Time-reversal asymmetry without magnetic moments via Directional Scalar Spin Chiral Order

PAVAN HOSUR

ICTS, June 2016

Acknowledgements: Steve Kivelson Srinivas Raghu ...others

Inspiration: Kerr effect and NMR in cuprate pseudogap

ICTS, June 2016

Goal: T-breaking phase without moments

• Invariably, T-breaking ground states contain a set of total angular momentum operators J_i such that $\frown_i \bigoplus J_i \square$ is extensive

E.g. ferromagnets, antiferromagnets, chiral phases...

$\begin{array}{cccccccc} t t t t t \\ t \\ t t t \\ t$

- Melting these moments restores T-symmetry
- Thus, T-breaking usually = magnetism

Q: Can we find exceptions?

A: Directional scalar spin chiral order (*this talk*)

Directional scalar spin chiral order (DSSCO) in 1D

Key idea: Melt continuous symmetries with fluctuations, preserve discrete symmetry breaking. Φ breaks discrete symmetries, so...

Time-reversal violation without moments, but with spin chirality!

Directional scalar spin chiral order (DSSCO) in 1D, 2D, 3D

$$\Phi = \sum_{\boldsymbol{r}} \langle \boldsymbol{S}(\boldsymbol{r} - \hat{\mathbf{x}}) \cdot \boldsymbol{S}(\boldsymbol{r}) \times \boldsymbol{S}(\boldsymbol{r} + \hat{\mathbf{x}}) \rangle$$

	Classical magnetic order	Conditions for DSSCO	$\langle S \rangle = 0$ due to
1D	X-2 X-1 X X+1 X+2 X+3	T = 0, clean	Mermin-Wagner (quantum fluctuations)
2D	HAR AND A	$T \neq 0$, clean	Mermin-Wagner (thermal flcutuations)
3D		Any <i>T</i> , field disorder	Imry-Ma (disorder-driven fluctuations)

Contrast with other scalar spin chiral phases

Other phases

Chiral ordered spins on triangle; ⇐ moment allowed by symmetry

Chiral ordered spins in a line; moment forbidden by symmetry

Hamiltonian guesses

• $S > \frac{1}{2}$

$$H_{1D} = \sum_{x} K_1 \left(\mathbf{S}_x \cdot \mathbf{S}_{x+1} \right)^2 + K_2 \left(\mathbf{S}_x \cdot \mathbf{S}_{x+2} \right)^2 - J \left(\mathbf{S}_x \cdot \mathbf{S}_{x+3} \right)$$

•
$$S = \frac{1}{2}$$

$$H_{1D} = \sum_{x} J \left(\mathbf{S}_{x} \cdot \mathbf{S}_{x+1} \right) - g \left(\mathbf{S}_{x-1} \cdot \mathbf{S}_{x} \times \mathbf{S}_{x+1} \right)^{2}$$

$$\rightarrow \int_{x}^{x} K (\partial_{x} \phi)^{2} + (\partial_{x} \theta)^{2} / K - g \Phi (\partial_{x} \phi) (\partial_{x} \theta) \qquad \begin{array}{c} S_{+} \\ S_{z} \end{array}$$

... and ferromagnetic couplings in transverse directions

 $S_{+} \sim e^{i\theta}$ $S_{z} \sim \partial_{x}\phi$ $K = 2\sqrt{1 - (g\Phi)^{2}}$

K = 2 for SU(2)-sym without Φ

Kerr and other experiments in cuprates

1. Kerr:

- i. Untrainable by magnetic field
- ii. Same sign on both surfaces
- iii. Memory above T_K
- iv. Small magnitude
- 2. NMR: no magnetism below T_K
- 3. X-rays: charge ordering tendencies onset at T_K
- 4. Nernst effect: nematicity above T_K
- 5. Transmission: vertical reflection breaking below T_K

How to reconcile?

Plausible phase diagram including DSSCO

reflections, preserves flipping

1. Kerr:

4.

5.

- i. Untrainable by magnetic field \checkmark
- ii. Same sign on both surfaces \checkmark
- iii. Memory above T_K \checkmark
- iv. Small magnitude \checkmark
- 2. NMR: no magnetism below $T_K \leftarrow \mathbf{Z}$
- 3. X-rays: charge ordering tendencies onset at $T_K \checkmark$
 - Nernst effect: nematicity above $T_K \checkmark$
 - Transmission: vertical reflection breaking below $T_K \checkmark$

	TRS	M _x	M _y	M_z	R_x^2	R_y^2	R_z^2	$ heta_{ m Kerr}$
DSSCO only	×	×	\checkmark	\checkmark	✓	×	×	= 0
DSSCO + CDW	×	×	×	×	✓	×	×	≠ 0

Probing the 3D DSSCO

For chiral ordering along *X*, j_Y should produce a polar Kerr effect trainable by it, but j_X should not

	TRS	<i>M</i> _x	M _y	M _z	R_x^2	R_y^2	R_z^2	$ heta_{ m Kerr}$
DSSCO only	×	×	\checkmark	\checkmark	\checkmark	×	×	= 0
DSSCO + j_x	×	×	\checkmark	\checkmark	\checkmark	×	×	= 0
DSSCO + j_y	×	×	×	\checkmark	×	×	×	≠ 0

arXiv:1510.00975

ICTS, June 2016

Summary

- A new phase of matter, DSSCO, breaks time-reversal symmetry but has no (density of) moments
- Plausibly relevant to cuprate pseudogap experiments, especially Kerr and NMR; many experiments fit into a phenomenological phase diagram involving DSSCO

To do

- Iron out microscopics; test candidate Hamiltonians
- Search for other candidate materials
- Look for DSSCO in cuprates expt'ally drive current and measure Kerr effect above T_K

