# Nori uniformization of algebraic stacks

#### Indranil Biswas<sup>1</sup> Niels Borne<sup>2</sup>

<sup>1</sup>Tata Institute of Fundamental Research

<sup>2</sup>Université Lille 1

Complex analytic geometry, ICTS, 22.03.2017

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

#### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

くロト (過) (目) (日)

ъ

Representable morphisms Fundamental groups Hidden loops

イロト イポト イヨト イヨト

э

### Plan

# Uniformization of algebraic stacks

#### Representable morphisms

Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

Most stacks  $\mathfrak{X}$  (in this talk) come equipped with an epimorphism  $X_0 \to \mathfrak{X}$ , where  $X_0$  is an algebraic space. The groupoid  $X_1 := X_0 \times_{\mathfrak{X}} X_0 \Rightarrow X_0$  enables to reconstruct  $\mathfrak{X}$ .

For instance if *G* is a group scheme acting on a scheme *X*, the quotient stack [X/G] is associated to the groupoid  $(pr_1, a) : X \times G \rightrightarrows X$ .

A stack morphism  $\mathfrak{Y} \to \mathfrak{X}$  is *representable* if for any cartesian diagram



where X is an algebraic space, Y is an algebraic space as well. A stack  $\mathfrak{X}$  is *algebraic* is  $\mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$  is representable and there exists a smooth atlas  $U \to \mathfrak{X}$ , where U is an algebraic space.

Indranil Biswas, Niels Borne

Nori uniformization

Most stacks  $\mathfrak{X}$  (in this talk) come equipped with an epimorphism  $X_0 \to \mathfrak{X}$ , where  $X_0$  is an algebraic space. The groupoid  $X_1 := X_0 \times_{\mathfrak{X}} X_0 \rightrightarrows X_0$  enables to reconstruct  $\mathfrak{X}$ . For instance if *G* is a group scheme acting on a scheme *X*, the quotient stack [X/G] is associated to the groupoid  $(\operatorname{pr}_1, a) : X \times G \rightrightarrows X$ .

A stack morphism  $\mathfrak{Y} \to \mathfrak{X}$  is *representable* if for any cartesian diagram



where X is an algebraic space, Y is an algebraic space as well. A stack  $\mathfrak{X}$  is *algebraic* is  $\mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$  is representable and there exists a smooth atlas  $U \to \mathfrak{X}$ , where U is an algebraic space.

Indranil Biswas, Niels Borne

Nori uniformization

Most stacks  $\mathfrak{X}$  (in this talk) come equipped with an epimorphism  $X_0 \to \mathfrak{X}$ , where  $X_0$  is an algebraic space. The groupoid  $X_1 := X_0 \times_{\mathfrak{X}} X_0 \rightrightarrows X_0$  enables to reconstruct  $\mathfrak{X}$ . For instance if *G* is a group scheme acting on a scheme *X*, the quotient stack [X/G] is associated to the groupoid  $(\mathrm{pr}_1, a) : X \times G \rightrightarrows X$ .

A stack morphism  $\mathfrak{Y} \to \mathfrak{X}$  is representable if for any cartesian diagram



where X is an algebraic space, Y is an algebraic space as well. A stack  $\mathfrak{X}$  is *algebraic* is  $\mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$  is representable and there exists a smooth atlas  $U \to \mathfrak{X}$ , where U is an algebraic space.

Most stacks  $\mathfrak{X}$  (in this talk) come equipped with an epimorphism  $X_0 \to \mathfrak{X}$ , where  $X_0$  is an algebraic space. The groupoid  $X_1 := X_0 \times_{\mathfrak{X}} X_0 \rightrightarrows X_0$  enables to reconstruct  $\mathfrak{X}$ . For instance if *G* is a group scheme acting on a scheme *X*, the quotient stack [X/G] is associated to the groupoid  $(\mathrm{pr}_1, a) : X \times G \rightrightarrows X$ .

A stack morphism  $\mathfrak{Y} \to \mathfrak{X}$  is representable if for any cartesian diagram



where X is an algebraic space, Y is an algebraic space as well. A stack  $\mathfrak{X}$  is *algebraic* is  $\mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$  is representable and there exists a smooth atlas  $U \to \mathfrak{X}$ , where U is an algebraic space.

Indranil Biswas, Niels Borne

Nori uniformization

Representable morphisms Fundamental groups Hidden loops

イロト イポト イヨト イヨト

э

### Plan

# Uniformization of algebraic stacks

Representable morphisms Fundamental groups

Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

Representable morphisms Fundamental groups Hidden loops

ヘロン 人間 とくほ とくほ とう

# Étale coverings

Let  $\mathfrak{X}$  a connected algebraic stack. A *finite étale cover* of  $\mathfrak{X}$  is by definition a *representable* finite étale morphism  $\mathfrak{Y} \to \mathfrak{X}$ . The corresponding category is denoted by  $Cov(\mathfrak{X})$ .

### Theorem (B.Noohi 2004)

The category  $Cov(\mathfrak{X})$  is a Galois category.

So any geometric point  $\overline{x}$  : spec  $\Omega \to \mathfrak{X}$  defines as usual an étale fundamental group

$$\pi_1(\mathfrak{X},\overline{x}) := \operatorname{Aut}(\overline{x}^*)$$

where  $\overline{x}^*$  : Cov $(\mathfrak{X}) \rightarrow$  Sets is the corresponding fiber functor.

Representable morphisms Fundamental groups Hidden loops

ヘロン 人間 とくほ とくほ とう

# Étale coverings

Let  $\mathfrak{X}$  a connected algebraic stack. A *finite étale cover* of  $\mathfrak{X}$  is by definition a *representable* finite étale morphism  $\mathfrak{Y} \to \mathfrak{X}$ . The corresponding category is denoted by  $Cov(\mathfrak{X})$ .

### Theorem (B.Noohi 2004)

#### The category $Cov(\mathfrak{X})$ is a Galois category.

So any geometric point  $\overline{x}$  : spec  $\Omega \to \mathfrak{X}$  defines as usual an étale fundamental group

$$\pi_1(\mathfrak{X},\overline{x}) := \operatorname{Aut}(\overline{x}^*)$$

where  $\overline{x}^*$  : Cov $(\mathfrak{X}) \rightarrow$  Sets is the corresponding fiber functor.

Representable morphisms Fundamental groups Hidden loops

ヘロン 人間 とくほ とくほ とう

э.

# Étale coverings

Let  $\mathfrak{X}$  a connected algebraic stack. A *finite étale cover* of  $\mathfrak{X}$  is by definition a *representable* finite étale morphism  $\mathfrak{Y} \to \mathfrak{X}$ . The corresponding category is denoted by  $Cov(\mathfrak{X})$ .

### Theorem (B.Noohi 2004)

The category  $Cov(\mathfrak{X})$  is a Galois category.

So any geometric point  $\overline{x}$  : spec  $\Omega \to \mathfrak{X}$  defines as usual an étale fundamental group

$$\pi_1(\mathfrak{X},\overline{x}) := \operatorname{Aut}(\overline{x}^*)$$

where  $\overline{x}^*$  : Cov $(\mathfrak{X}) \to$  Sets is the corresponding fiber functor.

Representable morphisms Fundamental groups Hidden loops

イロト イポト イヨト イヨト

э

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

# Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

#### Representable morphism Fundamental groups Hidden loops

ヘロト 人間 ト ヘヨト ヘヨト

# Uniformization criterion

A connected algebraic stack  $\mathfrak{X}$  is called *uniformizable* if there exists  $Y \to \mathfrak{X}$  in Cov X, where Y is a (non empty) algebraic space.

By functoriality, for any geometric point  $\overline{x}$ , any  $\alpha \in Aut(\overline{x})$  defines a *hidden loop*  $\alpha^*$  in  $\pi_1(\mathfrak{X}, \overline{x})$ . So one gets morphisms :

$$\omega_{\overline{x}}:\operatorname{Aut}(\overline{x}) o \pi_1(\mathfrak{X},\overline{x})$$
.

### Theorem (Noohi 2004)

 $\mathfrak{X}$  is uniformizable if and only if for any geometric point  $\overline{\mathbf{X}}$ , the morphism  $\omega_{\overline{\mathbf{X}}}$  is injective.

# Uniformization criterion

A connected algebraic stack  $\mathfrak{X}$  is called *uniformizable* if there exists  $Y \to \mathfrak{X}$  in Cov X, where Y is a (non empty) algebraic space.

By functoriality, for any geometric point  $\overline{x}$ , any  $\alpha \in Aut(\overline{x})$  defines a *hidden loop*  $\alpha^*$  in  $\pi_1(\mathfrak{X}, \overline{x})$ . So one gets morphisms :

$$\omega_{\overline{x}}: \operatorname{Aut}(\overline{x}) o \pi_1(\mathfrak{X}, \overline{x})$$
.

#### Theorem (Noohi 2004)

 $\mathfrak{X}$  is uniformizable if and only if for any geometric point  $\overline{\mathbf{X}}$ , the morphism  $\omega_{\overline{\mathbf{X}}}$  is injective.

イロト 不得 とくほ とくほとう

1

# Uniformization criterion

A connected algebraic stack  $\mathfrak{X}$  is called *uniformizable* if there exists  $Y \to \mathfrak{X}$  in Cov X, where Y is a (non empty) algebraic space.

By functoriality, for any geometric point  $\overline{x}$ , any  $\alpha \in Aut(\overline{x})$  defines a *hidden loop*  $\alpha^*$  in  $\pi_1(\mathfrak{X}, \overline{x})$ . So one gets morphisms :

$$\omega_{\overline{x}}: \operatorname{Aut}(\overline{x}) \to \pi_1(\mathfrak{X}, \overline{x})$$
.

#### Theorem (Noohi 2004)

 $\mathfrak{X}$  is uniformizable if and only if for any geometric point  $\overline{x}$ , the morphism  $\omega_{\overline{x}}$  is injective.

ヘロト 人間 ト ヘヨト ヘヨト

1

Nori fundamental gerbe Residual gerbes Tannakian interpretation

イロト イポト イヨト イヨト

э

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization Nori fundamental gerbe

Residual gerbes Tannakian interpretation

#### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

#### Nori fundamental gerbe Residual gerbes Tannakian interpretation

イロン イロン イヨン イヨン

# The origins

Let X/k be a scheme, endowed with a rational point  $x \in X(k)$ . Nori considers triples  $(G, Y \to X, y)$ , where G/k is a finite group scheme;  $Y \to X$  is a *G*-torsor, and  $y \in Y(k)$  lifts *x*.

### Definition

X admits a fundamental group scheme if there exists a triple  $(\pi(X, x), \widetilde{X_x}, \widetilde{x})$  which is pro-universal among these triples.

### Theorem (Nori 1976)

If X is reduced and connected, then X admits a fundamental group scheme.

We want first to improve on two points :

- work with an algebraic stack rather than a scheme,
- get rid of the rational base point.

# The origins

Let X/k be a scheme, endowed with a rational point  $x \in X(k)$ . Nori considers triples  $(G, Y \to X, y)$ , where G/k is a finite group scheme;  $Y \to X$  is a *G*-torsor, and  $y \in Y(k)$  lifts *x*.

### Definition

X admits a fundamental group scheme if there exists a triple  $(\pi(X, x), \widetilde{X_x}, \tilde{x})$  which is pro-universal among these triples.

### Theorem (Nori 1976)

If X is reduced and connected, then X admits a fundamental group scheme.

We want first to improve on two points :

- work with an algebraic stack rather than a scheme,
- get rid of the rational base point.

◆□ > ◆□ > ◆豆 > ◆豆 > -

# The origins

Let X/k be a scheme, endowed with a rational point  $x \in X(k)$ . Nori considers triples  $(G, Y \to X, y)$ , where G/k is a finite group scheme;  $Y \to X$  is a *G*-torsor, and  $y \in Y(k)$  lifts *x*.

### Definition

X admits a fundamental group scheme if there exists a triple  $(\pi(X, x), \widetilde{X_x}, \widetilde{x})$  which is pro-universal among these triples.

### Theorem (Nori 1976)

If X is reduced and connected, then X admits a fundamental group scheme.

We want first to improve on two points :

- work with an algebraic stack rather than a scheme,
- get rid of the rational base point.

ヘロト 人間 とくほとくほとう

# The origins

Let X/k be a scheme, endowed with a rational point  $x \in X(k)$ . Nori considers triples  $(G, Y \to X, y)$ , where G/k is a finite group scheme;  $Y \to X$  is a *G*-torsor, and  $y \in Y(k)$  lifts *x*.

### Definition

*X* admits a fundamental group scheme if there exists a triple  $(\pi(X, x), \widetilde{X_x}, \widetilde{x})$  which is pro-universal among these triples.

### Theorem (Nori 1976)

If X is reduced and connected, then X admits a fundamental group scheme.

We want first to improve on two points :

- work with an algebraic stack rather than a scheme,
- get rid of the rational base point.

・ロン ・四 と ・ ヨ と ・ ヨ と …

### Theorem (B.-Vistoli 2015)

Let  $\mathfrak{X}/k$  be an algebraic stack. If  $\mathfrak{X}$  is geometrically {connected and reduced} then there exists a morphism  $\mathfrak{X} \to \pi_{\mathfrak{X}/k}$  which is (pro)-universal among morphisms to finite gerbes.

To any group scheme G, one can associate its *classifying stack* B G defined by B  $G(S) = \{G$ -torsors over  $S\}$ .

#### Definition

A stack  $\Gamma$  is an *affine gerbe* if  $\Gamma \neq \emptyset$ , two objects are locally isomorphic, and the automorphism group of any object is affine.

neutralized affine gerbes  $k \leftrightarrow affine$  group schemes/k

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 $(\Gamma, x \in \Gamma(k)) \to \operatorname{Aut}_k(x)$ 

### Theorem (B.-Vistoli 2015)

Let  $\mathfrak{X}/k$  be an algebraic stack. If  $\mathfrak{X}$  is geometrically {connected and reduced} then there exists a morphism  $\mathfrak{X} \to \pi_{\mathfrak{X}/k}$  which is (pro)-universal among morphisms to finite gerbes.

To any group scheme G, one can associate its *classifying stack* B G defined by B  $G(S) = \{G$ -torsors over  $S\}$ .

### Definition

A stack  $\Gamma$  is an *affine gerbe* if  $\Gamma \neq \emptyset$ , two objects are locally isomorphic, and the automorphism group of any object is affine.

neutralized affine gerbes  $k \leftrightarrow j$  affine group schemes/k

イロン 不良 とくほう 不良 とうほ

 $(\Gamma, x \in \Gamma(k)) \to \operatorname{Aut}_k(x)$ 

### Theorem (B.-Vistoli 2015)

Let  $\mathfrak{X}/k$  be an algebraic stack. If  $\mathfrak{X}$  is geometrically {connected and reduced} then there exists a morphism  $\mathfrak{X} \to \pi_{\mathfrak{X}/k}$  which is (pro)-universal among morphisms to finite gerbes.

To any group scheme G, one can associate its *classifying stack* B G defined by B  $G(S) = \{G$ -torsors over  $S\}$ .

### Definition

A stack  $\Gamma$  is an *affine gerbe* if  $\Gamma \neq \emptyset$ , two objects are locally isomorphic, and the automorphism group of any object is affine.

neutralized affine gerbes  $k \leftrightarrow affine \text{ group schemes}/k$   $(\Gamma, x \in \Gamma(k)) \rightarrow \operatorname{Aut}_k(x)$  $\mathsf{B} G \leftarrow G$ 

### Theorem (B.-Vistoli 2015)

Let  $\mathfrak{X}/k$  be an algebraic stack. If  $\mathfrak{X}$  is geometrically {connected and reduced} then there exists a morphism  $\mathfrak{X} \to \pi_{\mathfrak{X}/k}$  which is (pro)-universal among morphisms to finite gerbes.

To any group scheme G, one can associate its *classifying stack* B G defined by B  $G(S) = \{G$ -torsors over  $S\}$ .

### Definition

A stack  $\Gamma$  is an *affine gerbe* if  $\Gamma \neq \emptyset$ , two objects are locally isomorphic, and the automorphism group of any object is affine.

neutralized affine gerbes  $k \leftrightarrow affine \text{ group schemes}/k$ 

ヘロト 人間 とくほとく ほとう

3

$$(\Gamma, x \in \Gamma(k)) 
ightarrow \operatorname{\mathsf{Aut}}_k(x)$$
  
B  $G \leftarrow G$ 

Nori fundamental gerbe Residual gerbes Tannakian interpretation

イロト イポト イヨト イヨト

э

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

#### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

# Residual gerbes and Nori-uniformization

For any geometric point  $\overline{x}$ : spec  $\Omega \to \mathfrak{X}$  of an algebraic stack, there is an associated *residual gerbe* obtained by an epi-mono factorization : spec  $\Omega \to \mathcal{G}_{\overline{x}} \to \mathfrak{X}$ .

### Definition

Let  $\mathfrak{X}/k$  be an algebraic stack.  $\mathfrak{X}$  is *Nori-uniformizable* if there exists a *G*-torsor  $Y \to \mathfrak{X}$ , where Y is an algebraic space, and G/k is a finite group scheme.

### Theorem (I.Biswas-B. 2017)

Let  $\mathfrak{X}/k$  be an algebraic stack of finite type, with finite inertia, and geometrically {connected and reduced}. Then  $\mathfrak{X}/k$  is Nori-uniformizable if and only if for any  $x \in |\mathfrak{X}|_0$ , the morphism

 $\mathcal{G}_{X} \to \mathfrak{X} \to \pi_{\mathfrak{X}/k}$  is faithful.

ヘロト 人間 とくほとく ほとう

3

#### Residual gerbes Tannakian interpretation

# Residual gerbes and Nori-uniformization

For any geometric point  $\overline{x}$ : spec  $\Omega \to \mathfrak{X}$  of an algebraic stack, there is an associated *residual gerbe* obtained by an epi-mono factorization : spec  $\Omega \to \mathcal{G}_{\overline{x}} \to \mathfrak{X}$ .

#### Definition

Let  $\mathfrak{X}/k$  be an algebraic stack.  $\mathfrak{X}$  is *Nori-uniformizable* if there exists a *G*-torsor  $Y \to \mathfrak{X}$ , where *Y* is an algebraic space, and G/k is a finite group scheme.

### Theorem (I.Biswas-B. 2017)

Let  $\mathfrak{X}/k$  be an algebraic stack of finite type, with finite inertia, and geometrically {connected and reduced}. Then  $\mathfrak{X}/k$  is Nori-uniformizable if and only if for any  $x \in |\mathfrak{X}|_0$ , the morphism

 $\mathcal{G}_{X} \to \mathfrak{X} \to \pi_{\mathfrak{X}/k}$  is faithful.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

#### Residual gerbes Tannakian interpretation

# Residual gerbes and Nori-uniformization

For any geometric point  $\overline{x}$ : spec  $\Omega \to \mathfrak{X}$  of an algebraic stack, there is an associated *residual gerbe* obtained by an epi-mono factorization : spec  $\Omega \to \mathcal{G}_{\overline{x}} \to \mathfrak{X}$ .

### Definition

Let  $\mathfrak{X}/k$  be an algebraic stack.  $\mathfrak{X}$  is *Nori-uniformizable* if there exists a *G*-torsor  $Y \to \mathfrak{X}$ , where *Y* is an algebraic space, and G/k is a finite group scheme.

### Theorem (I.Biswas-B. 2017)

Let  $\mathfrak{X}/k$  be an algebraic stack of finite type, with finite inertia, and geometrically {connected and reduced}. Then  $\mathfrak{X}/k$  is Nori-uniformizable if and only if for any  $x \in |\mathfrak{X}|_0$ , the morphism

$$\mathcal{G}_{x} \to \mathfrak{X} \to \pi_{\mathfrak{X}/k}$$
 is faithful.

ヘロン 人間 とくほ とくほ とう

э.

A B > A B >

# Sketch of a proof of 'only if' statement

#### Proof.

A stack morphism  $f : \mathfrak{Y} \to \mathfrak{X}$  is *faithful* is for any point  $y : S \to \mathfrak{Y}$ , the induced morphism of *S*-groups  $\operatorname{Aut}_{\mathfrak{Y}}(y) \to \operatorname{Aut}_{\mathfrak{X}}(f(y))$  is a monomorphism. When  $\mathfrak{X}$  et  $\mathfrak{Y}$  are algebraic, this is equivalent to : *f* is representable.

Now the fact that  $\mathfrak{X}$  is Nori-uniformizable exactly means that there is a representable morphism  $\mathfrak{X} \to B G$ , where G is a finite group scheme (incidentally, one could replace B G by any finite gerbe).

Since the morphism  $\mathcal{G}_x \to \mathfrak{X}$  is also representable, so is the composite morphism  $\mathcal{G}_x \to \mathfrak{X} \to B G$ , hence it is faithful. By the universal property of the fundamental gerbe,  $\mathcal{G}_x \to \pi_{\mathfrak{X}/k}$  factors this composite morphism, hence must be faithful as well.

A B > A B >

# Sketch of a proof of 'only if' statement

#### Proof.

A stack morphism  $f : \mathfrak{Y} \to \mathfrak{X}$  is *faithful* is for any point  $y : S \to \mathfrak{Y}$ , the induced morphism of *S*-groups Aut $_{\mathfrak{Y}}(y) \to \operatorname{Aut}_{\mathfrak{X}}(f(y))$  is a monomorphism. When  $\mathfrak{X}$  et  $\mathfrak{Y}$  are algebraic, this is equivalent to : *f* is representable. Now the fact that  $\mathfrak{X}$  is Nori-uniformizable exactly means that there is a representable morphism  $\mathfrak{X} \to B G$ , where *G* is a finite group scheme (incidentally, one could replace B *G* by any finite gerbe).

Since the morphism  $\mathcal{G}_x \to \mathfrak{X}$  is also representable, so is the composite morphism  $\mathcal{G}_x \to \mathfrak{X} \to B G$ , hence it is faithful. By the universal property of the fundamental gerbe,  $\mathcal{G}_x \to \pi_{\mathfrak{X}/k}$  factors this composite morphism, hence must be faithful as well.

# Sketch of a proof of 'only if' statement

#### Proof.

A stack morphism  $f : \mathfrak{Y} \to \mathfrak{X}$  is *faithful* is for any point  $y : S \to \mathfrak{Y}$ , the induced morphism of *S*-groups Aut $\mathfrak{Y}(y) \to Aut_{\mathfrak{X}}(f(y))$  is a monomorphism. When  $\mathfrak{X}$  et  $\mathfrak{Y}$  are algebraic, this is equivalent to : *f* is representable. Now the fact that  $\mathfrak{X}$  is Nori-uniformizable exactly means that

there is a representable morphism  $\mathfrak{X} \to B G$ , where G is a finite group scheme (incidentally, one could replace B G by any finite gerbe).

Since the morphism  $\mathcal{G}_x \to \mathfrak{X}$  is also representable, so is the composite morphism  $\mathcal{G}_x \to \mathfrak{X} \to B G$ , hence it is faithful. By the universal property of the fundamental gerbe,  $\mathcal{G}_x \to \pi_{\mathfrak{X}/k}$  factors this composite morphism, hence must be faithful as well.

Nori fundamental gerbe Residual gerbes Tannakian interpretation

イロト イポト イヨト イヨト

э

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

#### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

# Essentially finite bundles

The Tannaka correspondence over a field k:

Affine gerbes  $\longleftrightarrow$  Tannaka categories  $\Gamma \rightarrow \text{Vect}_k \Gamma$  $(S \rightarrow \{\text{fibre functors of } C_S\}) \leftarrow C$ 

### Definition

- 1. (Weil) A locally free sheaf  $\mathcal{E}$  is finite if there exists  $f \neq g$  in  $\mathbb{N}[t]$  so that  $f(\mathcal{E}) \simeq g(\mathcal{E})$ .
- 2. (Nori, B.-Vistoli)  $\mathcal{E}$  is essentially finite if it is the kernel of a morphism between two finite locally free sheaves.

ヘロト 人間 とくほとくほとう

1

# Essentially finite bundles

The Tannaka correspondence over a field k:

```
Affine gerbes \longleftrightarrow Tannaka categories

\Gamma \rightarrow \text{Vect}_k \Gamma

(S \rightarrow \{\text{fibre functors of } C_S\}) \leftarrow C
```

### Definition

- 1. (Weil) A locally free sheaf  $\mathcal{E}$  is finite if there exists  $f \neq g$  in  $\mathbb{N}[t]$  so that  $f(\mathcal{E}) \simeq g(\mathcal{E})$ .
- 2. (Nori, B.-Vistoli) *E* is essentially finite if it is the kernel of a morphism between two finite locally free sheaves.

ヘロト 人間 とくほとく ほとう

э.

# Essentially finite bundles

The Tannaka correspondence over a field k:

```
\begin{array}{l} \text{Affine gerbes} & \longleftrightarrow \text{Tannaka categories} \\ \Gamma \to \text{Vect}_k \ \Gamma \\ (S \to \{\text{fibre functors of } \mathcal{C}_S\}) \leftarrow \mathcal{C} \end{array}
```

### Definition

- 1. (Weil) A locally free sheaf  $\mathcal{E}$  is finite if there exists  $f \neq g$  in  $\mathbb{N}[t]$  so that  $f(\mathcal{E}) \simeq g(\mathcal{E})$ .
- 2. (Nori, B.-Vistoli)  $\mathcal{E}$  is essentially finite if it is the kernel of a morphism between two finite locally free sheaves.

ヘロン 人間 とくほ とくほ とう

3

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

## Nori uniformization : tannakian criterion

### Theorem (B.-Vistoli 2015)

If  $\mathfrak{X}/k$  is a proper algebraic stack that is geometrically {connected and reduced}, then pull-back along  $\mathfrak{X} \to \pi_{\mathfrak{X}/k}$  identifies Vect $\pi_{\mathfrak{X}/k}$  with EF Vect $(\mathfrak{X})$ .

### Corollary (I.Biswas-B. 2017)

If  $\mathfrak{X}/k$  is moreover of finite type, with finite inertia, then  $\mathfrak{X}/k$  is Nori-uniformizable if and only if for any  $x \in |\mathfrak{X}|_0$ , any  $V \in \operatorname{Rep}(\mathcal{G}_x)$  is a subquotient of  $\mathcal{E}_{|\mathcal{G}_x}$ , for some  $\mathcal{E} \in \operatorname{EF}\operatorname{Vect}(\mathfrak{X})$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

# Nori uniformization : tannakian criterion

### Theorem (B.-Vistoli 2015)

If  $\mathfrak{X}/k$  is a proper algebraic stack that is geometrically {connected and reduced}, then pull-back along  $\mathfrak{X} \to \pi_{\mathfrak{X}/k}$  identifies Vect $\pi_{\mathfrak{X}/k}$  with EF Vect $(\mathfrak{X})$ .

### Corollary (I.Biswas-B. 2017)

If  $\mathfrak{X}/k$  is moreover of finite type, with finite inertia, then  $\mathfrak{X}/k$  is Nori-uniformizable if and only if for any  $x \in |\mathfrak{X}|_0$ , any  $V \in \operatorname{Rep}(\mathcal{G}_x)$  is a subquotient of  $\mathcal{E}_{|\mathcal{G}_x}$ , for some  $\mathcal{E} \in \operatorname{EF}\operatorname{Vect}(\mathfrak{X})$ .

Tamely ramified torsors Parabolic bundles Stack of roots

イロト イポト イヨト イヨト

э

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

#### Application to tame torsors Tamely ramified torsors Parabolic bundles Stack of roots

#### Tamely ramified torsors Parabolic bundles Stack of roots

## Kummer torsors

We fix a scheme X/k and D a simple normal crossings divisor on X, meaning  $D = \bigcup_{i \in I} D_i$  is the union of a finite family of irreducible, smooth divisors, crossing normally. We denote the corresponding family by  $\mathbf{D} = (D_i)_{i \in I}$  and add to our data a family  $\mathbf{r} = (r_i)_{i \in I}$  of positive integers.

#### Definition

Let  $x \in |X|_0$  and  $U = \operatorname{spec} R$  be an open affine neighbourhood. For each  $i \in I_x = \{i \in I | x \in |D_i|\}$ , let  $s_i \in R$  be a local equation for the Cartier divisor  $D_i$ . The corresponding *Kummer morphism* on *U* with ramification data (**D**, **r**) is the morphism

$$Z = \operatorname{spec} R[{f t}]/[{f t}^{f r}-{f s}] o \operatorname{spec} R\,,$$

where the algebra is the tensor product over R of  $R[t_i]/t_i^{r_i} - s_i$ for all i in  $I_X$ .

# Kummer torsors

We fix a scheme X/k and D a simple normal crossings divisor on X, meaning  $D = \bigcup_{i \in I} D_i$  is the union of a finite family of irreducible, smooth divisors, crossing normally. We denote the corresponding family by  $\mathbf{D} = (D_i)_{i \in I}$  and add to our data a family  $\mathbf{r} = (r_i)_{i \in I}$  of positive integers.

#### Definition

Let  $x \in |X|_0$  and  $U = \operatorname{spec} R$  be an open affine neighbourhood. For each  $i \in I_x = \{i \in I | x \in |D_i|\}$ , let  $s_i \in R$  be a local equation for the Cartier divisor  $D_i$ . The corresponding *Kummer morphism* on *U* with ramification data (**D**, **r**) is the morphism

$$Z = \operatorname{spec} R[t]/[t^r - s] \to \operatorname{spec} R$$
,

where the algebra is the tensor product over *R* of  $R[t_i]/t_i^{r_i} - s_i$ for all *i* in  $I_x$ .

Tamely ramified torsors Parabolic bundles Stack of roots

# Torsors locally induced by Kummer torsors

Given  $x \in |X|_0$ , we set  $(\mathbf{r}_x)_i$  as  $r_i$  if  $i \in I_x$  and 1 otherwise; this defines a multi-index  $\mathbf{r}_x$ .

### Definition

Let G/k be a finite abelian group scheme. A *tamely ramified G*-torsor with ramification data (**D**, **r**) is the data of a scheme *Y* endowed with an action of *G* and a finite and flat *G*-invariant morphism  $Y \rightarrow X$  such that for each closed point *x* of *X*, there exists a monomorphism  $\mu_{\mathbf{r}_x} \rightarrow G$  such that in a *fppf* neighbourhood of *x* in *X*, the morphism  $Y \rightarrow X$  is isomorphic to  $Z \times^{\mu_{\mathbf{r}_x}} G$ , where  $Z \rightarrow \operatorname{spec} R$  is a Kummer torsor.

### Example

If #I = 1, and  $G = \mu_r$ , one recovers the notion of *uniform cyclic* cover (this amounts to the data of  $(\mathcal{L}, \alpha)$  where  $\mathcal{L}$  is an invertible sheaf on X and  $\alpha : \mathcal{L}^{\otimes r} \simeq \mathcal{O}_X(-D)$  is an isomorphism).

Tamely ramified torsors Parabolic bundles Stack of roots

# Torsors locally induced by Kummer torsors

Given  $x \in |X|_0$ , we set  $(\mathbf{r}_x)_i$  as  $r_i$  if  $i \in I_x$  and 1 otherwise; this defines a multi-index  $\mathbf{r}_x$ .

#### Definition

Let G/k be a finite abelian group scheme. A *tamely ramified G*-torsor with ramification data (**D**, **r**) is the data of a scheme *Y* endowed with an action of *G* and a finite and flat *G*-invariant morphism  $Y \to X$  such that for each closed point *x* of *X*, there exists a monomorphism  $\mu_{\mathbf{r}_x} \to G$  such that in a *fppf* neighbourhood of *x* in *X*, the morphism  $Y \to X$  is isomorphic to  $Z \times^{\mu_{\mathbf{r}_x}} G$ , where  $Z \to \operatorname{spec} R$  is a Kummer torsor.

#### Example

If #I = 1, and  $G = \mu_r$ , one recovers the notion of *uniform cyclic* cover (this amounts to the data of  $(\mathcal{L}, \alpha)$  where  $\mathcal{L}$  is an invertible sheaf on X and  $\alpha : \mathcal{L}^{\otimes r} \simeq \mathcal{O}_X(-D)$  is an isomorphism).

Tamely ramified torsors Parabolic bundles Stack of roots

# Torsors locally induced by Kummer torsors

Given  $x \in |X|_0$ , we set  $(\mathbf{r}_x)_i$  as  $r_i$  if  $i \in I_x$  and 1 otherwise; this defines a multi-index  $\mathbf{r}_x$ .

#### Definition

Let G/k be a finite abelian group scheme. A *tamely ramified G*-torsor with ramification data (**D**, **r**) is the data of a scheme *Y* endowed with an action of *G* and a finite and flat *G*-invariant morphism  $Y \to X$  such that for each closed point *x* of *X*, there exists a monomorphism  $\mu_{\mathbf{r}_x} \to G$  such that in a *fppf* neighbourhood of *x* in *X*, the morphism  $Y \to X$  is isomorphic to  $Z \times^{\mu_{\mathbf{r}_x}} G$ , where  $Z \to \operatorname{spec} R$  is a Kummer torsor.

#### Example

If #I = 1, and  $G = \mu_r$ , one recovers the notion of *uniform cyclic cover* (this amounts to the data of  $(\mathcal{L}, \alpha)$  where  $\mathcal{L}$  is an invertible sheaf on X and  $\alpha : \mathcal{L}^{\otimes r} \simeq \mathcal{O}_X(-D)$  is an isomorphism).

Tamely ramified torsors Parabolic bundles Stack of roots

イロト イポト イヨト イヨト

э

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

#### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

# Simpson's definition

We endow the set  $\frac{1}{\mathbf{r}}\mathbb{Z}^{I} = \prod_{i \in I} \frac{\mathbb{Z}}{r_{i}}$  with the component-wise partial order.

### Definition

A *parabolic vector bundle* on  $(X, \mathbf{D})$  with weights in  $\frac{1}{r}\mathbb{Z}^{l}$  consists of two compatible pieces of data :

- a functor  $\mathcal{E}_{\cdot}: \left(\frac{1}{\mathbf{r}}\mathbb{Z}^{l}\right)^{0} \to \operatorname{Vect} X$  and,
- ► for each integral multi-index I in  $\mathbb{Z}^l$ , a natural transformation  $\mathcal{E}_{\cdot+1} \simeq \mathcal{E}_{\cdot} \otimes_{\mathcal{O}_X} \mathcal{O}_X(-\mathbf{I} \cdot \mathbf{D}).$

Given a closed point *x* of *D*, and  $I \in \mathbb{Z}^{l}$ , we will write that a parabolic vector bundle  $\mathcal{E}$  on  $(X, \mathbf{D})$  admits  $I/\mathbf{r}$  as a weight at *x* if the monomorphism  $(\mathcal{E}_{(l+1)/\mathbf{r}})_{x} \to (\mathcal{E}_{l/\mathbf{r}})_{x}$  is not an isomorphism.

・ロト ・ 理 ト ・ ヨ ト ・

# Simpson's definition

We endow the set  $\frac{1}{\mathbf{r}}\mathbb{Z}^{I} = \prod_{i \in I} \frac{\mathbb{Z}}{r_{i}}$  with the component-wise partial order.

### Definition

A parabolic vector bundle on  $(X, \mathbf{D})$  with weights in  $\frac{1}{\mathbf{r}}\mathbb{Z}^{l}$  consists of two compatible pieces of data :

- a functor  $\mathcal{E}_{\cdot}: \left(\frac{1}{r}\mathbb{Z}^{l}\right)^{0} \to \operatorname{Vect} X$  and,
- ► for each integral multi-index I in  $\mathbb{Z}^l$ , a natural transformation  $\mathcal{E}_{\cdot+1} \simeq \mathcal{E}_{\cdot} \otimes_{\mathcal{O}_X} \mathcal{O}_X(-\mathbf{I} \cdot \mathbf{D}).$

Given a closed point *x* of *D*, and  $\mathbf{I} \in \mathbb{Z}^{l}$ , we will write that a parabolic vector bundle  $\mathcal{E}$  on  $(X, \mathbf{D})$  admits  $\mathbf{I/r}$  as a weight at *x* if the monomorphism  $(\mathcal{E}_{(\mathbf{I}+1)/\mathbf{r}})_{x} \to (\mathcal{E}_{\mathbf{I/r}})_{x}$  is not an isomorphism.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

# Simpson's definition

We endow the set  $\frac{1}{\mathbf{r}}\mathbb{Z}^{I} = \prod_{i \in I} \frac{\mathbb{Z}}{r_{i}}$  with the component-wise partial order.

### Definition

A parabolic vector bundle on  $(X, \mathbf{D})$  with weights in  $\frac{1}{\mathbf{r}}\mathbb{Z}^{l}$  consists of two compatible pieces of data :

- a functor  $\mathcal{E}_{\cdot}: \left(\frac{1}{r}\mathbb{Z}^{l}\right)^{0} \to \operatorname{Vect} X$  and,
- ► for each integral multi-index  $\mathbf{I}$  in  $\mathbb{Z}^{I}$ , a natural transformation  $\mathcal{E}_{\cdot+\mathbf{I}} \simeq \mathcal{E}_{\cdot} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(-\mathbf{I} \cdot \mathbf{D}).$

Given a closed point *x* of *D*, and  $\mathbf{I} \in \mathbb{Z}^{l}$ , we will write that a parabolic vector bundle  $\mathcal{E}$ . on  $(X, \mathbf{D})$  admits  $\mathbf{I/r}$  as a weight at *x* if the monomorphism  $(\mathcal{E}_{(\mathbf{I}+1)/\mathbf{r}})_{x} \to (\mathcal{E}_{\mathbf{I/r}})_{x}$  is not an isomorphism.

# Existence of torsors with prescribed ramification

Parabolic vector bundles (with arbitrary weights) form a tensor category denoted by  $Par(X, \mathbf{D})$ . One can define (essentially) finite objects as before, leading to a category EF  $Par(X, \mathbf{D})$ .

### Theorem (I.Biswas-B., work in progress)

Assume that X is proper, of finite type, geometrically {connected and reduced}. The two following statements are equivalent :

- There exists a finite abelian group scheme G/k and a tamely ramified G-torsor Y → X with ramification data (D,r),
- 2. for each closed point x of D, and for all  $I \in \mathbb{Z}^{l}$ , such that  $0 \leq I < r_{x}$ , there exists an object  $\mathcal{E}$ . in EF Par(X, D) with abelian monodromy and weights in  $\frac{1}{r}\mathbb{Z}^{l}$ , such that  $\mathcal{E}$ . admits I/r as a weight at x.

# Parabolic bundles

# Existence of torsors with prescribed ramification

Parabolic vector bundles (with arbitrary weights) form a tensor category denoted by  $Par(X, \mathbf{D})$ . One can define (essentially) finite objects as before, leading to a category EF  $Par(X, \mathbf{D})$ .

### Theorem (I.Biswas-B., work in progress)

Assume that X is proper, of finite type, geometrically {connected and reduced}. The two following statements are equivalent :

- 1. There exists a finite abelian group scheme G/k and a tamely ramified G-torsor  $Y \rightarrow X$  with ramification data  $(\mathbf{D}, \mathbf{r}),$
- $0 \leq I < r_x$ , there exists an object  $\mathcal{E}$ . in EF Par(X, D) with admits I/r as a weight at x. A B > A B >

# Existence of torsors with prescribed ramification

Parabolic vector bundles (with arbitrary weights) form a tensor category denoted by  $Par(X, \mathbf{D})$ . One can define (essentially) finite objects as before, leading to a category EF  $Par(X, \mathbf{D})$ .

### Theorem (I.Biswas-B., work in progress)

Assume that X is proper, of finite type, geometrically {connected and reduced}. The two following statements are equivalent :

- There exists a finite abelian group scheme G/k and a tamely ramified G-torsor Y → X with ramification data (D,r),
- 2. for each closed point *x* of *D*, and for all  $\mathbf{l} \in \mathbb{Z}^{l}$ , such that  $0 \leq \mathbf{l} < \mathbf{r}_{x}$ , there exists an object  $\mathcal{E}$ . in EF Par(*X*, **D**) with abelian monodromy and weights in  $\frac{1}{\mathbf{r}}\mathbb{Z}^{l}$ , such that  $\mathcal{E}$ . admits  $\mathbf{l}/\mathbf{r}$  as a weight at *x*.

Tamely ramified torsors Parabolic bundles Stack of roots

イロト イポト イヨト イヨト

э

### Plan

#### Uniformization of algebraic stacks

Representable morphisms Fundamental groups Hidden loops

#### Nori uniformization

Nori fundamental gerbe Residual gerbes Tannakian interpretation

#### Application to tame torsors

Tamely ramified torsors Parabolic bundles Stack of roots

#### Tamely ramified torsors Parabolic bundles Stack of roots

# Vistoli's definition

### Definition (Vistoli 2008)

The stack of roots  $\sqrt[r]{\mathbf{D}/X}$  is the stack classifying **r**-th roots of  $(\mathcal{O}_X(\mathbf{D}), s_{\mathbf{D}})$ .

Theorem (I.Biswas (1997), B.(2007) Vect $(\sqrt[r]{\mathbf{D}/X}) \simeq \operatorname{Par}_{\frac{1}{\mathbf{r}}\mathbb{Z}'}(X, \mathbf{D}).$ 

### Proposition

Let Y be a k-scheme endowed with an action of a finite abelian k-group scheme G and let Y  $\rightarrow$  X be a finite, flat, and G-invariant morphism to a scheme. Equivalence :

- 1.  $Y \rightarrow X$  factors through a G-torsor  $Y \rightarrow \sqrt[r]{\mathbf{D}/X}$ ,
- 2.  $Y \rightarrow X$  is a tamely ramified G-torsor with ramification data (**D**,**r**).

#### Parabolic bundles Stack of roots

# Vistoli's definition

### Definition (Vistoli 2008)

The *stack of roots*  $\sqrt[r]{\mathbf{D}/X}$  is the stack classifying **r**-th roots of  $(\mathcal{O}_X(\mathbf{D}), s_{\mathbf{D}})$ .

# Theorem (I.Biswas (1997), B.(2007)) Vect $(\sqrt[r]{\mathbf{D}/X}) \simeq \operatorname{Par}_{\frac{1}{r}\mathbb{Z}^{l}}(X, \mathbf{D}).$

### Proposition

Let Y be a k-scheme endowed with an action of a finite abelian k-group scheme G and let Y  $\rightarrow$  X be a finite, flat, and G-invariant morphism to a scheme. Equivalence :

- 1.  $Y \rightarrow X$  factors through a G-torsor  $Y \rightarrow \sqrt[r]{\mathbf{D}/X}$ ,
- 2.  $Y \rightarrow X$  is a tamely ramified G-torsor with ramification data (**D**,**r**).

# Vistoli's definition

### Definition (Vistoli 2008)

The stack of roots  $\sqrt[r]{\mathbf{D}/X}$  is the stack classifying **r**-th roots of  $(\mathcal{O}_X(\mathbf{D}), s_{\mathbf{D}})$ .

Theorem (I.Biswas (1997), B.(2007))

$$\operatorname{Vect}(\sqrt[r]{\mathbf{D}/X})\simeq\operatorname{Par}_{rac{1}{\mathbf{r}}\mathbb{Z}^{l}}(X,\mathbf{D}).$$

### Proposition

Let Y be a k-scheme endowed with an action of a finite abelian k-group scheme G and let  $Y \rightarrow X$  be a finite, flat, and G-invariant morphism to a scheme. Equivalence :

- 1.  $Y \rightarrow X$  factors through a G-torsor  $Y \rightarrow \sqrt[r]{\mathbf{D}/X}$ ,
- 2.  $Y \rightarrow X$  is a tamely ramified G-torsor with ramification data  $(\mathbf{D}, \mathbf{r})$ .

Start with a tamely ramified *G*-torsor  $Y \to X$ . For each point *x* of *X*, there exists a *fppf* neighbourhood  $X' = \operatorname{spec} R \to X$  of *x* such that  $Y' \to X'$  is induced by a  $\mu_{\mathbf{r}_x}$ -cover  $Z' \to X'$  along  $\mu_{\mathbf{r}_x} \hookrightarrow G$ . It follows that  $[Z'/\mu_{\mathbf{r}_x}] \simeq [Y'/G]$  above X'. Moreover,  $[Z'/\mu_{\mathbf{r}_x}] \simeq \mathfrak{X}'$  above X' (where  $\mathfrak{X} = \sqrt[4]{D/X}$ ). So we get local morphisms  $Y' \to \mathfrak{X}'$  and we have to show that they glue into a global one. The gluing data comes from the following :

#### Lemma

Let  $\phi$  be an automorphism of  $\mathfrak{X} = \sqrt[r]{\mathbf{D}/X}$  above *X*. There exists a unique isomorphism  $\phi \simeq$  id.

The fact that this is a descent data results from the fact that the action of G on Y is faithful.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Start with a tamely ramified *G*-torsor  $Y \to X$ . For each point *x* of *X*, there exists a *fppf* neighbourhood  $X' = \operatorname{spec} R \to X$  of *x* such that  $Y' \to X'$  is induced by a  $\mu_{\mathbf{r}_x}$ -cover  $Z' \to X'$  along  $\mu_{\mathbf{r}_x} \hookrightarrow G$ . It follows that  $[Z'/\mu_{\mathbf{r}_x}] \simeq [Y'/G]$  above X'. Moreover,  $[Z'/\mu_{\mathbf{r}_x}] \simeq \mathfrak{X}'$  above X' (where  $\mathfrak{X} = \sqrt[r]{\mathbf{D}/X}$ ). So we get local morphisms  $Y' \to \mathfrak{X}'$  and we have to show that they glue into a global one. The gluing data comes from the following :

#### Lemma

Let  $\phi$  be an automorphism of  $\mathfrak{X} = \sqrt[r]{\mathbf{D}/X}$  above *X*. There exists a unique isomorphism  $\phi \simeq$  id.

The fact that this is a descent data results from the fact that the action of G on Y is faithful.

Start with a tamely ramified *G*-torsor  $Y \to X$ . For each point *x* of *X*, there exists a *fppf* neighbourhood  $X' = \operatorname{spec} R \to X$  of *x* such that  $Y' \to X'$  is induced by a  $\mu_{\mathbf{r}_x}$ -cover  $Z' \to X'$  along  $\mu_{\mathbf{r}_x} \hookrightarrow G$ . It follows that  $[Z'/\mu_{\mathbf{r}_x}] \simeq [Y'/G]$  above X'. Moreover,  $[Z'/\mu_{\mathbf{r}_x}] \simeq \mathfrak{X}'$  above X' (where  $\mathfrak{X} = \sqrt[r]{\mathbf{D}/X}$ ). So we get local morphisms  $Y' \to \mathfrak{X}'$  and we have to show that they glue into a global one. The gluing data comes from the following :

#### Lemma

Let  $\phi$  be an automorphism of  $\mathfrak{X} = \sqrt[r]{\mathbf{D}/X}$  above *X*. There exists a unique isomorphism  $\phi \simeq id$ .

The fact that this is a descent data results from the fact that the action of G on Y is faithful.

Start with a tamely ramified *G*-torsor  $Y \to X$ . For each point *x* of *X*, there exists a *fppf* neighbourhood  $X' = \operatorname{spec} R \to X$  of *x* such that  $Y' \to X'$  is induced by a  $\mu_{\mathbf{r}_x}$ -cover  $Z' \to X'$  along  $\mu_{\mathbf{r}_x} \hookrightarrow G$ . It follows that  $[Z'/\mu_{\mathbf{r}_x}] \simeq [Y'/G]$  above X'. Moreover,  $[Z'/\mu_{\mathbf{r}_x}] \simeq \mathfrak{X}'$  above X' (where  $\mathfrak{X} = \sqrt[r]{\mathbf{D}/X}$ ). So we get local morphisms  $Y' \to \mathfrak{X}'$  and we have to show that they glue into a global one. The gluing data comes from the following :

#### Lemma

Let  $\phi$  be an automorphism of  $\mathfrak{X} = \sqrt[r]{\mathbf{D}/X}$  above *X*. There exists a unique isomorphism  $\phi \simeq id$ .

The fact that this is a descent data results from the fact that the action of G on Y is faithful.

### Tame stacks

An algebraic stack [...]  $\mathfrak{X}$  with finite inertia admits a moduli space  $p : \mathfrak{X} \to X$ . It is a *tame* stack if  $p_* : \operatorname{Qcoh}(\mathfrak{X}) \to \operatorname{Qcoh}(X)$  is exact.

#### Lemma

Let G/S be an affine group scheme,  $\mathfrak{X}$  be a tame stack with moduli space X and let  $Y \to \mathfrak{X}$  be a G-torsor. Then Y is trivial locally on X if and only if  $\forall x \in |\mathfrak{X}|_0$ ,  $Y_{|\mathcal{G}_X} \to \mathcal{G}_X$  is trivial.

#### Proposition

Let G/S be an abelian affine group scheme,  $\mathfrak{X}$  be a tame stack with moduli space X and consider two G-torsors  $Y_i \to \mathfrak{X}$  for  $i \in \{1, 2\}$ . Then  $Y_1 \to \mathfrak{X}$  is isomorphic to  $Y_2 \to \mathfrak{X}$  fppf locally on X if and only if for each closed point  $x \in |\mathfrak{X}|_0$ , the restrictions  $Y_{1|\mathcal{G}_x} \to \mathcal{G}_x$  and  $Y_{2|\mathcal{G}_x} \to \mathcal{G}_x$  are isomorphic.

ヘロト ヘアト ヘヨト ヘ

### Tame stacks

An algebraic stack [...]  $\mathfrak{X}$  with finite inertia admits a moduli space  $p : \mathfrak{X} \to X$ . It is a *tame* stack if  $p_* : \operatorname{Qcoh}(\mathfrak{X}) \to \operatorname{Qcoh}(X)$  is exact.

#### Lemma

Let G/S be an affine group scheme,  $\mathfrak{X}$  be a tame stack with moduli space X and let  $Y \to \mathfrak{X}$  be a G-torsor. Then Y is trivial locally on X if and only if  $\forall x \in |\mathfrak{X}|_0$ ,  $Y_{|\mathcal{G}_x} \to \mathcal{G}_x$  is trivial.

#### Proposition

Let G/S be an abelian affine group scheme,  $\mathfrak{X}$  be a tame stack with moduli space X and consider two G-torsors  $Y_i \to \mathfrak{X}$  for  $i \in \{1, 2\}$ . Then  $Y_1 \to \mathfrak{X}$  is isomorphic to  $Y_2 \to \mathfrak{X}$  fppf locally on X if and only if for each closed point  $x \in |\mathfrak{X}|_0$ , the restrictions  $Y_1|_{\mathcal{G}_x} \to \mathcal{G}_x$  and  $Y_2|_{\mathcal{G}_x} \to \mathcal{G}_x$  are isomorphic.

### Tame stacks

An algebraic stack [...]  $\mathfrak{X}$  with finite inertia admits a moduli space  $p : \mathfrak{X} \to X$ . It is a *tame* stack if  $p_* : \operatorname{Qcoh}(\mathfrak{X}) \to \operatorname{Qcoh}(X)$  is exact.

#### Lemma

Let G/S be an affine group scheme,  $\mathfrak{X}$  be a tame stack with moduli space X and let  $Y \to \mathfrak{X}$  be a G-torsor. Then Y is trivial locally on X if and only if  $\forall x \in |\mathfrak{X}|_0$ ,  $Y_{|\mathcal{G}_x} \to \mathcal{G}_x$  is trivial.

#### Proposition

Let G/S be an abelian affine group scheme,  $\mathfrak{X}$  be a tame stack with moduli space X and consider two G-torsors  $Y_i \to \mathfrak{X}$  for  $i \in \{1, 2\}$ . Then  $Y_1 \to \mathfrak{X}$  is isomorphic to  $Y_2 \to \mathfrak{X}$  fppf locally on X if and only if for each closed point  $x \in |\mathfrak{X}|_0$ , the restrictions  $Y_1|_{\mathcal{G}_x} \to \mathcal{G}_x$  and  $Y_2|_{\mathcal{G}_x} \to \mathcal{G}_x$  are isomorphic.

# Sketch of a proof : stacky to tame

Assume that  $Y \to \sqrt[r]{\mathbf{D}/X} = \mathfrak{X}$  is a *G*-torsor. We will show that  $Y \to X$  is a tamely ramified *G*-torsor.

In a Zariski neighbourhood of  $x \in X$ ,  $\mathfrak{X} \simeq [Z/H]$  where  $H = \mu_{\mathbf{r}_x}$ , and  $Z \to X$  is a *H*-Kummer cover, with ramification data  $(\mathbf{D}, \mathbf{r})$ . It follows that the morphism

$$\mathcal{G}_{x} \xrightarrow{i} \mathfrak{X} \xrightarrow{Z} \mathsf{B} H$$

is an isomorphism. One thus gets a morphism

$$\mathsf{B}\,H\stackrel{i}{\to}\mathfrak{X}\stackrel{Y}{\to}\mathsf{B}\,G$$

which is representable since Y is a scheme. This defines a group monomorphism  $H \to G$ , and one can then conclude by applying the proposition to the two G-torsors on  $\mathfrak{X}$  given by  $Y_1 = Y$  and  $Y_2 = Y \circ i \circ Z$ .

### Sketch of a proof : stacky to tame

Assume that  $Y \to \sqrt[r]{\mathbf{D}/X} = \mathfrak{X}$  is a *G*-torsor. We will show that  $Y \to X$  is a tamely ramified *G*-torsor. In a Zariski neighbourhood of  $x \in X$ ,  $\mathfrak{X} \simeq [Z/H]$  where  $H = \mu_{\mathbf{r}_x}$ , and  $Z \to X$  is a *H*-Kummer cover, with ramification data ( $\mathbf{D}, \mathbf{r}$ ). It follows that the morphism

$$\mathcal{G}_{x} \xrightarrow{i} \mathfrak{X} \xrightarrow{Z} \mathsf{B} H$$

is an isomorphism. One thus gets a morphism

$$\mathsf{B} H \xrightarrow{i} \mathfrak{X} \xrightarrow{Y} \mathsf{B} G$$

which is representable since Y is a scheme. This defines a group monomorphism  $H \to G$ , and one can then conclude by applying the proposition to the two G-torsors on  $\mathfrak{X}$  given by  $Y_1 = Y$  and  $Y_2 = Y \circ i \circ Z$ .

### Sketch of a proof : stacky to tame

Assume that  $Y \to \sqrt[r]{\mathbf{D}/X} = \mathfrak{X}$  is a *G*-torsor. We will show that  $Y \to X$  is a tamely ramified *G*-torsor. In a Zariski neighbourhood of  $x \in X$ ,  $\mathfrak{X} \simeq [Z/H]$  where  $H = \mu_{\mathbf{r}_x}$ , and  $Z \to X$  is a *H*-Kummer cover, with ramification data ( $\mathbf{D}, \mathbf{r}$ ). It follows that the morphism

$$\mathcal{G}_{x} \xrightarrow{i} \mathfrak{X} \xrightarrow{Z} \mathsf{B} H$$

is an isomorphism. One thus gets a morphism

$$\mathsf{B}\,H\xrightarrow{i}\mathfrak{X}\xrightarrow{Y}\mathsf{B}\,G$$

which is representable since *Y* is a scheme. This defines a group monomorphism  $H \rightarrow G$ , and one can then conclude by applying the proposition to the two *G*-torsors on  $\mathfrak{X}$  given by  $Y_1 = Y$  and  $Y_2 = Y \circ i \circ Z$ .

## Sketch of a proof : stacky to tame

Assume that  $Y \to \sqrt[r]{\mathbf{D}/X} = \mathfrak{X}$  is a *G*-torsor. We will show that  $Y \to X$  is a tamely ramified *G*-torsor. In a Zariski neighbourhood of  $x \in X$ ,  $\mathfrak{X} \simeq [Z/H]$  where  $H = \mu_{\mathbf{r}_x}$ , and  $Z \to X$  is a *H*-Kummer cover, with ramification data ( $\mathbf{D}, \mathbf{r}$ ). It follows that the morphism

$$\mathcal{G}_{x} \xrightarrow{i} \mathfrak{X} \xrightarrow{Z} \mathsf{B} H$$

is an isomorphism. One thus gets a morphism

$$\mathsf{B}\,H\xrightarrow{i}\mathfrak{X}\xrightarrow{Y}\mathsf{B}\,G$$

which is representable since *Y* is a scheme. This defines a group monomorphism  $H \rightarrow G$ , and one can then conclude by applying the proposition to the two *G*-torsors on  $\mathfrak{X}$  given by  $Y_1 = Y$  and  $Y_2 = Y \circ i \circ Z$ .