Relative Canonical Bundles for families of Calabi-Yau manifolds, twisted Hodge Bundles, and Positivity

> ICTS Bangalore March 2017

Georg Schumacher

Marburg

Georg Schumacher

$$\begin{array}{c|c} & \mathcal{X}_s \\ & \mathcal{X}_s \\ & \mathcal{X} \\ & & \mathcal{X} \\ & & & f \\ & & & & S \end{array}$$

 $f: \mathcal{X} \to S, n = \dim(\mathcal{X}_s)$

$$\begin{array}{c|c} & \mathcal{X}_s \\ & \mathcal{X}_s \\ & \mathcal{X} \\ & & \mathcal{X} \\ & & & f \\ & & & & S \end{array}$$

 $f: \mathcal{X} \to S, n = \dim(\mathcal{X}_s)$

$$\begin{array}{c|c} \mathcal{X}_s \\ \mathcal{X}_s \\ \mathcal{X} \\ \mathcal{X} \\ f \\ \mathcal{S} \end{array}$$

 $f: \mathcal{X} \to S, n = \dim(\mathcal{X}_s)$ Hodge bundles $R^{n-p}f_*\Omega^p_{\mathcal{X}/S}$

イロト イヨト イヨト イヨト

$$\begin{array}{c|c} \mathcal{X}_s \\ \mathcal{X}_s \\ \mathcal{X} \\ \mathcal{X} \\ f \\ \mathcal{S} \end{array}$$

Hodge bundle

$$f_*\Omega^n_{\mathcal{X}/S} = f_*\mathcal{K}_{\mathcal{X}/S}$$

イロト イロト イヨト イヨト

 $f: \mathcal{X} \to S, n = \dim(\mathcal{X}_s)$ Hodge bundles $R^{n-p} f_* \Omega^p_{\mathcal{X}/S}$

$$\begin{array}{c|c} \mathcal{X}_s \\ \mathcal{X}_s \\ \mathcal{X} \\ \mathcal{X} \\ f \\ \mathcal{S} \end{array}$$

Hodge bundle

$$f_*\Omega^n_{\mathcal{X}/S} = f_*\mathcal{K}_{\mathcal{X}/S}$$

イロト イロト イヨト イヨト

 $f: \mathcal{X} \to S, n = \dim(\mathcal{X}_s)$ Hodge bundles $R^{n-p} f_* \Omega^p_{\mathcal{X}/S}$

$$\begin{array}{c|c} \mathcal{X}_s \\ \mathcal{X}_s \\ \mathcal{X} \\ \mathcal{X} \\ f \\ \mathcal{S} \\ \mathcal{S} \end{array}$$

 $f: \mathcal{X} \to S, n = \dim(\mathcal{X}_s)$ Hodge bundles $R^{n-p}f_*\Omega^p_{\mathcal{X}/S}$ Hodge bundle

$$f_*\Omega^n_{\mathcal{X}/S} = f_*\mathcal{K}_{\mathcal{X}/S}$$

Kodaira-Spencer classes: obstructions against splitting of

$$0 \to \mathcal{T}_{\mathcal{X}/S} \to \mathcal{T}_{\mathcal{X}} \to f^*\mathcal{T}_S \to 0$$

Kodaira-Spencer classes: obstructions against splitting of

$$0 o \mathcal{T}_{\mathcal{X}/\mathcal{S}} o \mathcal{T}_{\mathcal{X}} o f^*\mathcal{T}_{\mathcal{S}} o 0$$

Kodaira-Spencer map

$$\rho: \mathcal{T}_{\mathcal{S}, s_0} \longrightarrow \mathcal{H}^1(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$$
$$\frac{\partial}{\partial s} \mapsto [\mathcal{A}_s] = \left[\mathcal{A}_{\overline{\beta}}^{\alpha}(z) \frac{\partial}{\partial z^{\alpha}} \overline{dz^{\beta}}\right]$$

Kodaira-Spencer classes: obstructions against splitting of

$$0 o \mathcal{T}_{\mathcal{X}/\mathcal{S}} o \mathcal{T}_{\mathcal{X}} o f^*\mathcal{T}_{\mathcal{S}} o 0$$

Kodaira-Spencer map

$$\rho: \mathcal{T}_{\mathcal{S}, s_0} \longrightarrow \mathcal{H}^1(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$$
$$\frac{\partial}{\partial s} \mapsto [\mathcal{A}_s] = \left[\mathcal{A}_{\overline{\beta}}^{\alpha}(z) \frac{\partial}{\partial z^{\alpha}} \overline{dz^{\beta}}\right]$$

Kodaira-Spencer classes: obstructions against splitting of

$$0 o \mathcal{T}_{\mathcal{X}/\mathcal{S}} o \mathcal{T}_{\mathcal{X}} o f^*\mathcal{T}_{\mathcal{S}} o 0$$

Kodaira-Spencer map

$$\begin{array}{rcl} D: T_{S,s_0} & \longrightarrow & H^1(X,\mathcal{T}_X) \\ & & & \\ & & \frac{\partial}{\partial s} & \mapsto & [A_s] = \left[A^{\alpha}_{\ \overline{\beta}}(z) \frac{\partial}{\partial z^{\alpha}} \overline{dz^{\beta}} \right] \end{array}$$

The cup product

$$\begin{array}{rcl} \boldsymbol{A}\otimes\phi&\mapsto&\boldsymbol{A}\cup\phi\\ \boldsymbol{H}^{1}(\mathcal{X}_{\boldsymbol{s}},\mathcal{T}_{\mathcal{X}_{\boldsymbol{s}}})\otimes\boldsymbol{H}^{0}(\mathcal{X}_{\boldsymbol{s}},\Omega^{n}_{\mathcal{X}_{\boldsymbol{s}}})&\to&\boldsymbol{H}^{1}(\mathcal{X}_{\boldsymbol{s}},\Omega^{n-1}_{\mathcal{X}_{\boldsymbol{s}}})\end{array}$$

Kodaira-Spencer classes: obstructions against splitting of

$$0 o \mathcal{T}_{\mathcal{X}/\mathcal{S}} o \mathcal{T}_{\mathcal{X}} o f^*\mathcal{T}_{\mathcal{S}} o 0$$

Kodaira-Spencer map

$$\begin{array}{rcl} D: T_{S,s_0} & \longrightarrow & H^1(X,\mathcal{T}_X) \\ & & \\ & \frac{\partial}{\partial s} & \mapsto & [A_s] = \left[A^{\alpha}_{\overline{\beta}}(z) \frac{\partial}{\partial z^{\alpha}} \overline{dz^{\beta}} \right] \end{array}$$

The cup product

$$\begin{array}{rcl} \boldsymbol{A}\otimes\phi&\mapsto&\boldsymbol{A}\cup\phi\\ \boldsymbol{H}^{1}(\mathcal{X}_{\boldsymbol{s}},\mathcal{T}_{\mathcal{X}_{\boldsymbol{s}}})\otimes\boldsymbol{H}^{0}(\mathcal{X}_{\boldsymbol{s}},\Omega^{n}_{\mathcal{X}_{\boldsymbol{s}}})&\to&\boldsymbol{H}^{1}(\mathcal{X}_{\boldsymbol{s}},\Omega^{n-1}_{\mathcal{X}_{\boldsymbol{s}}})\end{array}$$

induces

$$\sigma_{0}: f_{*}\Omega^{n}_{\mathcal{X}/S} \to R^{1}f_{*}\Omega^{n-1}_{\mathcal{X}/S} \otimes \mathcal{T}^{\vee}_{S}$$

Curvature Θ of $f_*\Omega^n_{\mathcal{X}/S}$

$$(\Theta \boldsymbol{e}, \boldsymbol{e}') = (\sigma_0 \boldsymbol{e}, \sigma_0 \boldsymbol{e}')$$

with hermitian metric induced by flat metric on $R^n f_* \mathbb{C}$, i.e. integration over \mathcal{X}_s ,

Curvature Θ of $f_*\Omega^n_{\mathcal{X}/S}$

$$(\Theta \boldsymbol{e}, \boldsymbol{e}') = (\sigma_0 \boldsymbol{e}, \sigma_0 \boldsymbol{e}')$$

with hermitian metric induced by flat metric on $R^n f_* \mathbb{C}$, i.e. integration over \mathcal{X}_s ,

Curvature Θ of $f_*\Omega^n_{\mathcal{X}/S}$

$$(\Theta \boldsymbol{e}, \boldsymbol{e}') = (\sigma_0 \boldsymbol{e}, \sigma_0 \boldsymbol{e}')$$

with hermitian metric induced by flat metric on $R^n f_*\mathbb{C}$, i.e. integration over \mathcal{X}_s , or for $\partial/\partial s, \partial/\partial s' \in T_{S,s}$

$$R(\partial/\partial s, \partial/\partial s', e, e') = (A \cup e, A' \cup e')$$

Definition

Calabi-Yau manifold X:

 $c_{1,\mathbb{R}}(X)=0$

Definition

Calabi-Yau manifold X:

 $c_{1,\mathbb{R}}(X)=0$

Definition

Calabi-Yau manifold X: $c_{1,\mathbb{R}}(X) = 0$

Denote by ω_X a Ricci-flat Kähler metric according to Yau's theorem:

Definition

Calabi-Yau manifold X: $c_{1,\mathbb{R}}(X) = 0$

Denote by ω_X a Ricci-flat Kähler metric according to Yau's theorem:

Notation

$$\omega_X^n = g \, dV$$
 Ricci-flat volume form
 $0 = Ric(\omega_X) = -\sqrt{-1}\partial\overline{\partial}\log(\omega_X^n)$

イロト イロト イヨト イヨト

Georg Schumacher

Definition

Let X Kähler. A **polarization**

 $\lambda_X \in H^1(X, \Omega^1_X) \cap H^2(X, \mathbb{R})$

is a Kähler class.

Definition

Let X Kähler. A **polarization**

 $\lambda_X \in H^1(X, \Omega^1_X) \cap H^2(X, \mathbb{R})$

is a Kähler class.

Definition

Let X Kähler. A **polarization**

$$\lambda_X \in H^1(X, \Omega^1_X) \cap H^2(X, \mathbb{R})$$

is a Kähler class. A **polarized family** $(f : \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ defined by

$$\lambda_{\mathcal{X}/\mathcal{S}} \in \boldsymbol{R}^1 f_*(\Omega^1_{\mathcal{X}/\mathcal{S}})(\boldsymbol{S})$$

s.t. $\lambda_{\mathcal{X}/S} | \mathcal{X}_s$ are polarizations for the fibers \mathcal{X}_s .

Definition

Let X Kähler. A **polarization**

 $\lambda_X \in H^1(X, \Omega^1_X) \cap H^2(X, \mathbb{R})$

is a Kähler class.

A polarized family $(f : \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ defined by

 $\lambda_{\mathcal{X}/\mathcal{S}} \in \boldsymbol{R}^1 f_*(\Omega^1_{\mathcal{X}/\mathcal{S}})(\boldsymbol{S})$

s.t. $\lambda_{\mathcal{X}/S} | \mathcal{X}_s$ are polarizations for the fibers \mathcal{X}_s .

Yau's theorem states the unique existence of a unique Ricci-flat Kähler form ω_X in any Kähler class λ_X .

Marburg

Given a (polarized holomorphic family $(\mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ of Calabi-Yau manifolds:

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a (polarized holomorphic family $(\mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family Let $(2/2a) = [A] \in H^1(Y, \mathcal{T})$ Kodaira Spanser along

 $ho(\partial/\partial s) = [A_s] \in H^1(\mathcal{X}_s, \mathcal{T}_{\mathcal{X}_s})$ Kodaira-Spencer class

and A_s harmonic w.r. to ω_X .

Given a (polarized holomorphic family $(\mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family Let $(2/2a) = [A] \in H^1(Y, \mathcal{T})$ Kodaira Spanser along

 $ho(\partial/\partial s) = [A_s] \in H^1(\mathcal{X}_s, \mathcal{T}_{\mathcal{X}_s})$ Kodaira-Spencer class

and A_s harmonic w.r. to ω_X .

Given a (polarized holomorphic family $(\mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family Let

 $\rho(\partial/\partial s) = [A_s] \in H^1(\mathcal{X}_s, \mathcal{T}_{\mathcal{X}_s})$ Kodaira-Spencer class

and A_s harmonic w.r. to ω_X . Then

$$\|\partial/\partial s\|_{WP}^{2} := \|A_{s}\|^{2} := \int_{\mathcal{X}_{s}} A_{s} \cdot \overline{A}_{s} g dV$$

Given a (polarized holomorphic family $(\mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ of Calabi-Yau manifolds:

Weil-Petersson metric on base of a holomorphic family Let

 $\rho(\partial/\partial s) = [A_s] \in H^1(\mathcal{X}_s, \mathcal{T}_{\mathcal{X}_s})$ Kodaira-Spencer class

and A_s harmonic w.r. to ω_X . Then

$$\|\partial/\partial s\|_{WP}^2 := \|A_s\|^2 := \int_{\mathcal{X}_s} A_s \cdot \overline{A}_s \ g dV$$

Known:

Universität Marburg

Philipps

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_s} := \Omega_{\mathcal{X}_s}^n$ on fibers are \mathcal{X}_s trivial, and let $\phi \neq 0$ be a section.

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_s} := \Omega_{\mathcal{X}_s}^n$ on fibers are \mathcal{X}_s trivial, and let $\phi \neq 0$ be a section.

G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$(A_{s}, A_{s})_{WP} = \frac{\int_{\mathcal{X}_{s}} (A_{s} \cdot A_{\overline{s}}) \phi \wedge \overline{\phi}}{\int_{\mathcal{X}_{s}} \phi \wedge \overline{\phi}} = \frac{\int_{\mathcal{X}_{s}} (A_{s} \cup \phi) \wedge (A_{\overline{s}} \cup \overline{\phi})}{\int_{\mathcal{X}_{s}} \phi \wedge \overline{\phi}}$$

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_s} := \Omega_{\mathcal{X}_s}^n$ on fibers are \mathcal{X}_s trivial, and let $\phi \neq 0$ be a section.

G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$(A_{s}, A_{s})_{WP} = \frac{\int_{\mathcal{X}_{s}} (A_{s} \cdot A_{\overline{s}}) \phi \wedge \overline{\phi}}{\int_{\mathcal{X}_{s}} \phi \wedge \overline{\phi}} = \frac{\int_{\mathcal{X}_{s}} (A_{s} \cup \phi) \wedge (A_{\overline{s}} \cup \overline{\phi})}{\int_{\mathcal{X}_{s}} \phi \wedge \overline{\phi}}$$

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_s} := \Omega_{\mathcal{X}_s}^n$ on fibers are \mathcal{X}_s trivial, and let $\phi \neq 0$ be a section.

G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$(\mathbf{A}_{\mathbf{s}},\mathbf{A}_{\mathbf{s}})_{WP} = \frac{\int_{\mathcal{X}_{\mathbf{s}}} (\mathbf{A}_{\mathbf{s}} \cdot \mathbf{A}_{\overline{\mathbf{s}}}) \ \phi \land \overline{\phi}}{\int_{\mathcal{X}_{\mathbf{s}}} \phi \land \overline{\phi}} = \frac{\int_{\mathcal{X}_{\mathbf{s}}} (\mathbf{A}_{\mathbf{s}} \cup \phi) \land (\mathbf{A}_{\overline{\mathbf{s}}} \cup \overline{\phi})}{\int_{\mathcal{X}_{\mathbf{s}}} \phi \land \overline{\phi}}$$

The latter formula shows that the Weil-Petersson form is the pull-back of the invariant form on the period domain under the period mapping.
Identification of Weil-Petersson metric for families of CY manifolds

Assume canonical bundles $\mathcal{K}_{\mathcal{X}_s} := \Omega_{\mathcal{X}_s}^n$ on fibers are \mathcal{X}_s trivial, and let $\phi \neq 0$ be a section.

G. Sch. '85 for hol. symplectic manifolds Tian '86 for general CY manifolds

$$(\mathbf{A}_{\mathbf{s}},\mathbf{A}_{\mathbf{s}})_{WP} = \frac{\int_{\mathcal{X}_{\mathbf{s}}} (\mathbf{A}_{\mathbf{s}} \cdot \mathbf{A}_{\overline{\mathbf{s}}}) \ \phi \land \overline{\phi}}{\int_{\mathcal{X}_{\mathbf{s}}} \phi \land \overline{\phi}} = \frac{\int_{\mathcal{X}_{\mathbf{s}}} (\mathbf{A}_{\mathbf{s}} \cup \phi) \land (\mathbf{A}_{\overline{\mathbf{s}}} \cup \overline{\phi})}{\int_{\mathcal{X}_{\mathbf{s}}} \phi \land \overline{\phi}}$$

The latter formula shows that the Weil-Petersson form is the pull-back of the invariant form on the period domain under the period mapping.

Consequence

$$\omega_{WP}(s) = -\sqrt{-1}\partial\overline{\partial}\log(-1)^n \int_{\mathcal{X}_s} (\phi \wedge \overline{\phi})$$

i.e. the Weil-Petersson form is the curvature of the Hodge metric on $f_*(\mathcal{K}_{\mathcal{X}/S})$

Consequence

$$\omega_{WP}(s) = -\sqrt{-1}\partial\overline{\partial}\log(-1)^n \int_{\mathcal{X}_s} (\phi \wedge \overline{\phi})$$

i.e. the Weil-Petersson form is the curvature of the Hodge metric on $f_*(\mathcal{K}_{\mathcal{X}/S})$

Consequence

$$\omega_{WP}(s) = -\sqrt{-1}\partial\overline{\partial}\log(-1)^n \int_{\mathcal{X}_s} (\phi \wedge \overline{\phi})$$

i.e. the Weil-Petersson form is the curvature of the Hodge metric on $f_*(\mathcal{K}_{\mathcal{X}/S})$

Now turn to $\mathcal{K}_{\mathcal{X}/S}$ rather than $f_*(\mathcal{K}_{\mathcal{X}/S})$.

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

イロト イヨト イヨト イヨト

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

$$\Theta_{\mathcal{X}} := 2\pi c_1(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1}) = \sqrt{-1}\partial\overline{\partial}\log g$$

be the curvature form of $(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1})$.

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

$$\Theta_{\mathcal{X}} := 2\pi c_1(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1}) = \sqrt{-1}\partial\overline{\partial}\log g$$

be the curvature form of $(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1})$.

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

$$\Theta_{\mathcal{X}} := 2\pi c_1(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1}) = \sqrt{-1}\partial\overline{\partial}\log g$$

be the curvature form of $(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1})$.

We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is ω_{WP} .

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

$$\Theta_{\mathcal{X}} := 2\pi c_1(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1}) = \sqrt{-1}\partial\overline{\partial}\log g$$

be the curvature form of $(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1})$.

We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is ω_{WP} .

More is true:

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

$$\Theta_{\mathcal{X}} := 2\pi c_1(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1}) = \sqrt{-1}\partial\overline{\partial}\log g$$

be the curvature form of $(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1})$.

We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is ω_{WP} .

More is true: back

Fact (cf. M. Braun - G. Sch. '16)

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms $\omega_{\mathcal{X}/S}^n = g(z, s)dV(z)$.

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

$$\Theta_{\mathcal{X}} := 2\pi c_1(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1}) = \sqrt{-1}\partial\overline{\partial}\log g$$

be the curvature form of $(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1})$.

We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is ω_{WP} .

More is true: back

Fact (cf. M. Braun - G. Sch. '16)

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms $\omega_{\mathcal{X}/S}^n = g(z, s)dV(z)$.

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

$$\omega_{\mathcal{X}/S}^n = g(z,s)dV(z).$$

$$\Theta_{\mathcal{X}} := 2\pi c_1(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1}) = \sqrt{-1}\partial\overline{\partial}\log g$$

be the curvature form of $(\mathcal{K}_{\mathcal{X}/\mathcal{S}}, g^{-1})$.

We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is ω_{WP} .

More is true: back

Fact (cf. M. Braun - G. Sch. '16)

Let $f : \mathcal{X} \to S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms $\omega_{\mathcal{X}/S}^n = g(z, s)dV(z)$. Then

$$\Theta_{\mathcal{X}} = rac{1}{\mathrm{vol}(\mathcal{X}_{m{s}})} f^* \omega_{W\!P}$$

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{X/S}$ be represented by a closed, real (1, 1)-form on the total space?

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{\mathcal{X}/S}$ be represented by a closed, real (1, 1)-form on the total space?

Proposition (A. Fujiki - G.Sch. '90)

 $(f : \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ a polarized family of Calabi-Yau manifolds, and $\omega_{\mathcal{X}_s} \in \lambda_{\mathcal{X}_s}$ the Kähler-Einstein forms. Then locally with respect to *S* there exists a *d*-closed (1, 1)-form $\omega_{\mathcal{X}}$ on the total space \mathcal{X} such that

$$\omega_{\mathcal{X}}|\mathcal{X}_{\mathbf{S}}=\omega_{\mathcal{X}_{\mathbf{S}}}.$$

If the polarization can be represented by a closed, real (1, 1)-form, then $\omega_{\mathcal{X}}$ can be chosen globally as a (1, 1)-form. Let $n = \dim \mathcal{X}_s$. Then such a form is uniquely determined by the equation

$$\int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = 0.$$

Marburg

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{\mathcal{X}/S}$ be represented by a closed, real (1, 1)-form on the total space?

Proposition (A. Fujiki - G.Sch. '90)

 $(f : \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ a polarized family of Calabi-Yau manifolds, and $\omega_{\mathcal{X}_s} \in \lambda_{\mathcal{X}_s}$ the Kähler-Einstein forms. Then locally with respect to *S* there exists a *d*-closed (1, 1)-form $\omega_{\mathcal{X}}$ on the total space \mathcal{X} such that

$$\omega_{\mathcal{X}}|\mathcal{X}_{\mathbf{S}}=\omega_{\mathcal{X}_{\mathbf{S}}}.$$

If the polarization can be represented by a closed, real (1, 1)-form, then $\omega_{\mathcal{X}}$ can be chosen globally as a (1, 1)-form. Let $n = \dim \mathcal{X}_s$. Then such a form is uniquely determined by the equation

$$\int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = 0.$$

Marburg

Question Can the relative Kähler-Einstein/Ricci-flat form $\omega_{\mathcal{X}/S}$ be represented by a closed, real (1, 1)-form on the total space?

Proposition (A. Fujiki - G.Sch. '90)

back1 back2

 $(f: \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ a polarized family of Calabi-Yau manifolds, and $\omega_{\mathcal{X}_s} \in \lambda_{\mathcal{X}_s}$ the Kähler-Einstein forms. Then locally with respect to *S* there exists a *d*-closed (1, 1)-form $\omega_{\mathcal{X}}$ on the total space \mathcal{X} such that

$$\omega_{\mathcal{X}}|\mathcal{X}_{\mathbf{S}}=\omega_{\mathcal{X}_{\mathbf{S}}}.$$

If the polarization can be represented by a closed, real (1,1)-form, then $\omega_{\mathcal{X}}$ can be chosen globally as a (1,1)-form. Let $n = \dim \mathcal{X}_s$. Then such a form is uniquely determined by the equation

$$\int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = 0.$$

《 마 》 《 관 》 《 문 》 문 옷 Georg Schumacher Marburg

Marburg

Question. Is there a Kähler form on \mathcal{X} , whose restriction to all fibers is Ricci-flat? Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}} + f^* \omega_{\mathcal{S}}$.

Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}} + f^* \omega_{\mathcal{S}}$.

Theorem (M. Braun-G. Sch. '16)

Let \mathcal{X} be Kähler $(f : \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ holomorphic, polarized family of Calabi-Yau manifolds.

Assume that the Green's functions of \Box for functions on fibers \mathcal{X}_s ,

 $s \in S$ are uniformly bounded from below (by a negative constant).

Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}} + f^* \omega_{\mathcal{S}}$.

Theorem (M. Braun-G. Sch. '16)

Let \mathcal{X} be Kähler $(f : \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ holomorphic, polarized family of Calabi-Yau manifolds.

Assume that the Green's functions of \Box for functions on fibers \mathcal{X}_s ,

 $s \in S$ are uniformly bounded from below (by a negative constant).

Global question. Locally replace $\omega_{\mathcal{X}}$ by some $\omega_{\mathcal{X}} + f^* \omega_{\mathcal{S}}$.

Theorem (M. Braun-G. Sch. '16)

Let \mathcal{X} be Kähler $(f : \mathcal{X} \to S, \lambda_{\mathcal{X}/S})$ holomorphic, polarized family of Calabi-Yau manifolds.

Assume that the Green's functions of \Box for functions on fibers \mathcal{X}_s , $s \in S$ are uniformly bounded from below (by a negative constant). Then there exists a Kähler form $\widetilde{\omega}_{\mathcal{X}}$ on \mathcal{X} , whose restriction to the fibers \mathcal{X}_s is the Ricci flat form on $(\mathcal{X}_s, \lambda_{\mathcal{X}_s})$.

back		
		Philipps Universität Marburg
	4	
Georg Schumacher	Marburg	12

Validity of the assumptions

Cheeger '70, Cheeger - Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_s) is bounded from above.

Validity of the assumptions

Cheeger '70, Cheeger - Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_s) is bounded from above.

Sh. Takayama '15, X. Rong - Y. Zhang '11

The diameter is bounded for projective families of Calabi-Yau manifolds.

Validity of the assumptions

Cheeger '70, Cheeger - Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_s) is bounded from above.

Sh. Takayama '15, X. Rong - Y. Zhang '11

The diameter is bounded for projective families of Calabi-Yau manifolds.

Y. Zhang '16, V. Tosatti '15

The diameter is bounded for polarized families of Calabi-Yau manifolds, under mild assumptions for the type of degeneration.

Definition

A compact complex manifold X is called *canonically polarized*, if \mathcal{K}_X is positive (ample).

Definition

A compact complex manifold X is called *canonically polarized*, if \mathcal{K}_X is positive (ample).

Definition

A compact complex manifold X is called *canonically polarized*, if \mathcal{K}_X is positive (ample).

Notation ω_X Kähler form $\omega_X^n = g \ dV$ volume form. $Ric(\omega_X) = -\sqrt{-1}\partial\overline{\partial}\log(\omega^n) = -\sqrt{-1}\partial\overline{\partial}\log g$ g^{-1} metric on \mathcal{K}_X

Definition

A compact complex manifold X is called *canonically polarized*, if \mathcal{K}_X is positive (ample).

Notation ω_X Kähler form $\omega_X^n = g \ dV$ volume form. $Ric(\omega_X) = -\sqrt{-1}\partial\overline{\partial}\log(\omega^n) = -\sqrt{-1}\partial\overline{\partial}\log g$ g^{-1} metric on \mathcal{K}_X

Theorem (Th. Aubin, S.T. Yau)

Let *X* be canonically polarized. Then it possesses a unique Kähler-Einstein metric ω_X :

$$\omega_X = -Ric(\omega_X)$$

イロト イポト イヨト イヨト

Definition

A compact complex manifold X is called *canonically polarized*, if \mathcal{K}_X is positive (ample).

Notation ω_X Kähler form $\omega_X^n = g \ dV$ volume form. $Ric(\omega_X) = -\sqrt{-1}\partial\overline{\partial}\log(\omega^n) = -\sqrt{-1}\partial\overline{\partial}\log g$ g^{-1} metric on \mathcal{K}_X

Theorem (Th. Aubin, S.T. Yau)

Let *X* be canonically polarized. Then it possesses a unique Kähler-Einstein metric ω_X :

$$\omega_X = -Ric(\omega_X)$$

イロト イポト イヨト イヨト

Definition

A compact complex manifold X is called *canonically polarized*, if \mathcal{K}_X is positive (ample).

Notation ω_X Kähler form $\omega_X^n = g \ dV$ volume form. $Ric(\omega_X) = -\sqrt{-1}\partial\overline{\partial}\log(\omega^n) = -\sqrt{-1}\partial\overline{\partial}\log g$ g^{-1} metric on \mathcal{K}_X

Theorem (Th. Aubin, S.T. Yau)

Let *X* be canonically polarized. Then it possesses a unique Kähler-Einstein metric ω_X :

$$\omega_X = -Ric(\omega_X)$$

イロト イポト イヨト イヨト

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Universität Marburg

Philipps

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Universität Marburg

Philipps

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Given $\omega_{\mathcal{X}}$ positive definite on fibers

Horizontal lift

$$\partial/\partial s_i \in T_{S,s}$$

 $v_i = \partial/\partial s_i + a_i^{\alpha} \partial/\partial z^{\alpha}$
 $f_*(v_i) = \partial/\partial s_i$
 $v_i \perp \mathcal{X}_s$

Geodesic curvature

$$\varphi_{i\bar{\jmath}} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\omega_{\mathcal{X}}}$$

Kodaira-Spencer forms

$$\overline{\partial} v_i | \mathcal{X}_s = A_i$$

Marburc

Theorem (G. Sch. '10)

 $f: \mathcal{X} \to S$ an effective family of canonically polarized manifolds. Then $(\mathcal{K}_{\mathcal{X}/S}, g^{-1})$ is positive.

$f: \mathcal{X} \to S$ an effective family of canonically polarized manifolds. Then $(\mathcal{K}_{\mathcal{X}/S}, g^{-1})$ is positive.

 $f: \mathcal{X} \to S$ an effective family of canonically polarized manifolds. Then $(\mathcal{K}_{\mathcal{X}/S}, g^{-1})$ is positive.

Namely:

$$\begin{split} \omega_{\mathcal{X}} &:= \sqrt{-1}\sqrt{-1}\partial\overline{\partial}\log(\omega_{\mathcal{X}/S}^{n})\\ \text{KE eqtn.} \Rightarrow \omega_{\mathcal{X}} | \mathcal{X}_{s} = \omega_{\mathcal{X}_{s}}\\ \omega_{\mathcal{X}}^{n+1} &= (v_{i}, v_{j})\sqrt{-1}ds^{i} \wedge ds^{\overline{\jmath}} \wedge \omega_{\mathcal{X}}^{n}\\ (\Box_{s} + 1)(v_{i}, v_{j}) &= (A_{i}, A_{j})_{WP}\\ \text{Note:} (v_{i}, v_{j}) > 0 (\text{ positive definite}) \end{split}$$

 $f: \mathcal{X} \to S$ an effective family of canonically polarized manifolds. Then $(\mathcal{K}_{\mathcal{X}/S}, g^{-1})$ is positive.

Namely:

$$\begin{split} \omega_{\mathcal{X}} &:= \sqrt{-1}\sqrt{-1}\partial\overline{\partial}\log(\omega_{\mathcal{X}/\mathcal{S}}^{n})\\ \text{KE eqtn.} \Rightarrow \omega_{\mathcal{X}}|\mathcal{X}_{\mathcal{S}} = \omega_{\mathcal{X}_{\mathcal{S}}}\\ \omega_{\mathcal{X}}^{n+1} &= (v_{i}, v_{j})\sqrt{-1}ds^{i} \wedge ds^{\overline{\jmath}} \wedge \omega_{\mathcal{X}}^{n}\\ (\Box_{\mathcal{S}} + 1)(v_{i}, v_{j}) &= (A_{i}, A_{j})_{WP}\\ \text{Note:} (v_{i}, v_{j}) > 0 \text{ (positive definite)} \end{split}$$

$$\omega_{\mathcal{X}}^{n+1} \geq P_n(\mathit{diam}(\mathcal{X}_s)) \ f^* \omega_{WP} \wedge \omega_{\mathcal{X}}^n$$

Marburg

The curvature tensor for $R^{n-\rho}f_*\Omega^{\rho}_{\mathcal{X}/S}(\mathcal{K}_{\mathcal{X}/S}^{\otimes m})$ is given by

$$\begin{split} R(A,\overline{A},\psi,\overline{\psi}) &= = m \int_{\mathcal{X}_{s}} (\Box+1)^{-1} (A \cdot \overline{A}) \cdot (\psi \cdot \overline{\psi}) g dV \\ &+ m \int_{\mathcal{X}_{s}} (\Box+m)^{-1} (A \cup \psi) \cdot (\overline{A} \cup \overline{\psi}) g dV \quad (1) \\ &+ m \int_{\mathcal{X}_{s}} (\Box-m)^{-1} (A \cup \overline{\psi}) \cdot (\overline{A} \cup \psi) g dV. \end{split}$$

イロト イロト イヨト イヨト

The curvature tensor for $R^{n-\rho}f_*\Omega^{\rho}_{\mathcal{X}/S}(\mathcal{K}_{\mathcal{X}/S}^{\otimes m})$ is given by

$$\begin{split} R(A,\overline{A},\psi,\overline{\psi}) &= = m \int_{\mathcal{X}_{s}} (\Box+1)^{-1} (A \cdot \overline{A}) \cdot (\psi \cdot \overline{\psi}) g dV \\ &+ m \int_{\mathcal{X}_{s}} (\Box+m)^{-1} (A \cup \psi) \cdot (\overline{A} \cup \overline{\psi}) g dV \quad (1) \\ &+ m \int_{\mathcal{X}_{s}} (\Box-m)^{-1} (A \cup \overline{\psi}) \cdot (\overline{A} \cup \psi) g dV. \end{split}$$

イロト イロト イヨト イヨト

The curvature tensor for $R^{n-\rho}f_*\Omega^{\rho}_{\mathcal{X}/S}(\mathcal{K}^{\otimes m}_{\mathcal{X}/S})$ is given by

$$\begin{split} R(A,\overline{A},\psi,\overline{\psi}) &= = m \int_{\mathcal{X}_{s}} (\Box+1)^{-1} (A \cdot \overline{A}) \cdot (\psi \cdot \overline{\psi}) g dV \\ &+ m \int_{\mathcal{X}_{s}} (\Box+m)^{-1} (A \cup \psi) \cdot (\overline{A} \cup \overline{\psi}) g dV \quad (1) \\ &+ m \int_{\mathcal{X}_{s}} (\Box-m)^{-1} (A \cup \overline{\psi}) \cdot (\overline{A} \cup \psi) g dV. \end{split}$$

The only contribution in (1), which may be negative, originates from the harmonic parts in the third term. It equals

$$-\int_{\mathcal{X}_{\mathbf{s}}} H(\mathbf{A}\cup\overline{\psi})\overline{H(\mathbf{A}_{j}\cup\overline{\psi})}gdV.$$

Marburg

Dual result for

ヘロト 人間 とくほとくほど

Georg Schumacher

Dual result for

ヘロト 人間 とくほとくほど

Georg Schumacher

Dual result for

 $R^{p}f_{*}\Lambda^{p}\mathcal{T}_{\mathcal{X}/S}$

S. Wolpert '86: dim X = 1, p = 1, m = 1

Previous results Dual result for

$$R^{p}f_{*}\Lambda^{p}\mathcal{T}_{\mathcal{X}/S}$$

- S. Wolpert '86: dim X = 1, p = 1, m = 1
- A. E. Fischer and A. J. Tromba '84: dim X = 1, p = 1, m = 1

Previous results Dual result for

$R^{p}f_{*}\Lambda^{p}\mathcal{T}_{\mathcal{X}/S}$

- S. Wolpert '86: dim X = 1, p = 1, m = 1
- A. E. Fischer and A. J. Tromba '84: dim X = 1, p = 1, m = 1
- Y.T. Siu '84: dim X = n, p = 1, m = 1

Dual result for

$$R^{p}f_{*}\Lambda^{p}\mathcal{T}_{\mathcal{X}/S}$$

- S. Wolpert '86: dim X = 1, p = 1, m = 1
- A. E. Fischer and A. J. Tromba '84: dim X = 1, p = 1, m = 1
- Y.T. Siu '84: dim *X* = *n*, *p* = 1, *m* = 1

Application

The moduli stack of canonically polarized manifolds is (Kobayashi-)hyperbolic.

Dual result for

$$R^{p}f_{*}\Lambda^{p}\mathcal{T}_{\mathcal{X}/S}$$

- S. Wolpert '86: dim X = 1, p = 1, m = 1
- A. E. Fischer and A. J. Tromba '84: dim X = 1, p = 1, m = 1
- Y.T. Siu '84: dim *X* = *n*, *p* = 1, *m* = 1

Application

The moduli stack of canonically polarized manifolds is (Kobayashi-)hyperbolic.

Dual result for

$$R^{p}f_{*}\Lambda^{p}\mathcal{T}_{\mathcal{X}/S}$$

- S. Wolpert '86: dim X = 1, p = 1, m = 1
- A. E. Fischer and A. J. Tromba '84: dim X = 1, p = 1, m = 1

Y.T. Siu '84: dim *X* = *n*, *p* = 1, *m* = 1

Application

The moduli stack of canonically polarized manifolds is (Kobayashi-)hyperbolic.

Corollary

The locally free sheaf $f_* \mathcal{K}_{\mathcal{X}/S}^{\otimes (m+1)}$ is Nakano-positive.

Georg Schumacher	Marbura						18
acong containaonon							

Using the above positivity of the relative canonical bundle, we see that the Corollary follows from

Theorem (Bo Berndtsson '09)

Let *L* be a positive line bundle on \mathcal{X} , then $f_*(\mathcal{K}_{\mathcal{X}/S} \otimes L)$ is Nakano-positive.

Using the above positivity of the relative canonical bundle, we see that the Corollary follows from

Theorem (Bo Berndtsson '09)

Let *L* be a positive line bundle on \mathcal{X} , then $f_*(\mathcal{K}_{\mathcal{X}/S} \otimes L)$ is Nakano-positive.

Using the above positivity of the relative canonical bundle, we see that the Corollary follows from

Theorem (Bo Berndtsson '09)

Let *L* be a positive line bundle on \mathcal{X} , then $f_*(\mathcal{K}_{\mathcal{X}/S} \otimes L)$ is Nakano-positive.

Further results by Sh. Takayama - Chr. Mourougane and K. Liu - X. Yang.

Let $f : \mathcal{X} \to S$ be a holomorphic family of compact complex manifolds, and (L, h) be a *relatively positive line bundle* on \mathcal{X} .

Let $f : \mathcal{X} \to S$ be a holomorphic family of compact complex manifolds, and (L, h) be a *relatively positive line bundle* on \mathcal{X} . Let

$$\omega_{\mathcal{X}} = 2\pi c_1(L,h) = -\sqrt{-1}\partial\overline{\partial}\log h,$$

Let $f : \mathcal{X} \to S$ be a holomorphic family of compact complex manifolds, and (L, h) be a *relatively positive line bundle* on \mathcal{X} . Let

$$\omega_{\mathcal{X}} = 2\pi c_1(L,h) = -\sqrt{-1}\partial\overline{\partial}\log h,$$

and denote by

$$A = \overline{\partial}(v)$$

the induced Kodaira-Spencer forms,

Let $f : \mathcal{X} \to S$ be a holomorphic family of compact complex manifolds, and (L, h) be a *relatively positive line bundle* on \mathcal{X} . Let

$$\omega_{\mathcal{X}} = 2\pi c_1(L,h) = -\sqrt{-1}\partial\overline{\partial}\log h,$$

and denote by

$$A = \overline{\partial}(v)$$

the induced Kodaira-Spencer forms, and

$$\varphi = \langle \mathbf{v}, \mathbf{v} \rangle_{\omega_{\mathcal{X}}}$$

the geodesic curvatures.

Let (L, h) be a positive hermitian line bundle on \mathcal{X} .

Let (L, h) be a positive hermitian line bundle on \mathcal{X} .

Let (L, h) be a positive hermitian line bundle on \mathcal{X} . Then the curvature of $R^{n-p}f_*\Omega^p_{\mathcal{X}/S}(L)$ is given by

$$\begin{aligned} R(A,\overline{A},\psi,\overline{\psi}) &= \int_{\mathcal{X}_{s}} \varphi \cdot (\psi \cdot \overline{\psi}) g dV \\ &+ \int_{\mathcal{X}_{s}} (\Box + 1)^{-1} (A \cup \psi) \cdot (\overline{A} \cup \overline{\psi}) g dV \\ &+ \int_{\mathcal{X}_{s}} (\Box - 1)^{-1} (A \cup \overline{\psi}) \cdot (\overline{A} \cup \psi) g dV. \end{aligned}$$

Let (L, h) be a positive hermitian line bundle on \mathcal{X} . Then the curvature of $R^{n-p}f_*\Omega^p_{\mathcal{X}/S}(L)$ is given by

$$\begin{split} R(A,\overline{A},\psi,\overline{\psi}) &= \int_{\mathcal{X}_{s}} \varphi \cdot (\psi \cdot \overline{\psi}) g dV \\ &+ \int_{\mathcal{X}_{s}} (\Box + 1)^{-1} \left(A \cup \psi \right) \cdot (\overline{A} \cup \overline{\psi}) g dV \\ &+ \int_{\mathcal{X}_{s}} (\Box - 1)^{-1} \left(A \cup \overline{\psi} \right) \cdot (\overline{A} \cup \psi) g dV. \end{split}$$

p = n yields curvature of $f_*(\mathcal{K}_{\mathcal{X}/S} \otimes L)$

Corollary

Theorems of Bo Berndtsson and G. Sch.

イロト イヨト イヨト イヨト

Corollary

Theorems of Bo Berndtsson and G. Sch.

イロト イヨト イヨト イヨト

Corollary

Theorems of Bo Berndtsson and G. Sch.

Use Lie-derivatives for differential forms with values in hermitian line bundles.

Methods (Calabi-Yau manifolds)

Calabi's Theorem '57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau manifolds are parallel.

Methods (Calabi-Yau manifolds)

Calabi's Theorem '57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau manifolds are parallel.

Methods (Calabi-Yau manifolds)

Calabi's Theorem '57

Holmorphic 1-forms and holomorphic vector fields on Calabi-Yau manifolds are parallel.

Notation

$$f: \mathcal{X} \longrightarrow S$$

 $(z, s) \mapsto s$
 $z = (z^1, \dots, z^n)$
 $s = (s^1, \dots, s^r)$
components z^{α}, s^i

Given $\omega_{\mathcal{X}}$ like in Proposition

Georg Schumacher

Given $\omega_{\mathcal{X}}$ like in Proposition

Proposition

 $(\overline{\partial} v_i)|\mathcal{X}_s = A_i$

harmonic Kodaira-Spencer form:

$$\overline{\partial}^* A_i = 0; \ \overline{\partial} A_i = 0$$

Given $\omega_{\mathcal{X}}$ like in Proposition

Proposition

 $(\overline{\partial} v_i)|\mathcal{X}_s = A_i$

harmonic Kodaira-Spencer form:

$$\overline{\partial}^* A_i = 0; \ \overline{\partial} A_i = 0$$

Given $\omega_{\mathcal{X}}$ like in Proposition

Proposition

 $(\overline{\partial} v_i)|\mathcal{X}_s = A_i$

harmonic Kodaira-Spencer form:

$$\overline{\partial}^* A_i = 0; \ \overline{\partial} A_i = 0$$

Geodesic curvature

$$\varphi_{i\overline{\jmath}} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\omega_{\mathcal{X}}}$$

<u>Fact</u>

Georg Schumache

$_{\tt Fact} Curvature form of {\cal K}_{{\cal X} / {\cal S}}$:

$$\Theta = -\sqrt{-1}\partial\overline{\partial}\log g$$

= $-\sqrt{-1}\left(\Theta_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}} + \Theta_{i\overline{j}}ds^{i}\wedge ds^{\overline{j}} + \Theta_{i\overline{\beta}}ds^{i}\wedge dz^{\overline{\beta}} + \Theta_{\alpha\overline{j}}dz^{\alpha}\wedge ds^{\overline{j}}\right)$

イロト イロト イヨト イヨト

 $_{\tt Fact} Curvature form of {\cal K}_{{\cal X} / {\cal S}}$:

$$egin{aligned} \Theta &= -\sqrt{-1}\partial\overline{\partial}\log g \ &= -\sqrt{-1}\left(\Theta_{lpha\overline{eta}}dz^{lpha}\wedge dz^{\overline{eta}} + \Theta_{i\overline{\jmath}}\,ds^{i}\wedge ds^{\overline{\jmath}} + \Theta_{i\overline{eta}}\,ds^{i}\wedge dz^{\overline{eta}} + \Theta_{lpha\overline{\jmath}}\,dz^{lpha}\wedge ds^{\overline{\jmath}}
ight) \ &\Theta_{lpha\overline{eta}} = R_{lpha\overline{eta}} = 0 \ &\Theta_{lpha\overline{\jmath};\overline{eta}} = \Theta_{lpha\overline{eta}|\overline{\jmath}} = 0 \end{aligned}$$

イロト イロト イヨト イヨト

<u>Fact</u>Curvature form of $\mathcal{K}_{\mathcal{X}/\mathcal{S}}$:

$$egin{aligned} \Theta &= -\sqrt{-1}\partial\overline{\partial}\log g \ &= -\sqrt{-1}\left(\Theta_{lpha\overline{eta}}dz^{lpha}\wedge dz^{\overline{eta}} + \Theta_{i\overline{\jmath}}\,ds^{i}\wedge ds^{\overline{\jmath}} + \Theta_{i\overline{eta}}\,ds^{i}\wedge dz^{\overline{eta}} + \Theta_{lpha\overline{\jmath}}\,dz^{lpha}\wedge ds^{\overline{\jmath}}
ight) \ &\Theta_{lpha\overline{eta}} = R_{lpha\overline{eta}} = 0 \ &\Theta_{lpha\overline{\jmath};\overline{eta}} = \Theta_{lpha\overline{eta}|\overline{\jmath}} = 0 \end{aligned}$$

Lemma The forms $\Theta_{\alpha \overline{\jmath}} dz^{\alpha}$ are holomorphic on the fibers \mathcal{X}_s and $\Theta_{i\overline{\beta};\alpha} = 0$.

<u>Fact</u>Curvature form of $\mathcal{K}_{\mathcal{X}/\mathcal{S}}$:

$$egin{aligned} \Theta &= -\sqrt{-1}\partial\overline{\partial}\log g \ &= -\sqrt{-1}\left(\Theta_{lpha\overline{eta}}dz^{lpha}\wedge dz^{\overline{eta}} + \Theta_{i\overline{\jmath}}\,ds^{i}\wedge ds^{\overline{\jmath}} + \Theta_{i\overline{eta}}\,ds^{i}\wedge dz^{\overline{eta}} + \Theta_{lpha\overline{\jmath}}\,dz^{lpha}\wedge ds^{\overline{\jmath}}
ight) \ &\Theta_{lpha\overline{eta}} = R_{lpha\overline{eta}} = 0 \ &\Theta_{lpha\overline{\jmath};\overline{eta}} = \Theta_{lpha\overline{eta}|\overline{\jmath}} = 0 \end{aligned}$$

Lemma The forms $\Theta_{\alpha \overline{\jmath}} dz^{\alpha}$ are holomorphic on the fibers \mathcal{X}_s and $\Theta_{i\overline{\beta};\alpha} = 0$.

<u>Fact</u>Curvature form of $\mathcal{K}_{\mathcal{X}/\mathcal{S}}$:

$$egin{aligned} \Theta &= -\sqrt{-1}\partial\overline{\partial}\log g \ &= -\sqrt{-1}\left(\Theta_{lpha\overline{eta}}dz^{lpha}\wedge dz^{\overline{eta}} + \Theta_{i\overline{\jmath}}\,ds^{i}\wedge ds^{\overline{\jmath}} + \Theta_{i\overline{eta}}\,ds^{i}\wedge dz^{\overline{eta}} + \Theta_{lpha\overline{\jmath}}\,dz^{lpha}\wedge ds^{\overline{\jmath}}
ight) \ &\Theta_{lpha\overline{eta}} = R_{lpha\overline{eta}} = 0 \ &\Theta_{lpha\overline{\jmath};\overline{eta}} = \Theta_{lpha\overline{eta}|\overline{\jmath}} = 0 \end{aligned}$$

Lemma

The forms $\Theta_{\alpha \overline{\jmath}} dz^{\alpha}$ are holomorphic on the fibers \mathcal{X}_s and $\Theta_{i\overline{\beta}:\alpha} = 0$.

Lemma

$$\Theta_{i\overline{\beta}} \, g^{\overline{\beta}\alpha} \, \partial_{\alpha} = \overline{\partial}^* \! A^{\alpha}_{i\overline{\beta}} \, \partial_{\alpha} dz^{\overline{\beta}}$$

Georg Schumacher

warburg

$$\chi_{i\overline{\jmath}} := \langle \mathbf{v}_i, \mathbf{v}_j
angle_{\Theta} = \Theta_{i\overline{\jmath}} - \mathbf{a}_i^{lpha} \Theta_{lpha \overline{\jmath}} - \Theta_{i\overline{eta}} \mathbf{a}_{\overline{\jmath}}^{\overline{eta}}$$

æ

ヘロト 人間 と 人 ヨ と 人 ヨ と

Georg Schumacher

Marburg

Let

$$\chi_{i\overline{\jmath}} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Theta} = \Theta_{i\overline{\jmath}} - \mathbf{a}_i^{\alpha} \Theta_{\alpha\overline{\jmath}} - \Theta_{i\overline{\beta}} \mathbf{a}_{\overline{\jmath}}^{\overline{\beta}}$$

Then

$$-\Box \chi_{i\overline{\jmath}} = 2g^{\overline{\beta}\alpha} \Theta_{i\overline{\beta}} \Theta_{\alpha\overline{\jmath}} \ge 0.$$

Let

$$\chi_{i\bar{\jmath}} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Theta} = \Theta_{i\bar{\jmath}} - \mathbf{a}_i^{\alpha} \Theta_{\alpha\bar{\jmath}} - \Theta_{i\bar{\beta}} \mathbf{a}_{\bar{\jmath}}^{\overline{\beta}}$$

Then

$$-\Box\chi_{i\overline{j}}=2g^{\overline{\beta}\alpha}\Theta_{i\overline{\beta}}\Theta_{\alpha\overline{j}}\geq0.$$

Hence

 $\Theta_{i\overline{\beta}} = \mathbf{0}$

$$\chi_{i\overline{j}} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Theta} = \Theta_{i\overline{j}} - \mathbf{a}_i^{\alpha} \Theta_{\alpha\overline{j}} - \Theta_{i\overline{\beta}} \mathbf{a}_{\overline{j}}^{\overline{\beta}}$$

Then

$$-\Box\chi_{i\overline{j}}=2g^{\overline{\beta}\alpha}\Theta_{i\overline{\beta}}\Theta_{\alpha\overline{j}}\geq0.$$

Hence

$$\Theta_{i\overline{\beta}} = \mathbf{0}$$

Now

$$\Box \Theta_{i\bar{\jmath}} = \Box \chi_{i\bar{\jmath}} = \mathbf{0}$$

Let

$$\chi_{i\overline{j}} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Theta} = \Theta_{i\overline{j}} - \mathbf{a}_i^{\alpha} \Theta_{\alpha\overline{j}} - \Theta_{i\overline{\beta}} \mathbf{a}_{\overline{j}}^{\overline{\beta}}$$

Then

$$-\Box \chi_{i\overline{\jmath}} = 2g^{\overline{\beta}\alpha}\Theta_{i\overline{\beta}}\Theta_{\alpha\overline{\jmath}} \ge 0.$$

Hence

 $\Theta_{i\overline{\beta}}=\mathbf{0}$

Now

$$\Box \Theta_{i\overline{j}} = \Box \chi_{i\overline{j}} = \mathbf{0}$$

and $\Theta_{i\bar{j}}$ must be fiberwise constant. The value of $\Theta_{i\bar{j}} = \Theta_{i\bar{j}}(s)$ is determined by integration over \mathcal{X}_s according to the following Lemma.

26

$$\chi_{i\bar{\jmath}} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Theta} = \Theta_{i\bar{\jmath}} - \mathbf{a}_i^{\alpha} \Theta_{\alpha\bar{\jmath}} - \Theta_{i\bar{\beta}} \mathbf{a}_{\bar{\jmath}}^{\overline{\beta}}$$

Then

Let

$$-\Box \chi_{i\overline{\jmath}} = 2g^{\overline{\beta}\alpha} \Theta_{i\overline{\beta}} \Theta_{\alpha\overline{\jmath}} \ge 0.$$

Hence

 $\Theta_{i\overline{\beta}} = \mathbf{0}$

Now

 $\Box \Theta_{i\overline{\jmath}} = \Box \chi_{i\overline{\jmath}} = \mathbf{0}$

and $\Theta_{i\bar{j}}$ must be fiberwise constant. The value of $\Theta_{i\bar{j}} = \Theta_{i\bar{j}}(s)$ is determined by integration over \mathcal{X}_s according to the following Lemma.

Lemma

$$\Box(\varphi_{i\overline{\jmath}}) = -\Theta_{i\overline{\jmath}} + A_i \cdot A_{\overline{\jmath}}$$

Universität Marburg

Philipps

$$\chi_{i\bar{\jmath}} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Theta} = \Theta_{i\bar{\jmath}} - \mathbf{a}_i^{\alpha} \Theta_{\alpha\bar{\jmath}} - \Theta_{i\bar{\beta}} \mathbf{a}_{\bar{\jmath}}^{\overline{\beta}}$$

Then

Let

$$-\Box \chi_{i\overline{\jmath}} = 2g^{\overline{\beta}\alpha} \Theta_{i\overline{\beta}} \Theta_{\alpha\overline{\jmath}} \ge 0.$$

Hence

 $\Theta_{i\overline{\beta}} = \mathbf{0}$

Now

 $\Box \Theta_{i\overline{\jmath}} = \Box \chi_{i\overline{\jmath}} = \mathbf{0}$

and $\Theta_{i\bar{j}}$ must be fiberwise constant. The value of $\Theta_{i\bar{j}} = \Theta_{i\bar{j}}(s)$ is determined by integration over \mathcal{X}_s according to the following Lemma.

Lemma

$$\Box(\varphi_{i\overline{\jmath}}) = -\Theta_{i\overline{\jmath}} + A_i \cdot A_{\overline{\jmath}}$$

Universität Marburg

Philipps

26

Universität

Marburg

Philipps

Let

$$\chi_{i\overline{\jmath}} := \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Theta} = \Theta_{i\overline{\jmath}} - \mathbf{a}_i^{\alpha} \Theta_{\alpha\overline{\jmath}} - \Theta_{i\overline{\beta}} \mathbf{a}_{\overline{\jmath}}^{\overline{\beta}}$$

Then

$$-\Box \chi_{i\overline{\jmath}} = 2g^{\overline{\beta}\alpha} \Theta_{i\overline{\beta}} \Theta_{\alpha\overline{\jmath}} \ge 0.$$

Hence

 $\Theta_{i\overline{\beta}} = 0$

Now

 $\Box \Theta_{i\overline{j}} = \Box \chi_{i\overline{j}} = \mathbf{0}$

and $\Theta_{i\bar{i}}$ must be fiberwise constant. The value of $\Theta_{i\bar{i}} = \Theta_{i\bar{i}}(s)$ is determined by integration over \mathcal{X}_s according to the following Lemma.

Lemma

 \Rightarrow Fact.

$$\Box(\varphi_{i\overline{\jmath}}) = -\Theta_{i\overline{\jmath}} + A_i \cdot A_{\overline{\jmath}}$$

$$\Box(\varphi_{i\bar{\jmath}}) = -\Theta_{i\bar{\jmath}} + A_i \cdot A_{\bar{\jmath}}$$

$$\mathbf{0} = \int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = \sqrt{-1} \left(\int_{\mathcal{X}/S} \varphi_{i\overline{\jmath}} g \, dV \right) d\mathbf{s}^i \wedge d\mathbf{s}^{\overline{\jmath}}$$

イロト イヨト イヨト イヨト

$$0 = \int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = \sqrt{-1} \left(\int_{\mathcal{X}/S} \varphi_{i\bar{\jmath}} g \, dV \right) ds^{i} \wedge ds^{\bar{\jmath}}$$

so that the (fiberwise) harmonic projection of $\varphi_{i\bar{j}}$ vanishes.

$$0 = \int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = \sqrt{-1} \left(\int_{\mathcal{X}/S} \varphi_{i\bar{\jmath}} g \, dV \right) ds^{i} \wedge ds^{\bar{\jmath}}$$

so that the (fiberwise) harmonic projection of $\varphi_{i\bar{j}}$ vanishes.

$$\varphi_{i\overline{\jmath}} = G_{s}(\Box_{s}(\varphi_{i\overline{\jmath}})) = G_{s}(-\Theta_{i\overline{\jmath}} + A_{i} \cdot A_{\overline{\jmath}}) = G_{s}(A_{i} \cdot A_{\overline{\jmath}})$$

$$0 = \int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = \sqrt{-1} \left(\int_{\mathcal{X}/S} \varphi_{i\overline{\jmath}} g \, dV \right) ds^{i} \wedge ds^{\overline{\jmath}}$$

so that the (fiberwise) harmonic projection of $\varphi_{i\bar{i}}$ vanishes.

$$\varphi_{i\overline{\jmath}} = G_{\mathcal{S}}(\Box_{\mathcal{S}}(\varphi_{i\overline{\jmath}})) = G_{\mathcal{S}}(-\Theta_{i\overline{\jmath}} + A_i \cdot A_{\overline{\jmath}}) = G_{\mathcal{S}}(A_i \cdot A_{\overline{\jmath}})$$

By assumption the Green's function satisfies $G_s(z, w) \ge -c$ for some c > 0.

$$0 = \int_{\mathcal{X}/S} \omega_{\mathcal{X}}^{n+1} = \sqrt{-1} \left(\int_{\mathcal{X}/S} \varphi_{i\overline{\jmath}} g \, dV \right) ds^{i} \wedge ds^{\overline{\jmath}}$$

so that the (fiberwise) harmonic projection of $\varphi_{i\bar{i}}$ vanishes.

$$arphi_{iar{\jmath}} = \mathcal{G}_{\mathcal{S}}(\Box_{\mathcal{S}}(arphi_{iar{\jmath}})) = \mathcal{G}_{\mathcal{S}}(-\Theta_{iar{\jmath}} + \mathcal{A}_i \cdot \mathcal{A}_{ar{\jmath}}) = \mathcal{G}_{\mathcal{S}}(\mathcal{A}_i \cdot \mathcal{A}_{ar{\jmath}})$$

By assumption the Green's function satisfies $G_s(z, w) \ge -c$ for some c > 0.

$$G_{s}(A_{i} \cdot A_{\overline{\jmath}}) \geq -c \cdot \textit{vol}(\mathcal{X}_{s}) \Theta_{i\overline{\jmath}}$$

(in the sense of matrices/hermitian forms)

Theorem

Claim

For a suitable constant c' > 0 the form

$$\widetilde{\omega}_{\mathcal{X}} = \omega_{\mathcal{X}} + \mathbf{C}' f^* \omega_{WP}$$

is Kähler.

イロト イヨト イヨト イヨト

Theorem

Claim

For a suitable constant c' > 0 the form

$$\widetilde{\omega}_{\mathcal{X}} = \omega_{\mathcal{X}} + \mathbf{C}' f^* \omega_{WP}$$

is Kähler.

イロト イヨト イヨト イヨト

Theorem

Claim

For a suitable constant c' > 0 the form

$$\widetilde{\omega}_{\mathcal{X}} = \omega_{\mathcal{X}} + \mathbf{C}' \mathbf{f}^* \omega_{WP}$$

is Kähler.

Namely, with $c' = c \cdot vol(\mathcal{X}_s) + 1$

$$egin{array}{rcl} \widetilde{\omega}_{\mathcal{X}}^{n+1} &=& (\omega_{\mathcal{X}}+m{c}'f^*\omega_{W\!P})^{n+1}=\sqrt{-1}(arphi_{iar{\jmath}}+m{c}'\Theta_{iar{\jmath}})dm{s}^i\wedge dm{s}^{ar{\jmath}}\ &\geq& \sqrt{-1}\Theta_{iar{\jmath}}dm{s}^i\wedge dm{s}^{ar{\jmath}}, \end{array}$$

whereas $\widetilde{\omega}_{\mathcal{X}} | \mathcal{X}_{s} = \omega_{\mathcal{X}_{s}} > \mathbf{0}.$

Universität Marburg

Philipps