
Entanglement generation in periodically driven

integrable systems

Arnab Sen (IACS, Kolkata)

Collaborators: Sourav Nandy and Krishnendu Sengupta

(IACS, Kolkata)

arXiv: 1511.03668

Current Frontiers in Condensed Matter Research, ICTS

Arnab Sen, IACS, Kolkata Entanglement generation in periodically driven integrable systems
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Ground states versus highly excited states of local

Hamiltonians
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Conclusions and future directions
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Entanglement

R. Islam et al, Nature (2015)

Entanglement entropy of ground states of many-body

Hamiltonian follow area law (M. Hastings)

→ S = −Tr[ρl log(ρl)] ∼ ld−1

May lead to classification of states with non-local order

(subleading terms in entanglement entropy).

Universal behaviour at higher-dimensional critical points?

[in 1D, central charge of the associated CFT]

Typical high-energy eigenstates however follow the volume

law S ∼ ld (ETH, Deutsch, Srednicki,

Rigol+Dunjko+Olshanii, Kim+Ikeda+Huse)
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High energy eigenstates of the TFIM

We use unbiased statistical sampling of eigenstates at a

given finite energy density to get local properties of typical

eigenstates [S. Nandy, A. Sen, A. Das, A. Dhar,

arXiv:1605.09225].
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Local properties of the typical eigenstates follow a Gibbs

ensemble in-spite of the integrability of the model!

Atypical eigenstates follow appropriate (truncated)

Generalized Gibbs ensembles locally.
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Driven systems: Steady state
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Does an ensemble description exist for steady states of

driven quantum systems? Guiding principles?

Lots of progress in recent years for quenches [Rigol,

Dunjko, Olshanii (2008)] and periodically driven systems

[Lazarides, Das, Moessner (2014)]

Steady state description for generic drives still an open

issue.
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Class of integrable models

In 1D, transverse field Ising model (TFIM)

H = −
∑

j

(hσx
j + σz

j σ
z
j+1)

In 2D, Kitaev model—

H2D =
∑

j+l=even

(J1σ
x
j ,lσ

x
j+1,l + J2σ

y
j−1,lσ

y
j ,l + J3σ

z
j ,lσ

z
j ,l+1)

(see Chen+Nussinov, 2008)
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Jordan-Wigner transformation: [lectures by D. Sen]

σx
n = 1 − 2c

†
ncn σz

n = −(cn + c
†
n)

∏

m<n

(1 − 2c
†
mcm),
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Approach to steady state: Dynamic transition

Hamiltonian connects | ↑〉~k = c
†
~k
c
†

−~k
|0〉 with | ↓〉~k = |0〉

where |0〉 denotes vacuum of c fermions, and c
†
k |0〉 with

c
†
−k |0〉.

Dynamics through H~k
= (g(t)− b~k

)τ3 +∆~k
τ1.

Need to find (u~k
(t), v~k (t))

T .

Choose g(t) to be a periodic function of time.

Subject of this talk:Relaxational behaviour of entanglement

entropy and local (in space) observables to the final

(n → ∞) steady state values, where n is number of drive

cycles.
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Some results
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Entanglement generation after n drive cycles
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g(t)

T

Need the knowledge of two l × l matrices (Peschel et. al.)–

Cij = 〈c†

~i
c~j〉n = 2

∑

~k∈BZ/2

|u~k (t)|
2 cos(~k · (~i −~j))/Ld

Fij = 〈c†
~i

c
†
~j
〉n = 2

∑

~k∈BZ/2

u∗
~k
(t)v~k (t) sin(~k · (~i −~j))/Ld

S(l) satisfies area law for small n. This length scale, however,

diverges as n → ∞. (some similarities to quench in

non-integrable models, Huse et al)
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Qualitative criteria for a non-area law

Hastings’ theorem applicable for ground states of local

Hamiltonians

However, |ψ(t)〉 is not the ground state of H(t)

Construct Ht for which |ψ(t)〉 is the ground state.

Has the form Ht = ǫktτ3 +∆ktτ
+ +∆∗

ktτ
−

Demand the correct form for |ψ(t)〉 in the adiabatic and the

sudden quench limit.

ǫkt = ∆k (|uk (t)|
2 − |vk (t)|

2)/(2|uk (t)||vk (t)|)
∆kt = ∆k exp(i(αkt − βkt )) where

αkt(βkt ) = Arg[uk (t)(vk (t))]

In real space, Ht =
∑

i ,j(Ai−jc
†
i cj + Bi−jcicj + h.c.)
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Behaviour of Ht
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Magnitude of the hopping elements Ai−j show a

exp(−r/Rt) decay that indicates a short-ranged Ht .

However, Rt increases rapidly with number of periods n.
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Floquet Hamiltonian

For stroboscopic measurements at the end of n drive

cycles, system described by Floquet Hamiltonian

→ U~k
= e−iH~kF

T

For these integrable systems, H~kF
= ~σ · ~ǫ~k . Thus

U~k
= e−i(~σ·~n~k)φ~k with ~n~k

=
~ǫ~k
|~ǫ~k |

and φ~k = T |~ǫ~k |

〈c†

~i
c~j〉n = 〈c†

~i
c~j〉∞ −

1

(2π)d

∫

~k∈BZ/2

ddk cos(~k · (~i −~j))

×(1 − n̂2
~k3
) cos(2nφ~k )

〈c†

~i
c
†

~j
〉n = 〈c†

~i
c
†

~j
〉∞ +

1

(2π)d

∫

~k∈BZ/2

ddk sin(~k · (~i −~j))

×
[

n̂~k3
(n̂~k1

+ i n̂~k2
) cos(2nφ~k ) + i(n̂~k1

+ i n̂~k2
) sin(2nφ~k )

]

Stationary points of φ~k control the late time relaxations.
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1D Ising model
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H~k
= (g(t)− b~k

)τ3 +∆~k
τ1. Here

g(t) = h(t),bk = cos(k),∆k = sin(k)
Distance measure

D = Tr[(C∞(l)− Cn(l))
†(C∞(l)− Cn(l))]

1/2/(2l)

For ω ≫ 1, HF ∼ (1/T )
∫ T

0
H(t)dt . Stationary points at

k = 0, π only.

New stationary point emerges at ∼ 1.16π for this protocol.
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2D Kitaev Model
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H~k
= (g(t)− b~k

)τ3 +∆~k
τ1. Here g(t) = J3(t),b~k

=
J1 cos(kx ) + J2 cos(ky ),∆~k

= J1 sin(kx ) + J2 sin(ky )
Special symmetry of the Kitaev model

H~k
= h[gp(kx ) + αpgp(ky );β(t)] where g1 = cos(ki),

g2 = sin(ki), β(t) = J3(t)/J1 and α1 = α2 = J2/J1.

Implies that if ∂|~ǫ~k |/∂kx = 0 then ∂|~ǫ~k |/∂ky = 0
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Properties of the Diagonal ensemble

Use

〈ψ(nT )|Ok |ψ(nT )〉 = pk 〈1k |Ok |1k〉+ (1 − pk)〈2k |Ok |2k 〉
where pk = |〈1k |ψk (t = 0)〉|2 (thus cross-terms are

dropped).

Total entropy per site of the DE
Stot

L = 1
π

∫ π
0

S(k)dk

where S(k) = −p(k) log(p(k))− (1 − p(k)) log(1 − p(k))

S(k) maximized for p(k) = 1/2.

Stot/L shows a rich behaviour as a function of ω.

Can be connected to special values ωc where the number

of zeroes of ~ǫ~k3
in k ∈ [0, π] changes by one.
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Diagonal ensemble (continued)
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Conclusions and future directions

Two dynamical regimes for relaxation of correlation

functions in periodically driven many-body systems

These regimes separated by a dynamical transition

Non-monotonic behaviour of the entanglement entropy of

the steady state as a function of ω (related to change in

number of zeroes of ǫ3(k))

Generalizations to models with disorder, and to other kinds

of integrable models??

Non-integrable (generic) models??
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