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The Kahler cone and its faces
T he work presented here is done in collaboration with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kihler manifold, Kah ¢ HL:1(M,R) is
Kahler cone, and Kah its closure in H1:1(M,R), called the nef cone. A face
of a Kahler cone is an intersection of the boundary of Kah and a hyperplane
VvV ¢ HL1(M,R) which has a non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic
automorphisms of M acts on the set of faces of Kah with finite number of
orbits.
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(—2)-classes on a K3 surface

CLAIM: (Hodge index theorem)
Let M be a Kahler surface. Then the form n — [,;n7 A n has signature
(+,—,—,...) on HLI(M,R).

DEFINITION: Positive cone Pos(M) on a Kahler surface is the one of the
two components of

fve HMOMLR) | [ nAn>0}

which contains a Kahler form.

DEFINITION: A cohomology class n € H2(M,Z) on a K3 surface is called
(—2)-class if [ynAn=—-2.

REMARK: Let M be a K3 surface, and n € HL1(M,Z) a (—2)-class. Then
2
either n or —n is effective. Indeed, x(n) =2+ 5 = 1 by Riemann-Roch.
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Kahler cone for a K3 surface

THEOREM: Let M be a K3 surface, and S the set of all effective (—2)-
classes. Then Kah(M) is the set of all v € Pos(M) such that (v,s) > 0 for
all s € §.

Proof: This is a version of Nakai-Moishezon theorem which follows immedi-
ately from Demailly-Paun characterization of Kahler classes. =

DEFINITION: A Weyl chamber on a K3 surface is a connected component
of Pos(M)\S+, where S+ is a union of all planes st for all (-2)-classes s € S.
The reflection group of a K3 surface is a group W generated by reflections
with respect to all s € S.

REMARK: Clearly, a Weyl chamber is a fundamental domain of W, and W
acts transitively on the set of all Weyl chambers. Moreover, the Kahler cone
of M is one of its Weyl chambers.
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Cone conjecture for a K3 surface

THEOREM: Let M be a K3 surface. Then Aut(M) is the group of all
isometries of H1:1(M,Z) preserving the Kahler chamber.

Proof: This result directly follows from the global Torelli theorem. =

COROLLARY: (H. Sterk) Morrison-Kawamata cone conjecture holds
for a K3 surface.

Proof. Step 1: A group I of isometries of a lattice A acts with finitely many
orbits on the set {{ e A | 12 =z} for any given z (see Kneser, Quadratische
Formen, Satz 30.2). Therefore, I acts with finitely many orbits on the
set of (—2)-vectors in A. This can be used to show that I acts with finitely
many orbits on faces of all Weyl chambers.

Step 2: For each pair of faces F, F’ of a Kahler cone and w € O(A) mapping
F to F/, w maps Kah to itself or to an adjoint Weyl chamber K’. Then
K' = r(K), where r is the reflection fixing F’. In the first case, w € Aut(M). In
the second case, rw maps F to F/ and maps Kah to itself, hence rw € Aut(M).

|
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Hyperkahler manifolds (reminder)

DEFINITION: A hyperkahler manifold is a compact, Kahler, holomorphi-
cally symplectic manifold.

DEFINITION: A hyperkahler manifold M is called of maximal holonomy,
or IHS, if 71(M) =0, H>%(M) = C.

This definition is motivated by the following theorem of Bogomolov.
THEOREM: Any hyperkahler manifold admits a finite covering which
IS a product of a torus and several hyperkahler manifolds of maximal

holonomy.

REMARK: Further on, we shall assume (sometimes, implicitly) that all hy-
perkahler manifolds we consider are of maximal holonomy.
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The Bogomolov-Beauville-Fujiki form (reminder)

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,, n?" = ¢q(n,n)"™, for some primitive integer quadratic
form ¢ on H2(M,Z), and ¢ > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki (BBF) form.
It is defined by the Fujiki’s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aq(n,n) = /Xn ApAQPTTIAD T

1 _ —n—
_n (/ n/\Q”‘l/\Q”) (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A > 0.

Remark: ¢ has signature (3,6, — 3). It is negative definite on primitive
forms, and positive definite on (Q,Q,w), where w is a Kahler form.

COROLLARY: The space HL:1(M) of I-invariant cohomology classes has
signature (1,b> — 2) (hyperbolic signature).

-
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Kleinian groups

DEFINITION: Kleinian group is a discrete subgroup I' C SO(1,n) of finite
Haar covolume (that is, the quotient SO(1,n)/I" has finite volume).

DEFINITION: An arithmetic subgroup of an algebraic group G is a finite
index subgroup in Gy.

REMARK: From Borel and Harish-Chandra, it follows that any arithmetic
subgroup of SO(1,n) is Kleinian, for n > 2.

DEFINITION: Let V be a real space equipped with a quadratic form of sig-
nature (1,n). A hyperbolic orbifold is a quotient of PT (V) (projectivisation
of a positive cone) by a Kileinian subgroup of SO(V).

REMARK: The space IP’+(V) is equipped with a unique (up to a scalar factor)
SO(1,n)-invariant Riemannian metric. We consider a hyperbolic orbifold as a
Riemannian orbifold, equipped with this metric, which is called the hyperbolic
metric.



Hyperkahler geometry and hyperbolic gometry M. Verbitsky

Monodromy group

From Eyal Markman's “Survey of Torelli theorem...”: some consequences of
global Torelli.

DEFINITION: Monodromy group Mon(M) of a hyperkahler manifold (M, I)
is a subgroup of O(H?(M,Z),q) generated by monodromy of Gauss-Manin
connections for all families of deformations of (M,I). The Hodge mon-
odromy group Mon(M,I) is a subgroup of Mon(M) preserving the Hodge
decomposition.

THEOREM: Mon(M) is an arithmetic subgroup of SO(H?2(M,R),q).

DEFINITION: Let (M,I') be a holomorphic symplectic manifold pseudo-
isomorphic to (M,I). A Kahler chamber of (M,I) is an image of the Kahler
cone of (M, I") under the action of Mon(M, I).

CLAIM: Mon(M,I) acts on H1:1(M, 1) mapping Kahler chambers to Kahler
chambers.

CLAIM: The group of automorphisms Aut(M,I) is a group of all ele-
ments of Mon(M, I) preserving the Kahler cone.

9
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Positive cone

DEFINITION: Let P be the set of all real vectors in HLY(M, 1) satisfy-
ing g(v,v) > 0, where ¢ is the Bogomolov-Beauville-Fujiki form on H2(M).
The positive cone Pos(M,I) as a connected component of P containing a
Kahler form. Then PPos(M,I) is a hyperbolic space, and Mon(M,I) acts on
PPos(M,I) by hyperbolic isometries.

THEOREM: The positive cone is partitoned onto Kahler chambers.
Interiors of different Kahler chambers are disjoint, the closure of their union
contains the positive cone.

DEFINITION: Let HL1(M, Q) be the set of all rational (1,1)-classes on

(M, I), and Kahg(M,I) the set of all Kahler classes in H1(M, Q) ®pR. Then
Kahg(M,I) is called ample cone of M.

10
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Hyperbolic manifolds associated with a hyperkahler manifold

REMARK: From global Torelli theorem it follows that Mon(M,I) is a finite
index subgroup in O(H?(M,Z),q). Therefore, Mon(M, I) acts on PPosg(M,I) :=
P(Pos(M, I)NHY1(M,Q)®gR) with finite covolume; in other words, Mon(M, I)
is Kleinian, and the quotient P Posg(M,I)/Mon(M,I) is a finite volume hyper-
bolic orbifold.

REMARK: Notice that Aut(M,I) is a stabilizer of Kah(M) in Mon(M,I).
THEOREM: (cone conjecture)

The quotient Kahg(M,I)/Aut(M,I) is a finite hyperbolic polyhedron in
P Posgy(M, 1)/ Mon(M, I).

REMARK: In other words, the action of Aut(M,I) on Kahg(M,I) has a
finite polyhedral fundamental domain.

11
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MBM classes (reminder)

DEFINITION: Negative class on a hyperkdhler manifold is n € H2(M,R)
satisfying ¢(n,n) < O.

DEFINITION: Let (M,I) be a (non-algebraic) hyperkahler manifold with the
Pocard group HL1(M,Z) generated by a negative class n € H2(M,Z). The
class n is called MBM if (M, I) contains a curve C.

The MBM property is in fact deformational invariant:

THEOREM: Let z € H2(M,Z) be negative, and I,I’ complex structures in
the same deformation class, such that n is of type (1,1) with respect to I and
I'. Then nis MBM in (M,I) < it is MBM in (M, I).

DEFINITION: Let z € H2(M,Z) be a negative class on a hyperkdhler mani-

fold (M, I). It is called an MBM class if for any complex structure I’ in the
same deformation class satisfying z €¢ HL1 (M, I'), z is an MBM class.

12
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MBM classes and the Kahler cone (reminder)

THEOREM: (Amerik-V.) Let (M,I) be a hyperkahler manifold, and S C
Hy 1(M,I) the set of all MBM classes in Hy 1(M,I). Consider the correspond-
ing set of hyperplanes S+ := {W =2+ | z¢€ S} in HLI(M,I). Then the
Kahler cone of (M, I) is a connected component of Pos(M, I)\US-, where
Pos(M,I) is a positive cone of (M,I). Moreover, for any connected compo-
nent K of Pos(M,I)\ US+, there exists v € O(H2(M)) in a monodromy group
of M, and a hyperkdhler manifold (M,I") birationally equivalent to (M,1I),
such that v(K) is a Kahler cone of (M, I).

REMARK: This implies that MBM classes correspond to faces of the
Kahler cone.

THEOREM: (Morrison-Kawamata cone conjecture)
The group Mon(M,I) acts on the set of faces of the Kahler cone with
finitely many orbits.

REMARK: This would follow if we prove that Mon(M,I) acts on MBM
classes with finitely many orbits.

13
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MBM classes and the Kahler cone: the picture

Allowed partition Prohibited partition

14
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MBM classes and the cone conjecture

Theorem 1: Let (M,I) be a hyperkahler manifold, and {s;} the set of MBM
classes of type (1,1). Then Mon(M,I) acts on {s;} with finitely many
orbits.

COROLLARY: (Morrison-Kawamata cone conjecture)
The group Aut(M,I) acts on the ample cone with finte polyhedral
fundamental domain.

Proof: The quotient Kah(M,I)/Aut(M,I) is a finite polyhedron in
Pos(M,I)/ Mon(M,I). m

REMARK: Theorem 1 is immediately implied by the following result
of hyperbolic geometry.

Theorem 2: Let X be a hyperbolic manifold of dimension > 2, and {S;} an
infinite set of geodesic hypersurfaces. Then either this set is finite, or U 5;
IS dense In X.

15
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Ratner’s orbit closure theorem

DEFINITION: Let G be a Lie group, and I' C G a discrete subgroup. We
say that I has finite covolume if the Haar measure of G/I" is finite. In this
case [ is called a lattice subgroup.

REMARK: Borel and Harish-Chandra proved that an arithmetic subgroup
of a reductive group G is a lattice whenever G has no non-trivial characters
over Q. In particular, all arithmetic subgroups of a semi-simple group are
lattices.

DEFINITION: Let G be a Lie group, and g € G any element. We say that g
is unipotent if g = el for a nilpotent element h in its Lie algebra. A group G
is generated by unipotents if G is multiplicatively generated by unipotent
one-parameter subgroups.

THEOREM: (Ratner orbit closure theorem)

Let H C G be a Lie subroup generated by unipotents, and I C G a lattice.
Then the closure of any H-orbit Hx in G/I" is an orbit of a closed,
connected subgroup S C G, such that Snzfz—1 c S is a lattice in S.

16
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Ratnher’s measure classification theorem

DEFINITION: Let (M, u) be a space with a measure, and G a group acting
on M preserving u. This action is ergodic if all G-invariant measurable subsets
M' c M satisfy p(M') =0 or u(M\M'") = 0.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant
measures.

REMARK: By Choquet's theorem, any G-invariant measure on M IS ex-
pressed as an average of a certain set of ergodic measures.

DEFINITION: Let G be a Lie group, I' a lattice, and G/I" the quotient
space, considered as a space with Haar measure. Consider an orbit S-z C G
of a closed subgroup S C G, put the Haar measure on S -z, and assume that
its image in G/I" is closed. A measure on G/I" is called algebraic if it is
proportional to the pushforward of the Haar measure on S -z/I" to G/T.

THEOREM: (Ratner’s measure classification theorem)

Let G be a connected Lie group, I a lattice, and G/I' the quotient space,
considered as a space with Haar measure. Consider a finite measure u on
G/I". Assume that p is invariant and ergodic with respect to an action of a
subgroup H C G generated by unipotents. Then n is algebraic.

17
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Mozes-Shah and Dani-Margulis

THEOREM: (Mozes-Shah)

A limit 4 of a sequence u; of algebraic measures is again an algebraic
measure. Moreover, if the support of 1 has the same dimension as pu;,
this sequence stabilizes.

Proof: Follows from Ratner’s measure classification theorem. m
DEFINITION: A measure u on M is called probabilistic if u(M) = 1.

THEOREM: (Dani-Margulis)

Let u; be a converging sequence of probabilistic algebraic measures on a Lie
group G, associated with subgroups 5; C G generated by unipotents, and
C C G a compact subset such that u;(C) > ¢ for some ¢ > 0. Then y;
converges to a probabilistic measure on G.

REMARK: The space of measures with u(M) < 1 is compact, but the limit
of probabilistic measures is not generally probabilistic.

18
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Geodesic hypersurfaces in hyperbolic manifolds

THEOREM: Let X be a complete Riemannian orbifold of dimension at least
3, constant negative curvature and finite volume, and {S;} a set of infinitely
many complete, locally geodesic hypersurfaces. Then the union of S, Is
dense in X.

Proof. Step 1: The group SO(1,n—1)is generated by unipotents. Therefore,
Ratner’'s theorem can be applied to S; which are orbits of SO(1,n —1). Any
subgroup of SO(1,n) strictly containing SO(1,n — 1) coincides with SO(1,n).
By Ratner’'s theorem, either S; is closed and has finite volume, or it is dense.
Therefore, we may assume that S; is a closed hyperbolic hypersurface
in X.

Step 2: Denote by pu; the probabilistic algebraic measure supported in ;.
Using the structure theorem for cusps, we obtain that the support of all u;
intersects a certain compact K C X. Using Dani-Margulis theorem, we obtain
that u; has a subsequence converging to an algebraic measure u. By Moses-
Shah, u is supported in an orbit of a subgroup H; strictly containing
SO(1,n—1).

Step 3: By Step 1, H1 =5S0(1,n) =
19



