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Hodge metric

Hodge bundle

Hodge metric on £.Q7, 5
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canonical forms 7 :
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Aim: Construction of an intrinsic metric on the base of holomorphic
families, functorial, i.e. compatible with base change = descends to
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Aim: Construction of an intrinsic metric on the base of holomorphic
families, functorial, i.e. compatible with base change = descends to
moduli space.

Definition
Calabi-Yau manifold X: cir(X)=0 J

Denote by wx a Ricci-flat Kéhler metric according to Yau’s theorem:

Notation

wy = gdV Ricci-flat volume form
0 = Ric(wx)=—v—-109log(wk)
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Polarized families

Definition
Let X Kahler.
A polarization
Ax € H'(X, Q) N H?(X,R)

is a Kéhler class.
A polarized family (f : X — S, \y/s) defined by

Avss € R'(2)/5)(S)

s.t. \y/s|Xs are polarizations for the fibers Xs.

Yau'’s theorem states the unique existence of a unique Ricci-flat K&hler
form wy in any Kéhler class A\x.
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Weil-Petersson metrics

Given a (polarized holomorphic family (X — S, Ax,s) of Calabi-Yau
manifolds:

Weil-Petersson metric on base of a holomorphic family
Let

p(9/8s) = [As] € H'(Xs, Tx,) Kodaira-Spencer class
and As harmonic w.r. to wy.
Then

16/0slye := || As|? := N As - As gaV

Known:
wwp is Kahler.
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Consequence
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i.e. the Weil-Petersson form is the curvature of the Hodge metric on
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Consequence
wwp(8) = —v—=19dlog(—1)" A (¢ A 9)

i.e. the Weil-Petersson form is the curvature of the Hodge metric on
f(Kx/s)

Now turn to Ky /s rather than £.(Ky/s).
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Curvature of Ky/s
Let f: X — S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Ox =2rci(Kx/s.9~ ') = V—10dlog g

be the curvature form of (Ky,s,97").

We know that © y is equal to zero on the fibers, and that its
push-forward to the base is wyp.

More is true:sacx

Fact (cf. M. Braun - G. Sch. ’16)

Let f: X — S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms WX/S =9g(z,s)dV(z).

Then
1

= *
Ox vol(Xs) WP
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Question Can the relative Kahler-Einstein/Ricci-flat form w5 be
represented by a closed, real (1, 1)-form on the total space?
Proposition (A. Fujiki - G.Sch. '90)

(f: X — S, \x/s) a polarized family of Calabi-Yau manifolds, and

wx, € Ax, the K&hler-Einstein forms. Then locally with respect to S
there exists a d-closed (1, 1)-form wy on the total space X such that

UJX|XS = Wxs-

If the polarization can be represented by a closed, real (1, 1)-form,
then wx can be chosen globally as a (1, 1)-form.
Let n = dim Xs. Then such a form is uniquely determined by the

equation
/ wg;” =0.
X/S
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then wx can be chosen globally as a (1, 1)-form.
Let n = dim Xs. Then such a form is uniquely determined by the

equation
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Question. Is there a Kahler form on X, whose restriction to all fibers is
Ricci-flat?
Global question. Locally replace wy by some wy + fwsg.

Theorem (M. Braun-G. Sch. '16)

Let X be Kahler (f: X — S, Ax/s) holomorphic, polarized family of
Calabi-Yau manifolds.

Assume that the Green’s functions of (I for functions on fibers X,
s € S are uniformly bounded from below (by a negative constant).
Then there exists a Kahler form wy on X', whose restriction to the
fibers X is the Ricci flat form on (Xs, Ax,).

back
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Validity of the assumptions

Cheeger ’70, Cheeger - Yau '80

The Green’s function is bounded, if the diameter (of the fibers X) is
bounded from above.
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Validity of the assumptions

Cheeger ’70, Cheeger - Yau '80

The Green’s function is bounded, if the diameter (of the fibers X)
bounded from above.

is

Sh. Takayama ’15, X. Rong - Y. Zhang ’11

The diameter is bounded for projective families of Calabi-Yau
manifolds.

Y. Zhang ’16, V. Tosatti '15

The diameter is bounded for polarized families of Calabi-Yau
manifolds, under mild assumptions for the type of degeneration.
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Twisted Hodge bundles, canonically polarized case

Definition
A compact complex manifold X is called canonically polarized, if KCx is
positive (ample).
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Geodesic curvature
Given wy positive definite on fibers

L7 1o a0
X Vs F 957 1 @i 5za
X
Y o
ds?
S _.L
s

horizontal lift )
Philipps

Universitdt

Marburg

Georg Schumacher Marburg



Geodesic curvature
Given wy positive definite on fibers

Horizontal lift
0/0s; € T
X /’U& ] %‘Fa?% / ! S’S
v; = 0/0s; + &'9/0z"
i f.(v;) = 8/0s;
f
\ P
dst
S e
S

horizontal lift )
Philipps

Georg Schumacher Marburg




Geodesic curvature
Given wy positive definite on fibers

Horizontal lift
0/0s; € T
X /’U& ] %‘Fa?% / ! S’S
v; = 0/0s; + &'9/0z"
i f.(v;) = 8/0s;
f
\ P
dst
S e
S

horizontal lift )
Philipps

Georg Schumacher Marburg
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Horizontal lift
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/ Geodesic curvature
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Geodesic curvature
Given wy positive definite on fibers

Horizontal lift
X /’U»: ,i—ka‘."{i 8/(931G TS,S
N Vi = 0/ds; + a70/0z°
- f.(vi) = 0/0s;
/ Geodesic curvature
\
o ®i; = (Vi, Vj)wa
S e

S

Kodaira-Spencer forms

horizontal lift

Vi Xs = A;
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Theorem (G. Sch. '10)

f: X — S an effective family of canonically polarized manifolds. Then
(Kx/s,97") is positive.
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Theorem (G. Sch. ’10)

f: X — S an effective family of canonically polarized manifolds. Then
(Kx/s,g7 ") is positive.

Namely:

wy == V—1V/-100 |Og(wg(/s)
KE eqgtn. = wx|Xs = wa,
Wi = (v;, v)V—1ds' A ds? A wh
(Ds +1)(vi, vj) = (Ai, A wp
Note: (v;,v;) > 0 ( positive definite)
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Theorem (G. Sch. ’10)

f: X — S an effective family of canonically polarized manifolds. Then
(Kx/s,g7 ") is positive.

Namely:

wy == V—1V/-100 |Og(w§7€/s)
KE eqgtn. = wx|Xs = wa,
Wi = (v;, v)V—1ds' A ds? A wh
(s + 1)(vi, vj) = (A, A))wp
Note: (v;,v;) > 0 ( positive definite)

W > Py(diam(Xs)) Frwwe Awf J
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Theorem (G. Sch. ’10)

The curvature tensor for

R(A7 Za %E) = =

R”—Pf*QQ/S(IC?;’/”S) is given by

m/ @O+ 1) (A A) - (4 D)gaV
Xs

+m [ @+m) " (Auy)-(Au)gdV (1)

Xs

+m [ @-m)"(AUu)- (Au)gdV.

Xs
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Theorem (G. Sch. ’10)

The curvature tensor for R"-P£.QF, / S(IC?;’/”S) is given by

RAAGT) = = m [ @+1)(A-A)- (- Dgav
+m [ @+m) " (Auy)-(Au)gdV (1)

Xs

+m [ (O—m)"(AUu¥)- (AUu)gdV.

Xs
The only contribution in (1), which may be negative, originates from the
harmonic parts in the third term. It equals

— | H(AUB)H(A U P)gaV.

Xs
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Application
The moduli stack of canonically polarized manifolds is
(Kobayashi-)hyperbolic.

Corollary

The locally free sheaf f*lc?;(/'g“) is Nakano-positive.
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Using the above positivity of the relative canonical bundle, we see that
the Corollary follows from
Theorem (Bo Berndtsson '09)

Let L be a positive line bundle on X, then £,(Ky,s ® L) is
Nakano-positive.
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Using the above positivity of the relative canonical bundle, we see that
the Corollary follows from
Theorem (Bo Berndtsson '09)

Let L be a positive line bundle on X, then £,(Ky,s ® L) is
Nakano-positive.

Further results by Sh. Takayama - Chr. Mourougane and K. Liu -
X. Yang.
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Twisted Hodge bundles — general case

Let f: X — S be a holomorphic family of compact complex manifolds,
and (L, h) be a relatively positive line bundle on X.
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Twisted Hodge bundles — general case

Let f: X — S be a holomorphic family of compact complex manifolds,
and (L, h) be a relatively positive line bundle on X.
Let

wy = 27Cy (L, h) = —V —165|Og h,

and denote by
A=0(v)

the induced Kodaira-Spencer forms, and
¥ = <V= V>wx
the geodesic curvatures.
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Theorem (Ph. Naumann ’16)
Let (L, h) be a positive hermitian line bundle on X’.
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Theorem (Ph. Naumann ’16)

Let (L, h) be a positive hermitian line bundle on X’.
Then the curvature of R"P£.Q% (L) is given by

RAAG.T) = /X o (¢ D)gdV
+/ @+1)""(Auy) - (Au)gdV
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Theorem (Ph. Naumann ’16)

Let (L, h) be a positive hermitian line bundle on X’.

Then the curvature of R"P£.Q% (L) is given by

AAAGT) = [ o -Dgav
+/ @+1)""(Auy) - (Au)gdV
Xs
+/X(D—1)_1 (AUu) - (AUu)gdV.

p = nyields curvature of f.(Ky,s ® L)
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Corollary
Theorems of Bo Berndtsson and G. Sch.
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Corollary
Theorems of Bo Berndtsson and G. Sch. J

Use Lie-derivatives for differential forms with values in hermitian line
bundles.
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Methods (Calabi-Yau manifolds)

Calabi’'s Theorem ’57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau
manifolds are parallel.
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Methods (Calabi-Yau manifolds)

Calabi’'s Theorem ’57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau
manifolds are parallel.

N .
otation fr .S

(z,8)—~ s
z=(2",...,2")
s=(s',...,8"

components z%, s'

Georg Schumacher
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Geodesic curvature

leen CL)X Ilke |n Proposition
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Geodesic curvature

7 o a0
x Us J g T i pa
X
Y o
Jst
S _.L
S

horizontal lift

leen CL)X Ilke |n Proposition
Proposition

(5V,')|Xs = A,'

harmonic Kodaira-Spencer form:

A =0 A =0

Geodesic curvature

©iz = (Vis Vj)wx
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=.:Gurvature form of Ly /s:

© =—V/—-100logg
= —V/=1(0,502% 7 027 + ©;;d5' A dsT + O3 dS' A dz” + ©,502° A dS)
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=.:Gurvature form of Ly /s:

= —v/—100logg
= —V/=1(0,502% 7 027 + ©;;d5' A dsT + O3 dS' A dz” + ©,502° A dS)

Lemma
The forms ©,;dz® are holomorphic on the fibers Xs and ©;5., = 0.

Lemma

07070, = AL e dz?

W deuls )
Georg Schumacher 25



Let _

Xiy = (Vis V)o = O — &'Ou; — O 52,
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Let
Xiz = (Vi, Vj)o = O3 — &'Oq; — @iﬁ

Then _
—Oxi; = 29705005 > 0.
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Let

Xi7 = (Vi, Vj)e = ©j; — @Oy — @,-ga?

Then B
Hence
Now

DGE =Uxiz =
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Let

Xiz = (Vi» Vj)o = Oj5 — &'©aj — @igajﬁ

Then B

—Oxi; = 29705005 > 0.
Hence
Now

and ©;; must be fiberwise constant. The value of ©; = ©5(s) is
determined by integration over X’s according to the following Lemma.
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Xij := (Vi, Vj)o = O3 — @'Oq3 — @,'335

Then B

—Oxi; = 29705005 > 0.
Hence
Now

and ©;; must be fiberwise constant. The value of ©; = ©5(s) is
determined by integration over X’s according to the following Lemma.

Lemma

O(piz) = —Oi + Ai - Ay
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On the other hand (cf. sropositi0n)

0= w;+1:¢?1/

X/S X/

Georg Schumacher Marburg

0ig dV | ds' A ds?
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On the Other hand (Cf Prop051tion)

0= / W = /1 ( / 0 g dV) ds' A ds?
X/8 x/8

so that the (fiberwise) harmonic projection of ¢;; vanishes.
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On the Other hand (Cf Prop051tlon)

0 :/ w;+1 =+/-1 (/ QDEQ dV) dsi/\ dsj
X/S X/S

so that the (fiberwise) harmonic projection of ¢;; vanishes.

vi; = Gs(Os(wi3)) = Gs(—=Oj5 + Ai - A7) = Gs(A; - Ay)
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On the Other hand (Cf Propos;tlon)

0= / Wit = /1 (/ ) dV) ds' A ds?
X/S X/S

so that the (fiberwise) harmonic projection of ¢;; vanishes.
PYiz = Gs(Ds(<Pij)) = Gs(_@ij + A Aj) = Gs(Ai : Aj)

By assumption the Green’s function satisfies Gs(z, w) > —c for some
c>0.
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On the Other hand (Cf Propos;tlon)

o—/ o —ﬁ(/ (p,jng) ds' A ds?
X/S X/S

Wx
so that the (fiberwise) harmonic projection of ¢;; vanishes.
iy = Gs(Os(p3)) = Gs(=Oj5 + Ai - A7) = Gs(Ai - Ay)
By assumption the Green’s function satisfies Gs(z, w) > —c for some

c>0.

(in the sense of matrices/hermitian forms)
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Theorem

Claim
For a suitable constant ¢/ > 0 the form

Wy =wy + I Fruwp

is Kahler.
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Theorem

Claim
For a suitable constant ¢/ > 0 the form

Wy = wx + C,f*pr

is Kahler.

Namely, with ¢’ = ¢ - vol(Xs) + 1

ST = (wa+ CFrowp)™ = V=1(p5 + ¢Op5)ds’ A ds?
> V-10;ds' A ds’,

whereas wy|Xs = wy, > 0. O
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