Hyperbolic geometry and the proof of Morrison-Kawamata cone conjecture (4)

Misha Verbitsky

Complex Geometry: discussion meeting 20 March 2017 to 25 March 2017

Ramanujan Lecture Hall, ICTS, Bengaluru

Holomorphically symplectic manifolds (reminder)

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **simple**, or **IHS** if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

The Bogomolov-Beauville-Fujiki form (reminder)

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M=2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta,\eta)^n$, for some primitive integer quadratic form q on $H^2(M,\mathbb{Z})$, and c>0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_{X} \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_{X} \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n} \right) \left(\int_{X} \eta \wedge \Omega^{n} \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: q has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Automorphisms of cohomology.

THEOREM: Let M be a simple hyperkähler manifold, and $G \subset GL(H^*(M))$ a group of automorphisms of its cohomology algebra preserving the Pontryagin classes. Then G acts on $H^2(M)$ preserving the BBF form. Moreover, the map $G \longrightarrow O(H^2(M,\mathbb{R}),q)$ is surjective on a connected component, and has compact kernel.

Proof. Step 1: Fujiki formula $v^{2n} = cq(v,v)^n$ implies that G preserves the **Bogomolov-Beauville-Fujiki up to a sign.** The sign is fixed, if n is odd.

Step 2: For even n, the sign is also fixed. Indeed, G preserves $p_1(M)$, and (as Fujiki has shown) $v^{2n-2} \wedge p_1(M) = q(v,v)^{n-1}c$, for some $c \in \mathbb{R}$. The constant c is positive, **because the degree of** $c_2(B)$ **is positive** for any non-trivial stable bundle with $c_1(B) = 0$.

Step 3: $\mathfrak{o}(H^2(M,\mathbb{R}),q)$ acts on $H^*(M,\mathbb{R})$ by derivations preserving Pontryagin classes (V., 1995). Therefore Lie(G) surjects to $\mathfrak{o}(H^2(M,\mathbb{R}),q)$.

Step 4: The kernel K of the map $G \longrightarrow G|_{H^2(M,\mathbb{R})}$ is compact, because it commutes with the Hodge decomposition and Lefschetz $\mathfrak{s}l(2)$ -action, hence preserves the Riemann-Hodge form.

Sullivan's theorem

Theorem: (Dennis Sullivan)

Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \geqslant 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then the natural map $\mathrm{Diff}(M)/\mathrm{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

Theorem: Let M be a simple hyperkähler manifold, and Γ_0 as above. Then (i) $\Gamma_0|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$.

(ii) The map $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

Proof: Follows from the computation of $G = \operatorname{Aut}(H^*(M,\mathbb{R}), p_1, ..., p_n)$ done earlier. Indeed, the kernel of $\Gamma_0\big|_{H^2(M,\mathbb{Z})}$ is a set of integer points of a compact Lie group, hence finite. The image of $\Gamma_0 = G_{\mathbb{Z}}$ has finite index in $O(H^2(M,\mathbb{Z}),q)$, because the corresponding map of Lie groups is surjective.

Computation of the mapping class group

COROLLARY: The mapping class group Γ is mapped to $O(H^2(M, \mathbb{Z}), q)$ with finite kernel and finite index.

Proof: By Sullivan, Γ is mapped to Γ_0 with finite kernel and finite index, and $\Gamma_0 \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel and finite index, as shown above.

THEOREM: (Kollar-Matsusaka, Huybrechts) There are only finitely many connected components of Teich.

COROLLARY: Let Γ_I be the group of elements of mapping class group preserving a connected component of Teichmüller space containing $I \in \mathsf{Teich}$. Then Γ_I has finite index in Γ .

REMARK: Γ_I is a group generated by monodromy of all Gauss-Manin local systems for all deformations of (M, I). It is known as **the monodromy group** of (M, I).

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map P: Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: P maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0.$$

It is called **the period space** of M.

REMARK: $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1)$

THEOREM: (Bogomolov)

Let M be a simple hyperkähler manifold, and Teich its Teichmüller space. Then **The period map** P: Teich $\longrightarrow \mathbb{P}er$ is etale.

REMARK: Bogomolov's theorem implies that Teich is smooth. It is usually non-Hausdorff.

Birational equivalence and non-separable points

DEFINITION: Let M be a topological space. We say that $x, y \in M$ are non-separable (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y$, $U \cap V \neq \emptyset$.

THEOREM: (D. Huybrechts) If I_1 , $I_2 \in$ Teich are non-separable points, then $P(I_1) = P(I_2)$, and (M, I_1) is birationally equivalent to (M, I_2) .

DEFINITION: Let M be a topological space for which M/\sim is Hausdorff. Then M/\sim is called a Hausdorff reduction of M.

DEFINITION: The space $\operatorname{Teich}_b := \operatorname{Teich}/\sim$ is called **the birational Teichmüller space** of M.

THEOREM: (Global Torelli theorem)

Let (M,I) be a hyperkähler manifold, and Teich $_b^I$ a connected component of its birational Teichmüller space. Then Teich $_b^I$ is isomorphic to \mathbb{P} er, where \mathbb{P} er = $SO(b_2-3,3)/SO(2) \times SO(b_2-3,1)$. Two points in Teich $_b^I$ coorespond to birational manifolds if they lie in the same Γ^I -orbit, where Γ^I is the monodromy group. Finally, Γ^I is an arithmetic lattice in $SO(b_2-3,3)$.

The group of symplectic Hodge monodromy

DEFINITION: Let (M, I) be a hyperkähler manifold. Then **the Hodge** monodromy group $Mon_I(M)$ is the group of all $a \in Mon(M)$ preserving the Hodge decomposition on $H^2(M)$.

DEFINITION: Let Ω be a holomorphic symplectic form on a hyperkähler manifold. Consider the homomorphism $\varphi: \operatorname{Mon}_I(M) \longrightarrow \mathbb{C}^*$, $\varphi(\gamma) = \frac{\gamma^*\Omega}{\Omega}$. Denote its kernel by $\operatorname{Mon}_{I,\Omega}(M,I)$. Thi group is called **the group of symplectic** Hodge monodromy.

Claim 1: Consider the Hodge lattice $\Lambda := H_I^{1,1}(M,\mathbb{Z})$. Then the natural homomorphism $\mathrm{Mon}_{I,\Omega}(M,I) \longrightarrow O(\Lambda)$ is injective and has finite index.

Proof: Let $H_{tr}^2(M) := H_I^{1,1}(M,\mathbb{Q})^{\perp}$ be the "transcendental part" of the Hodge lattice, that is, the smallest Hodge substructure containing Re $H^{2,0}(M)$. By definition,

$$\operatorname{Mon}_{I,\Omega}(M,I) = \left\{ a \in \operatorname{Mon}(M) \middle| a \middle|_{H^2_{tr}(M)} = \operatorname{Id} \right\}$$

Since Mon(M) is an arithmetic lattice subgroup in $O(H^2(M,\mathbb{Z}))$, $Mon_{I,\Omega}(M,I)$ is an arthmetic lattice in the group of isometries of $H^2_{tr}(M)^{\perp} = \Lambda$.

MBM classes (reminder)

DEFINITION: Negative class on a hyperkähler manifold is $\eta \in H_2(M, \mathbb{R}) = H^2(M, \mathbb{R})$ satisfying $q(\eta, \eta) < 0$. It is effective if it is represented by a curve.

THEOREM: Let $z \in H_2(M, \mathbb{Z})$ be negative, and I, I' complex structures in the same deformation class, such that z is of type (1,1) with respect to I and I' and $Pic(M) = \langle z \rangle$. Then $\pm z$ is effective in $(M, I) \Leftrightarrow$ iff it is effective in (M, I').

REMARK: From now on, we identify $H^2(M)$ and $H_2(M)$ using the BBF form. Under this identification, **integer classes in** $H_2(M)$ **correspond to rational classes in** $H^2(M)$ (the form q is not unimodular).

DEFINITION: A negative class $z \in H^2(M, \mathbb{Z})$ on a hyperkähler manifold is called **an MBM class** if there exist a deformation of M with $\text{Pic}(M) = \langle z \rangle$ such that λz is represented by a curve, for some $\lambda \neq 0$.

MBM classes and the shape of the Kähler cone (reminder)

THEOREM: Let (M,I) be a hyperkähler manifold, and $S \subset H_{1,1}(M,I)$ the set of all MBM classes in $H_{1,1}(M,I)$. Consider the corresponding set of hyperplanes $S^{\perp} := \{W = z^{\perp} \mid z \in S\}$ in $H^{1,1}(M,I)$. Then the Kähler cone of (M,I) is a connected component of $\operatorname{Pos}(M,I) \setminus \cup S^{\perp}$, where $\operatorname{Pos}(M,I)$ is a positive cone of (M,I). Moreover, for any connected component K of $\operatorname{Pos}(M,I) \setminus \cup S^{\perp}$, there exists $\gamma \in O(H^2(M))$ in a monodromy group of M, and a hyperkähler manifold (M,I') birationally equivalent to (M,I), such that $\gamma(K)$ is a Kähler cone of (M,I').

REMARK: This implies that MBM classes correspond to faces of the Kähler cone.

DEFINITION: Kähler chamber is a connected component of $Pos(M, I) \setminus \cup S^{\perp}$.

CLAIM: The Hodge monodromy group maps Kähler chambers to Kähler chambers.

MBM classes and automorphisms

THEOREM: Let (M,I) be a hyperkähler manifold, Mon(M) the group of automorphisms of $H^2(M)$ generated by monodromy transform for all Gauss-Manin local systems, and $Mon_I(M)$ the Hodge monodromy group, that is, a subgroup of Mon(M) preserving the Hodge decomposition. **Then** Aut(M) is a subgroup of $Mon_I(M)$ preserving the Kähler cone Kah(M).

COROLLARY: Let (M,I) be a hyperkähler manifold such that there are no MBM classes of type (1,1). Then $\operatorname{Aut}(M) = \operatorname{Mon}_I(M)$.

Proof: Indeed, for such manifold Kah(M, I) = Pos(M, I).

Morrison-Kawamata cone conjecture

DEFINITION: An integer cohomology class a is **primitive** if it is not divisible by integer numbers c > 1.

THEOREM: (a version of Morrison-Kawamata cone conjecture) The group $\mathsf{Mon}(M)$ acts on the set of primitive MBM classes with finitely many orbits.

Proof: Proven by Amerik-V., using homogeneous dynamics (Ratner theorems, Dani-Margulis, Mozes-Shah). ■

COROLLARY: Let M be a hyperkähler manifold. Then there exists a number N>0, called **an MBM bound**, such that any MBM class z satisfies |q(z,z)|< N.

Proof: There are only finitely many primitive MBM classes, up to isometry action, and the have finitely many squares. ■

Corollary 1: Let M be a hyperkähler manifold, N its MBM bound, and (M,I) a deformation such that for any $x \in H_I^{1,1}(M,\mathbb{Z})$ one has q(x,x) > N. Then (M,I) has no MBM classes of type (1,1), and $\operatorname{Kah}(M,I) = \operatorname{Pos}(M,I)$ and $\operatorname{Aut}(M) = \operatorname{Mon}_I(M)$.

Classification of automorphisms of a hyperbolic space

REMARK: The group O(m,n), m,n > 0 has 4 connected components. We denote the connected component of 1 by $SO^+(m,n)$. We call a vector v positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature (1,n), $Pos(V) = \{x \in V \mid q(x,x) > 0\}$ its **positive cone**, and \mathbb{P}^+V projectivization of Pos(V). Denote by g any SO(V)-invariant Riemannian structure on \mathbb{P}^+V . Then (\mathbb{P}^+V,g) is called **hyperbolic space**, and the group $SO^+(V)$ the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and $\alpha \in SO^+(1,n)$ is an isometry acting on V. Then one and only one of these three cases occurs

- (i) α has an eigenvector x with q(x,x) > 0 (α is "elliptic isometry")
- (ii) α has an eigenvector x with q(x,x)=0 and eigenvalue λ_x satisfying $|\lambda_x|>1$ (α is "hyperbolic isometry")
- (iii) α has a unique eigenvector x with q(x,x)=0. (α is "parabolic isometry")

DEFINITION: An automorphism of a hyperkähler manifold (M,I) is called **elliptic (parabolic, hyperbolic)** if it is elliptic (parabolic, hyperbolic) on $H_I^{1,1}(M,\mathbb{R})$.

Primitive sublattices with an MBM bound

DEFINITION: Integer lattice, or quadratic lattice, or just lattice is \mathbb{Z}^n equipped with an integer-valued quadratic form. When we speak of embedding of lattices, we always assume that they are compatible with the quadratic form.

DEFINITION: A sublattice $\Lambda' \subset \Lambda$ is called **primitive** if $(\Lambda' \otimes_{\mathbb{Z}} \mathbb{Q}) \cap \Lambda = \Lambda'$. A number a is **represented** by a lattice (Λ, q) if a = q(x, x) for some $x \in \Lambda$. **Minumum** of a lattice is the number $\min \Lambda := \min_x |q(x, x)|$, taken over all $x \in \Lambda$.

Theorem 1: Let (Λ, q) be a lattice of signature (n, m). Fix a number N > 0. Then there exists a primitive sublattice $\Lambda' \subset \Lambda$ of rank 2, signature (1, 1) with $\min \Lambda' > N$.

Proof: Takes some number theory (Hilbert symbols, quadratic residues). For unimodular lattices it is Witt-Nikulin theorem.

DEFINITION: Let M be a hyperkähler manifold, $\Lambda = H^2(M, \mathbb{Z})$, q the BBF form. A primitive sublattice $\Lambda' \subset H^2(M, \mathbb{Z})$ satisfies MBM bound if its minimum is > N, where N is the MBM bound of M.

Sublattices with MBM bound and automorphisms

REMARK: By Torelli theorem, for any primitive sublattice $\Lambda \subset H^2(M, \mathbb{Z})$, there exists a complex structure I such that $\Lambda = H_I^{1,1}(M, \mathbb{Z})$, if $H^2(M, \mathbb{R})/(\Lambda \otimes_{\mathbb{Z}} \mathbb{R})$ has signature (p, q) with $p \geqslant 2$.

THEOREM: Let M be a hyperkähler manifold, and $\Lambda \subset H^2(M,\mathbb{Z})$ a primitive sublattice satisfying the MBM bound. Let (M,I) be a deformation of M such that $\Lambda = H_I^{1,1}(M,\mathbb{Z})$. Then the group of holomorphic symplectic automorphisms $\operatorname{Aut}(M,\Omega) = \operatorname{Mon}_{I,\Omega}(M)$ surjects to a subgroup of finite index in $O(\Lambda)$.

Proof: Since $\Lambda = H_I^{1,1}(M,\mathbb{Z})$ satisfies MBM bound, it contains no MBM classes. By Corollary 1, this gives $\operatorname{Aut}(M,\Omega) = \operatorname{Mon}_{I,\Omega}(M)$. Now, $\operatorname{Mon}_{I,\Omega}(M)$ is a finite index subgroup in $O(\Lambda)$, as follows from Claim 1.

Existence of hyperbolic automorphisms

THEOREM: Let M be a hyperkähler manifold, with $b_2(M) \ge 7$. Then M has a deformation admitting a hyperbolic automorphism.

Proof. Step 1: Find a primitive rank 2 sublattice $\Lambda \subset H^2(M,\mathbb{Z})$ satisfying the MBM bound. Using Torelli theorem, we construct a deformation M' of M which has $\Lambda = H^{1,1}(M') \cap H^2(M',\mathbb{Z})$.

Proof. Step 2: For such M', the group of symplectic automorphisms surjects to a finite index subgroup of $O(\Lambda)$.

Proof. Step 3: If Λ is rank 2, signature (1,1) quadratic lattice not representing 0, the group $O(\Lambda)$ has infinite order (follows from Dirichlet unit theorem).