{X}_{s}, $s \in S$ are uniformly bounded from below (by a negative constant).

Question. Is there a Kähler form on \mathcal{X}, whose restriction to all fibers is Ricci-flat?
Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}}+f^{*} \omega_{S}$.
Theorem (M. Braun-G. Sch. '16)
Let \mathcal{X} be Kähler ($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) holomorphic, polarized family of Calabi-Yau manifolds.
Assume that the Green's functions of \square for functions on fibers \mathcal{X}_{s}, $s \in S$ are uniformly bounded from below (by a negative constant).

Question. Is there a Kähler form on \mathcal{X}, whose restriction to all fibers is Ricci-flat?
Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}}+f^{*} \omega_{\mathcal{S}}$.
Theorem (M. Braun-G. Sch. '16)
Let \mathcal{X} be Kähler ($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) holomorphic, polarized family of Calabi-Yau manifolds.
Assume that the Green's functions of \square for functions on fibers \mathcal{X}_{s}, $s \in S$ are uniformly bounded from below (by a negative constant). Then there exists a Kähler form $\widetilde{\omega}_{\mathcal{X}}$ on \mathcal{X}, whose restriction to the fibers \mathcal{X}_{s} is the Ricci flat form on ($\mathcal{X}_{s}, \lambda_{\mathcal{X}_{s}}$).

Validity of the assumptions

Cheeger '70, Cheeger - Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_{s}) is bounded from above.

Validity of the assumptions

Cheeger '70, Cheeger - Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_{s}) is bounded from above.

Sh. Takayama '15, X. Rong - Y. Zhang '11

The diameter is bounded for projective families of Calabi-Yau manifolds.

Validity of the assumptions

Cheeger '70, Cheeger - Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_{s}) is bounded from above.

Sh. Takayama '15, X. Rong - Y. Zhang '11

The diameter is bounded for projective families of Calabi-Yau manifolds.

Y. Zhang '16, V. Tosatti '15

The diameter is bounded for polarized families of Calabi-Yau manifolds, under mild assumptions for the type of degeneration.

Twisted Hodge bundles, canonically polarized case

Definition

A compact complex manifold X is called canonically polarized, if \mathcal{K}_{X} is positive (ample).

Twisted Hodge bundles, canonically polarized case

Definition

A compact complex manifold X is called canonically polarized, if \mathcal{K}_{X} is positive (ample).

Twisted Hodge bundles, canonically polarized case

Definition

A compact complex manifold X is called canonically polarized, if \mathcal{K}_{X} is positive (ample).

Notation

$$
\begin{gathered}
\omega_{X} \text { Kähler form } \\
\omega_{X}^{n}=g d V \text { volume form. } \\
\operatorname{Ric}\left(\omega_{X}\right)=-\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n}\right)=-\sqrt{-1} \partial \bar{\partial} \log g \\
g^{-1} \text { metric on } \mathcal{K}_{X}
\end{gathered}
$$

Twisted Hodge bundles, canonically polarized case

Definition

A compact complex manifold X is called canonically polarized, if \mathcal{K}_{X} is positive (ample).

Notation

ω_{X} Kähler form
$\omega_{X}^{n}=g d V$ volume form.
$\operatorname{Ric}\left(\omega_{X}\right)=-\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n}\right)=-\sqrt{-1} \partial \bar{\partial} \log g$
g^{-1} metric on \mathcal{K}_{X}

Theorem (Th. Aubin, S.T. Yau)
Let X be canonically polarized. Then it possesses a unique Kähler-Einstein metric ω_{X} :

$$
\omega_{X}=-\operatorname{Ric}\left(\omega_{X}\right)
$$

Twisted Hodge bundles, canonically polarized case

Definition

A compact complex manifold X is called canonically polarized, if \mathcal{K}_{X} is positive (ample).

Notation

ω_{X} Kähler form
$\omega_{X}^{n}=g d V$ volume form.
$\operatorname{Ric}\left(\omega_{X}\right)=-\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n}\right)=-\sqrt{-1} \partial \bar{\partial} \log g$
g^{-1} metric on \mathcal{K}_{X}

Theorem (Th. Aubin, S.T. Yau)
Let X be canonically polarized. Then it possesses a unique Kähler-Einstein metric ω_{X} :

$$
\omega_{X}=-\operatorname{Ric}\left(\omega_{X}\right)
$$

Twisted Hodge bundles, canonically polarized case

Definition

A compact complex manifold X is called canonically polarized, if \mathcal{K}_{X} is positive (ample).

Notation

ω_{X} Kähler form
$\omega_{X}^{n}=g d V$ volume form.
$\operatorname{Ric}\left(\omega_{X}\right)=-\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n}\right)=-\sqrt{-1} \partial \bar{\partial} \log g$
g^{-1} metric on \mathcal{K}_{X}

Theorem (Th. Aubin, S.T. Yau)
Let X be canonically polarized. Then it possesses a unique Kähler-Einstein metric ω_{X} :

$$
\omega_{X}=-\operatorname{Ric}\left(\omega_{X}\right)
$$

Geodesic curvature

Given $\omega_{\mathcal{X}}$ positive definite on fibers

horizontal lift

Geodesic curvature

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Horizontal lift

$$
\begin{gathered}
\partial / \partial s_{i} \in T_{S, s} \\
v_{i}=\partial / \partial s_{i}+a_{i}^{\alpha} \partial / \partial z^{\alpha} \\
f_{*}\left(v_{i}\right)=\partial / \partial s_{i} \\
v_{i} \perp \mathcal{X}_{s}
\end{gathered}
$$

horizontal lift

Geodesic curvature

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Horizontal lift

$$
\begin{gathered}
\partial / \partial s_{i} \in T_{S, s} \\
v_{i}=\partial / \partial s_{i}+a_{i}^{\alpha} \partial / \partial z^{\alpha} \\
f_{*}\left(v_{i}\right)=\partial / \partial s_{i} \\
v_{i} \perp \mathcal{X}_{s}
\end{gathered}
$$

horizontal lift

Geodesic curvature

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Horizontal lift

$$
\begin{gathered}
\partial / \partial s_{i} \in T_{S, s} \\
v_{i}=\partial / \partial s_{i}+a_{i}^{\alpha} \partial / \partial z^{\alpha} \\
f_{*}\left(v_{i}\right)=\partial / \partial s_{i} \\
v_{i} \perp \mathcal{X}_{s}
\end{gathered}
$$

Geodesic curvature

$$
\varphi_{i \bar{j}}=\left\langle v_{i}, v_{j}\right\rangle_{\omega_{\mathcal{x}}}
$$

horizontal lift

Geodesic curvature

Given $\omega_{\mathcal{X}}$ positive definite on fibers

horizontal lift

Horizontal lift

$$
\begin{gathered}
\partial / \partial s_{i} \in T_{S, s} \\
v_{i}=\partial / \partial s_{i}+a_{i}^{\alpha} \partial / \partial z^{\alpha} \\
f_{*}\left(v_{i}\right)=\partial / \partial s_{i} \\
v_{i} \perp \mathcal{X}_{s}
\end{gathered}
$$

Geodesic curvature

$$
\varphi_{i \bar{j}}=\left\langle v_{i}, v_{j}\right\rangle_{\omega_{x}}
$$

Kodaira-Spencer forms

$$
\bar{\partial} v_{i} \mid \mathcal{X}_{s}=A_{i}
$$

Theorem (G. Sch. '10)

$f: \mathcal{X} \rightarrow S$ an effective family of canonically polarized manifolds. Then $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$ is positive.

Theorem (G. Sch. '10)

$f: \mathcal{X} \rightarrow S$ an effective family of canonically polarized manifolds. Then $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$ is positive.

Theorem (G. Sch. '10)

$f: \mathcal{X} \rightarrow S$ an effective family of canonically polarized manifolds. Then $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$ is positive.

Namely:

$$
\begin{gathered}
\omega_{\mathcal{X}}:=\sqrt{-1} \sqrt{-1} \partial \bar{\partial} \log \left(\omega_{\mathcal{X} / S}^{n}\right) \\
\text { KE eqtn. } \Rightarrow \omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}} \\
\omega_{\mathcal{X}}^{n+1}=\left(v_{i}, v_{j}\right) \sqrt{-1} d s^{i} \wedge d s^{\bar{j}} \wedge \omega_{\mathcal{X}}^{n} \\
\left(\square_{s}+1\right)\left(v_{i}, v_{j}\right)=\left(A_{i}, A_{j}\right) w_{P} \\
\text { Note: } \left.\left(v_{i}, v_{j}\right)>0 \text { (positive definite }\right)
\end{gathered}
$$

Theorem (G. Sch. '10)

$f: \mathcal{X} \rightarrow S$ an effective family of canonically polarized manifolds. Then $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$ is positive.

Namely:

$$
\begin{gathered}
\omega_{\mathcal{X}}:=\sqrt{-1} \sqrt{-1} \partial \bar{\partial} \log \left(\omega_{\mathcal{X} / s}^{n}\right) \\
\text { KE eqtn. } \Rightarrow \omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}} \\
\omega_{\mathcal{X}}^{n+1}=\left(v_{i}, v_{j}\right) \sqrt{-1} d s^{i} \wedge d s^{\bar{\jmath}} \wedge \omega_{\mathcal{X}}^{n} \\
\left(\square_{s}+1\right)\left(v_{i}, v_{j}\right)=\left(A_{i}, A_{j}\right) w_{P} \\
\text { Note: }\left(v_{i}, v_{j}\right)>0(\text { positive definite }) \\
\omega_{\mathcal{X}}^{n+1} \geq P_{n}\left(\operatorname{diam}\left(\mathcal{X}_{s}\right)\right) f^{*} \omega_{W P} \wedge \omega_{\mathcal{X}}^{n}
\end{gathered}
$$

Theorem (G. Sch. '10)

The curvature tensor for $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}^{\otimes m}\right)$ is given by

$$
\begin{align*}
R(A, \bar{A}, \psi, \bar{\psi})== & m \int_{\mathcal{X}_{s}^{\prime}}(\square+1)^{-1}(A \cdot \bar{A}) \cdot(\psi \cdot \bar{\psi}) g d V \\
& +m \int_{\mathcal{X}_{s}}(\square+m)^{-1}(A \cup \psi) \cdot(\bar{A} \cup \bar{\psi}) g d V \tag{1}\\
& +m \int_{\mathcal{X}_{s}}(\square-m)^{-1}(A \cup \bar{\psi}) \cdot(\bar{A} \cup \psi) g d V .
\end{align*}
$$

Theorem (G. Sch. '10)

The curvature tensor for $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}^{\otimes m}\right)$ is given by

$$
\begin{align*}
R(A, \bar{A}, \psi, \bar{\psi})== & m \int_{\mathcal{X}_{s}^{\prime}}(\square+1)^{-1}(A \cdot \bar{A}) \cdot(\psi \cdot \bar{\psi}) g d V \\
& +m \int_{\mathcal{X}_{s}}(\square+m)^{-1}(A \cup \psi) \cdot(\bar{A} \cup \bar{\psi}) g d V \tag{1}\\
& +m \int_{\mathcal{X}_{s}}(\square-m)^{-1}(A \cup \bar{\psi}) \cdot(\bar{A} \cup \psi) g d V .
\end{align*}
$$

Theorem (G. Sch. '10)

The curvature tensor for $R^{n-p_{*}} \Omega_{\mathcal{X} / S}^{p}\left(\mathcal{K}_{\mathcal{X} / S}^{\otimes m}\right)$ is given by

$$
\begin{align*}
R(A, \bar{A}, \psi, \bar{\psi})== & m \int_{\mathcal{X}_{s}}(\square+1)^{-1}(A \cdot \bar{A}) \cdot(\psi \cdot \bar{\psi}) g d V \\
& +m \int_{\mathcal{X}_{s}}(\square+m)^{-1}(A \cup \psi) \cdot(\bar{A} \cup \bar{\psi}) g d V \tag{1}\\
& +m \int_{\mathcal{X}_{s}}(\square-m)^{-1}(A \cup \bar{\psi}) \cdot(\bar{A} \cup \psi) g d V .
\end{align*}
$$

The only contribution in (1), which may be negative, originates from the harmonic parts in the third term. It equals

$$
-\int_{\mathcal{X}_{s}} H(A \cup \bar{\psi}) \overline{H\left(A_{j} \cup \bar{\psi}\right)} g d V .
$$

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

S. Wolpert '86: $\operatorname{dim} X=1, p=1, m=1$

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

S. Wolpert '86: $\operatorname{dim} X=1, p=1, m=1$
A. E. Fischer and A. J. Tromba '84: $\operatorname{dim} X=1, p=1, m=1$

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

S. Wolpert '86: $\operatorname{dim} X=1, p=1, m=1$
A. E. Fischer and A. J. Tromba '84: $\operatorname{dim} X=1, p=1, m=1$
Y.T. Siu '84: $\operatorname{dim} X=n, p=1, m=1$

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

S. Wolpert '86: $\operatorname{dim} X=1, p=1, m=1$
A. E. Fischer and A. J. Tromba '84: $\operatorname{dim} X=1, p=1, m=1$
Y.T. Siu '84: $\operatorname{dim} X=n, p=1, m=1$

Application

The moduli stack of canonically polarized manifolds is (Kobayashi-)hyperbolic.

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

S. Wolpert '86: $\operatorname{dim} X=1, p=1, m=1$
A. E. Fischer and A. J. Tromba '84: $\operatorname{dim} X=1, p=1, m=1$
Y.T. Siu '84: $\operatorname{dim} X=n, p=1, m=1$

Application

The moduli stack of canonically polarized manifolds is (Kobayashi-)hyperbolic.

Previous results

Dual result for

$$
R^{p} f_{*} \wedge^{p} \mathcal{T}_{\mathcal{X} / S}
$$

S. Wolpert '86: $\operatorname{dim} X=1, p=1, m=1$
A. E. Fischer and A. J. Tromba '84: $\operatorname{dim} X=1, p=1, m=1$
Y.T. Siu '84: $\operatorname{dim} X=n, p=1, m=1$

Application

The moduli stack of canonically polarized manifolds is (Kobayashi-)hyperbolic.

Corollary

The locally free sheaf $f_{*} \mathcal{K}_{\mathcal{X} / S}^{\otimes(m+1)}$ is Nakano-positive.

Using the above positivity of the relative canonical bundle, we see that the Corollary follows from

Theorem (Bo Berndtsson '09)
Let L be a positive line bundle on \mathcal{X}, then $f_{*}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}} \otimes L\right)$ is
Nakano-positive.

Using the above positivity of the relative canonical bundle, we see that the Corollary follows from

Theorem (Bo Berndtsson '09)
Let L be a positive line bundle on \mathcal{X}, then $f_{*}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}} \otimes L\right)$ is
Nakano-positive.

Using the above positivity of the relative canonical bundle, we see that the Corollary follows from

Theorem (Bo Berndtsson '09)

Let L be a positive line bundle on \mathcal{X}, then $f_{*}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}} \otimes L\right)$ is Nakano-positive.

Further results by Sh. Takayama - Chr. Mourougane and K. Liu X. Yang.

Twisted Hodge bundles - general case

Let $f: \mathcal{X} \rightarrow S$ be a holomorphic family of compact complex manifolds, and (L, h) be a relatively positive line bundle on \mathcal{X}.

Twisted Hodge bundles - general case

Let $f: \mathcal{X} \rightarrow S$ be a holomorphic family of compact complex manifolds, and (L, h) be a relatively positive line bundle on \mathcal{X}.
Let

$$
\omega_{\mathcal{X}}=2 \pi c_{1}(L, h)=-\sqrt{-1} \partial \bar{\partial} \log h
$$

Twisted Hodge bundles - general case

Let $f: \mathcal{X} \rightarrow S$ be a holomorphic family of compact complex manifolds, and (L, h) be a relatively positive line bundle on \mathcal{X}.
Let

$$
\omega_{\mathcal{X}}=2 \pi c_{1}(L, h)=-\sqrt{-1} \partial \bar{\partial} \log h
$$

and denote by

$$
A=\bar{\partial}(v)
$$

the induced Kodaira-Spencer forms,

Twisted Hodge bundles - general case

Let $f: \mathcal{X} \rightarrow S$ be a holomorphic family of compact complex manifolds, and (L, h) be a relatively positive line bundle on \mathcal{X}.
Let

$$
\omega_{\mathcal{X}}=2 \pi c_{1}(L, h)=-\sqrt{-1} \partial \bar{\partial} \log h
$$

and denote by

$$
A=\bar{\partial}(v)
$$

the induced Kodaira-Spencer forms, and

$$
\varphi=\langle v, v\rangle_{\omega_{\mathcal{X}}}
$$

the geodesic curvatures.

Theorem (Ph. Naumann '16)

Let (L, h) be a positive hermitian line bundle on \mathcal{X}.

Theorem (Ph. Naumann '16)

Let (L, h) be a positive hermitian line bundle on \mathcal{X}.

Theorem (Ph. Naumann '16)

Let (L, h) be a positive hermitian line bundle on \mathcal{X}. Then the curvature of $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}(L)$ is given by

$$
\begin{aligned}
R(A, \bar{A}, \psi, \bar{\psi})= & \int_{\mathcal{X}_{s}} \varphi \cdot(\psi \cdot \bar{\psi}) g d V \\
& +\int_{\mathcal{X}_{s}}(\square+1)^{-1}(A \cup \psi) \cdot(\bar{A} \cup \bar{\psi}) g d V \\
& +\int_{\mathcal{X}_{s}}(\square-1)^{-1}(A \cup \bar{\psi}) \cdot(\bar{A} \cup \psi) g d V .
\end{aligned}
$$

Theorem (Ph. Naumann '16)

Let (L, h) be a positive hermitian line bundle on \mathcal{X}. Then the curvature of $R^{n-p} f_{*} \Omega_{\mathcal{X} / S}^{p}(L)$ is given by

$$
\begin{aligned}
R(A, \bar{A}, \psi, \bar{\psi})= & \int_{\mathcal{X}_{s}}
\end{aligned} \quad \begin{aligned}
& \\
& \\
& \quad+\int_{\mathcal{X}_{s}}(\square+\bar{\psi}) g d V \\
& \\
& \quad+\int_{\mathcal{X}_{s}}(\square-1)^{-1}(A \cup \psi) \cdot(\bar{A} \cup \bar{\psi}) g d V \\
& \\
& \quad p=n \text { yields curvature of } f_{*}\left(\mathcal{K}_{\mathcal{X} / \mathrm{S}} \otimes L\right)
\end{aligned}
$$

Corollary

Theorems of Bo Berndtsson and G. Sch.

Corollary

Theorems of Bo Berndtsson and G. Sch.

Corollary

Theorems of Bo Berndtsson and G. Sch.
Use Lie-derivatives for differential forms with values in hermitian line bundles.

Methods (Calabi-Yau manifolds)

Calabi's Theorem '57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau manifolds are parallel.

Methods (Calabi-Yau manifolds)

Calabi's Theorem '57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau manifolds are parallel.

Methods (Calabi-Yau manifolds)

Calabi's Theorem '57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau manifolds are parallel.

Notation

$$
\begin{gathered}
f: \mathcal{X} \longrightarrow S \\
(z, s) \mapsto s \\
z=\left(z^{1}, \ldots, z^{n}\right) \\
s=\left(s^{1}, \ldots, s^{r}\right) \\
\text { components } z^{\alpha}, s^{i}
\end{gathered}
$$

Geodesic curvature

Given $\omega_{\mathcal{X}}$ like in proposition

Geodesic curvature

Given $\omega_{\mathcal{X}}$ like in ${ }_{\text {proposition }}$

Proposition

$$
\left(\bar{\partial} v_{i}\right) \mid \mathcal{X}_{s}=A_{i}
$$

harmonic Kodaira-Spencer form:

$$
\bar{\partial}^{*} \boldsymbol{A}_{i}=0 ; \quad \bar{\partial} \boldsymbol{A}_{i}=0
$$

Geodesic curvature

Given $\omega_{\mathcal{X}}$ like in ${ }_{\text {proposition }}$

Proposition

$$
\left(\bar{\partial} v_{i}\right) \mid \mathcal{X}_{s}=A_{i}
$$

harmonic Kodaira-Spencer form:

$$
\bar{\partial}^{*} \boldsymbol{A}_{i}=0 ; \quad \bar{\partial} \boldsymbol{A}_{i}=0
$$

Geodesic curvature

horizontal lift

Given $\omega_{\mathcal{X}}$ like in ${ }_{\text {Proposition }}$

Proposition

$$
\left(\bar{\partial} v_{i}\right) \mid \mathcal{X}_{s}=A_{i}
$$

harmonic Kodaira-Spencer form:

$$
\bar{\partial}^{*} \boldsymbol{A}_{i}=0 ; \quad \bar{\partial} \boldsymbol{A}_{i}=0
$$

Geodesic curvature

$$
\varphi_{i \bar{\jmath}}=\left\langle v_{i}, v_{j}\right\rangle_{\omega_{\mathcal{X}}}
$$

Fact Curvature form of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$:

$$
\begin{gathered}
\Theta=-\sqrt{-1} \partial \bar{\partial} \log g \\
=-\sqrt{-1}\left(\Theta_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}+\Theta_{i \bar{\jmath}} d s^{i} \wedge d s^{\bar{\jmath}}+\Theta_{i \bar{\beta}} d s^{i} \wedge d z^{\bar{\beta}}+\Theta_{\alpha \bar{\jmath}} d z^{\alpha} \wedge d s^{\bar{\jmath}}\right)
\end{gathered}
$$

Curvature form of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$:

$$
\begin{gathered}
\Theta=-\sqrt{-1} \partial \bar{\partial} \log g \\
=-\sqrt{-1}\left(\Theta_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}+\Theta_{i \bar{\jmath}} d s^{i} \wedge d s^{\bar{\jmath}}+\Theta_{i \bar{\beta}} d s^{i} \wedge d z^{\bar{\beta}}+\Theta_{\alpha \bar{\jmath}} d z^{\alpha} \wedge d s^{\bar{\jmath}}\right) \\
\Theta_{\alpha \bar{\beta}}=R_{\alpha \bar{\beta}}=0 \\
\Theta_{\alpha \bar{j} ; \bar{\beta}}=\Theta_{\alpha \bar{\beta} \mid \bar{\jmath}}=0
\end{gathered}
$$

Curvature form of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$:

$$
\begin{gathered}
\Theta=-\sqrt{-1} \partial \bar{\partial} \log g \\
=-\sqrt{-1}\left(\Theta_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}+\Theta_{i \bar{\jmath}} d s^{i} \wedge d s^{\bar{\jmath}}+\Theta_{i \bar{\beta}} d s^{i} \wedge d z^{\bar{\beta}}+\Theta_{\alpha \bar{\jmath}} d z^{\alpha} \wedge d s^{\bar{\jmath}}\right) \\
\Theta_{\alpha \bar{\beta}}=R_{\alpha \bar{\beta}}=0 \\
\Theta_{\alpha \bar{j} ; \bar{\beta}}=\Theta_{\alpha \bar{\beta} \mid \bar{\jmath}}=0
\end{gathered}
$$

Lemma

The forms $\Theta_{\alpha \bar{j}} d z^{\alpha}$ are holomorphic on the fibers \mathcal{X}_{s} and $\Theta_{i \bar{\beta} ; \alpha}=0$.

Curvature form of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$:

$$
\begin{gathered}
\Theta=-\sqrt{-1} \partial \bar{\partial} \log g \\
=-\sqrt{-1}\left(\Theta_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}+\Theta_{i \bar{\jmath}} d s^{i} \wedge d s^{\bar{\jmath}}+\Theta_{i \bar{\beta}} d s^{i} \wedge d z^{\bar{\beta}}+\Theta_{\alpha \bar{\jmath}} d z^{\alpha} \wedge d s^{\bar{\jmath}}\right) \\
\Theta_{\alpha \bar{\beta}}=R_{\alpha \bar{\beta}}=0 \\
\Theta_{\alpha \bar{j} ; \bar{\beta}}=\Theta_{\alpha \bar{\beta} \mid \bar{\jmath}}=0
\end{gathered}
$$

Lemma

The forms $\Theta_{\alpha \bar{j}} d z^{\alpha}$ are holomorphic on the fibers \mathcal{X}_{s} and $\Theta_{i \bar{\beta} ; \alpha}=0$.

Curvature form of $\mathcal{K}_{\mathcal{X} / \mathcal{S}}$:

$$
\begin{gathered}
\Theta=-\sqrt{-1} \partial \bar{\partial} \log g \\
=-\sqrt{-1}\left(\Theta_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}+\Theta_{i \bar{\jmath}} d s^{i} \wedge d s^{\bar{\jmath}}+\Theta_{i \bar{\beta}} d s^{i} \wedge d z^{\bar{\beta}}+\Theta_{\alpha \bar{\jmath}} d z^{\alpha} \wedge d s^{\bar{\jmath}}\right) \\
\Theta_{\alpha \bar{\beta}}=R_{\alpha \bar{\beta}}=0 \\
\Theta_{\alpha \bar{j} ; \bar{\beta}}=\Theta_{\alpha \bar{\beta} \mid \bar{\jmath}}=0
\end{gathered}
$$

Lemma

The forms $\Theta_{\alpha \bar{j}} d z^{\alpha}$ are holomorphic on the fibers \mathcal{X}_{s} and $\Theta_{i \bar{\beta} ; \alpha}=0$.
Lemma

$$
\Theta_{i \bar{\beta}} g^{\bar{\beta} \alpha} \partial_{\alpha}=\bar{\partial}^{*} A_{i \bar{\beta}}^{\alpha} \partial_{\alpha} d z^{\bar{\beta}}
$$

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Then

$$
-\square \chi_{i \bar{\jmath}}=2 g^{\bar{\beta} \alpha} \Theta_{i \bar{\beta}} \Theta_{\alpha \bar{\jmath}} \geq 0
$$

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Then

$$
-\square \chi_{i \bar{\jmath}}=2 g^{\bar{\beta} \alpha} \Theta_{i \bar{\beta}} \Theta_{\alpha \bar{\jmath}} \geq 0
$$

Hence

$$
\Theta_{i \bar{\beta}}=0
$$

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Then

$$
-\square \chi_{i \bar{\jmath}}=2 g^{\bar{\beta} \alpha} \Theta_{i \bar{\beta}} \Theta_{\alpha \bar{\jmath}} \geq 0
$$

Hence

$$
\Theta_{i \bar{\beta}}=0
$$

Now

$$
\square \Theta_{i \bar{\jmath}}=\square \chi_{i \bar{\jmath}}=0
$$

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Then

$$
-\square \chi_{i \bar{\jmath}}=2 g^{\bar{\beta} \alpha} \Theta_{i \bar{\beta}} \Theta_{\alpha \bar{\jmath}} \geq 0
$$

Hence

$$
\Theta_{i \bar{\beta}}=0
$$

Now

$$
\square \Theta_{i \bar{\jmath}}=\square \chi_{i \bar{\jmath}}=0
$$

and $\Theta_{i \bar{\jmath}}$ must be fiberwise constant. The value of $\Theta_{i \bar{\jmath}}=\Theta_{i \bar{\jmath}}(s)$ is determined by integration over \mathcal{X}_{s} according to the following Lemma.

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Then

$$
-\square \chi_{i \bar{\jmath}}=2 g^{\bar{\beta} \alpha} \Theta_{i \bar{\beta}} \Theta_{\alpha \bar{\jmath}} \geq 0
$$

Hence

$$
\Theta_{i \bar{\beta}}=0
$$

Now

$$
\square \Theta_{i \bar{\jmath}}=\square \chi_{i \bar{\jmath}}=0
$$

and $\Theta_{i \bar{j}}$ must be fiberwise constant. The value of $\Theta_{i \bar{\jmath}}=\Theta_{i \bar{\jmath}}(s)$ is determined by integration over \mathcal{X}_{s} according to the following Lemma.

Lemma

$$
\square\left(\varphi_{i \bar{\jmath}}\right)=-\Theta_{i \bar{\jmath}}+A_{i} \cdot A_{\bar{\jmath}}
$$

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Then

$$
-\square \chi_{i \bar{\jmath}}=2 g^{\bar{\beta} \alpha} \Theta_{i \bar{\beta}} \Theta_{\alpha \bar{\jmath}} \geq 0
$$

Hence

$$
\Theta_{i \bar{\beta}}=0
$$

Now

$$
\square \Theta_{i \bar{\jmath}}=\square \chi_{i \bar{\jmath}}=0
$$

and $\Theta_{i \bar{j}}$ must be fiberwise constant. The value of $\Theta_{i \bar{\jmath}}=\Theta_{i \bar{\jmath}}(s)$ is determined by integration over \mathcal{X}_{s} according to the following Lemma.

Lemma

$$
\square\left(\varphi_{i \bar{\jmath}}\right)=-\Theta_{i \bar{\jmath}}+A_{i} \cdot A_{\bar{\jmath}}
$$

Let

$$
\chi_{i \bar{\jmath}}:=\left\langle v_{i}, v_{j}\right\rangle_{\Theta}=\Theta_{i \bar{\jmath}}-a_{i}^{\alpha} \Theta_{\alpha \bar{\jmath}}-\Theta_{i \bar{\beta}} a_{\bar{\jmath}}^{\bar{\beta}}
$$

Then

$$
-\square \chi_{i \bar{\jmath}}=2 g^{\bar{\beta} \alpha} \Theta_{i \bar{\beta}} \Theta_{\alpha \bar{\jmath}} \geq 0
$$

Hence

$$
\Theta_{i \bar{\beta}}=0
$$

Now

$$
\square \Theta_{i \bar{\jmath}}=\square \chi_{i \bar{\jmath}}=0
$$

and $\Theta_{i \bar{j}}$ must be fiberwise constant. The value of $\Theta_{i \bar{j}}=\Theta_{i \bar{\jmath}}(s)$ is determined by integration over \mathcal{X}_{s} according to the following Lemma.

Lemma

$$
\square\left(\varphi_{i \bar{\jmath}}\right)=-\Theta_{i \bar{\jmath}}+A_{i} \cdot A_{\bar{\jmath}}
$$

\Rightarrow Fact.

On the other hand (cf. proposition)

$$
0=\int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}=\sqrt{-1}\left(\int_{\mathcal{X} / S} \varphi_{i \bar{\jmath}} g d V\right) d s^{i} \wedge d s^{\bar{\jmath}}
$$

On the other hand (cf. proposition)

$$
0=\int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}=\sqrt{-1}\left(\int_{\mathcal{X} / \mathrm{S}} \varphi_{i \bar{\jmath}} g d V\right) d s^{i} \wedge d s^{\bar{\jmath}}
$$

so that the (fiberwise) harmonic projection of $\varphi_{i j}$ vanishes.

On the other hand (cf. proposition)

$$
0=\int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}=\sqrt{-1}\left(\int_{\mathcal{X} / \mathrm{S}} \varphi_{i \bar{\jmath}} g d V\right) d s^{i} \wedge d s^{\bar{\jmath}}
$$

so that the (fiberwise) harmonic projection of $\varphi_{i j}$ vanishes.

$$
\varphi_{i \bar{\jmath}}=G_{s}\left(\square_{s}\left(\varphi_{i \bar{\jmath}}\right)\right)=G_{s}\left(-\Theta_{i \bar{\jmath}}+A_{i} \cdot A_{\bar{\jmath}}\right)=G_{s}\left(A_{i} \cdot A_{\bar{\jmath}}\right)
$$

On the other hand (cf. proposition)

$$
0=\int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}=\sqrt{-1}\left(\int_{\mathcal{X} / \mathrm{S}} \varphi_{i \bar{\jmath}} g d V\right) d s^{i} \wedge d s^{\bar{\jmath}}
$$

so that the (fiberwise) harmonic projection of $\varphi_{i j}$ vanishes.

$$
\varphi_{i \bar{\jmath}}=G_{s}\left(\square_{s}\left(\varphi_{i \bar{\jmath}}\right)\right)=G_{s}\left(-\Theta_{i \bar{\jmath}}+A_{i} \cdot A_{\bar{\jmath}}\right)=G_{s}\left(A_{i} \cdot A_{\bar{\jmath}}\right)
$$

By assumption the Green's function satisfies $G_{s}(z, w) \geq-c$ for some $c>0$.

On the other hand (cf. proposition)

$$
0=\int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}=\sqrt{-1}\left(\int_{\mathcal{X} / \mathrm{S}} \varphi_{i \bar{\jmath}} g d V\right) d s^{i} \wedge d s^{\bar{\jmath}}
$$

so that the (fiberwise) harmonic projection of $\varphi_{i j}$ vanishes.

$$
\varphi_{i \bar{\jmath}}=G_{s}\left(\square_{s}\left(\varphi_{i \bar{\jmath}}\right)\right)=G_{s}\left(-\Theta_{i \bar{\jmath}}+A_{i} \cdot A_{\bar{\jmath}}\right)=G_{s}\left(A_{i} \cdot A_{\bar{\jmath}}\right)
$$

By assumption the Green's function satisfies $G_{s}(z, w) \geq-c$ for some $c>0$.

$$
G_{s}\left(A_{i} \cdot A_{\bar{\jmath}}\right) \geq-c \cdot \operatorname{vol}\left(\mathcal{X}_{s}\right) \Theta_{i \bar{\jmath}}
$$

(in the sense of matrices/hermitian forms)

Claim

For a suitable constant $c^{\prime}>0$ the form

$$
\widetilde{\omega}_{\mathcal{X}}=\omega_{\mathcal{X}}+c^{\prime} f^{*} \omega_{W P}
$$

is Kähler.

Claim

For a suitable constant $c^{\prime}>0$ the form

$$
\widetilde{\omega}_{\mathcal{X}}=\omega_{\mathcal{X}}+c^{\prime} f^{*} \omega_{W P}
$$

is Kähler.

Claim

For a suitable constant $c^{\prime}>0$ the form

$$
\widetilde{\omega}_{\mathcal{X}}=\omega_{\mathcal{X}}+c^{\prime} f^{*} \omega_{W P}
$$

is Kähler.
Namely, with $c^{\prime}=c \cdot \operatorname{vol}\left(\mathcal{X}_{s}\right)+1$

$$
\begin{aligned}
\widetilde{\omega}_{\mathcal{X}}^{n+1} & =\left(\omega_{\mathcal{X}}+c^{\prime} f^{*} \omega_{W P}\right)^{n+1}=\sqrt{-1}\left(\varphi_{i \bar{\jmath}}+c^{\prime} \Theta_{i \bar{\jmath}}\right) d s^{i} \wedge d s^{\bar{\jmath}} \\
& \geq \sqrt{-1} \Theta_{i \bar{\jmath}} d s^{i} \wedge d s^{\bar{j}}
\end{aligned}
$$

whereas $\widetilde{\omega}_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}}>0$.

