Entanglement generation in periodically driven integrable systems

Arnab Sen (IACS, Kolkata) <u>Collaborators:</u> Sourav Nandy and Krishnendu Sengupta (IACS, Kolkata)

arXiv: 1511.03668

Current Frontiers in Condensed Matter Research, ICTS

Arnab Sen, IACS, Kolkata Entanglement generation in periodically driven integrable systems

・ 同 ト ・ ヨ ト ・ ヨ

- Ground states versus highly excited states of local Hamiltonians
- Steady states of driven systems
- Approach to steady state
- Dynamic phase transition
- Floquet Hamiltonian: Explaining the transition
- Entanglement properties of the steady state
- Conclusions and future directions

・ 同 ト ・ ヨ ト ・ ヨ ト

Entanglement

- Entanglement entropy of ground states of many-body Hamiltonian follow area law (M. Hastings)
 → S = -Tr[ρ_l log(ρ_l)] ~ l^{d-1}
- May lead to classification of states with *non-local* order (subleading terms in entanglement entropy).
- Universal behaviour at higher-dimensional critical points? [in 1D, central charge of the associated CFT]
- Typical high-energy eigenstates however follow the volume law S ~ I^d (ETH, Deutsch, Srednicki, Rigol+Dunjko+Olshanii, Kim+lkeda+Huse)

High energy eigenstates of the TFIM

 We use unbiased statistical sampling of eigenstates at a given finite energy density to get local properties of *typical* eigenstates [S. Nandy, A. Sen, A. Das, A. Dhar, arXiv:1605.09225].

- Local properties of the typical eigenstates follow a *Gibbs ensemble* in-spite of the integrability of the model!
- Atypical eigenstates follow appropriate (truncated) Generalized Gibbs ensembles locally.

Driven systems: Steady state

- Does an ensemble description exist for steady states of driven quantum systems? Guiding principles?
- Lots of progress in recent years for quenches [Rigol, Dunjko, Olshanii (2008)] and periodically driven systems [Lazarides, Das, Moessner (2014)]
- Steady state description for generic drives still an open issue.

∃ > ∢ ∃

Class of integrable models

In 1D, transverse field Ising model (TFIM)

$$H = -\sum_{j} (h\sigma_{j}^{x} + \sigma_{j}^{z}\sigma_{j+1}^{z})$$

In 2D, Kitaev model—

$$H_{2D} = \sum_{j+l=\text{even}} (J_1 \sigma_{j,l}^x \sigma_{j+1,l}^x + J_2 \sigma_{j-1,l}^y \sigma_{j,l}^y + J_3 \sigma_{j,l}^z \sigma_{j,l+1}^z)$$

(see Chen+Nussinov, 2008)

Jordan-Wigner transformation: [lectures by D. Sen]

$$\sigma_n^{\mathsf{X}} = 1 - 2c_n^{\dagger}c_n \quad \sigma_n^{\mathsf{Z}} = -(c_n + c_n^{\dagger}) \prod (1 - 2c_m^{\dagger}c_m), \quad \text{if } s \in \mathcal{S}_{\mathsf{M}}$$

Entanglement generation in periodically driven integrable systems

Approach to steady state: Dynamic transition

- Hamiltonian connects $|\uparrow\rangle_{\vec{k}} = c^{\dagger}_{\vec{k}}c^{\dagger}_{-\vec{k}}|0\rangle$ with $|\downarrow\rangle_{\vec{k}} = |0\rangle$ where $|0\rangle$ denotes vacuum of *c* fermions, and $c^{\dagger}_{\vec{k}}|0\rangle$ with $c^{\dagger}_{-\vec{k}}|0\rangle$.
- Dynamics through $H_{\vec{k}} = (g(t) b_{\vec{k}})\tau_3 + \Delta_{\vec{k}}\tau_1$. Need to find $(u_{\vec{k}}(t), v_{\vec{k}}(t))^T$.
- Choose g(t) to be a periodic function of time.
- Subject of this talk: Relaxational behaviour of entanglement entropy and local (in space) observables to the final (n→∞) steady state values, where n is number of drive cycles.

Arnab Sen, IACS, Kolkata Entanglement generation in periodically driven integrable systems

Entanglement generation after *n* drive cycles

Need the knowledge of two I × I matrices (Peschel et. al.)-

$$C_{ij} = \langle c_{\vec{i}}^{\dagger} c_{\vec{j}} \rangle_n = 2 \sum_{\vec{k} \in \mathrm{BZ}/2} |u_{\vec{k}}(t)|^2 \cos(\vec{k} \cdot (\vec{i} - \vec{j}))/L^d$$

$$F_{ij} = \langle c_{\vec{i}}^{\dagger} c_{\vec{j}}^{\dagger} \rangle_n = 2 \sum_{\vec{k} \in \mathrm{BZ}/2} u_{\vec{k}}^*(t) v_{\vec{k}}(t) \sin(\vec{k} \cdot (\vec{i} - \vec{j}))/L^d$$

S(I) satisfies area law for small n. This length scale, however, diverges as n → ∞. (some similarities to quench in non-integrable models, Huse et al)

Arnab Sen, IACS, Kolkata

Entanglement generation in periodically driven integrable systems

Qualitative criteria for a non-area law

- Hastings' theorem applicable for ground states of local Hamiltonians
- However, $|\psi(t)\rangle$ is not the ground state of H(t)
- Construct \mathcal{H}_t for which $|\psi(t)\rangle$ is the ground state.
- Has the form $\mathcal{H}_t = \epsilon_{kt}\tau_3 + \Delta_{kt}\tau^+ + \Delta_{kt}^*\tau^-$
- Demand the correct form for |ψ(t)⟩ in the adiabatic and the sudden quench limit.

•
$$\epsilon_{kt} = \Delta_k (|u_k(t)|^2 - |v_k(t)|^2)/(2|u_k(t)||v_k(t)|)$$

 $\Delta_{kt} = \Delta_k \exp(i(\alpha_{kt} - \beta_{kt}))$ where
 $\alpha_{kt}(\beta_{kt}) = \operatorname{Arg}[u_k(t)(v_k(t))]$

• In real space, $\mathcal{H}_t = \sum_{i,j} (A_{i-j}c_i^{\dagger}c_j + B_{i-j}c_ic_j + h.c.)$

Behaviour of \mathcal{H}_t

- Magnitude of the hopping elements A_{i-j} show a exp(-r/R_t) decay that indicates a short-ranged H_t.
- However, *R_t* increases rapidly with number of periods *n*.

< /₽ ▶

→ ∃ → < ∃</p>

Floquet Hamiltonian

- For stroboscopic measurements at the end of *n* drive cycles, system described by Floquet Hamiltonian $\rightarrow U_{\vec{k}} = e^{-iH_{\vec{k}F}T}$
- For these integrable systems, $H_{\vec{k}F} = \vec{\sigma} \cdot \vec{\epsilon}_{\vec{k}}$. Thus $U_{\vec{k}} = e^{-i(\vec{\sigma} \cdot \vec{n}_{\vec{k}})\phi_{\vec{k}}}$ with $\vec{n}_{\vec{k}} = \frac{\vec{\epsilon}_{\vec{k}}}{|\vec{\epsilon}_{\vec{k}}|}$ and $\phi_{\vec{k}} = T|\vec{\epsilon}_{\vec{k}}|$

$$\langle c_{\vec{i}}^{\dagger} c_{\vec{j}} \rangle_n = \langle c_{\vec{i}}^{\dagger} c_{\vec{j}} \rangle_{\infty} - \frac{1}{(2\pi)^d} \int_{\vec{k} \in BZ/2} d^d k \cos(\vec{k} \cdot (\vec{i} - \vec{j}))$$

$$\times (1 - \hat{n}_{\vec{k}3}^2) \cos(2n\phi_{\vec{k}})$$

$$\langle c_{\vec{i}}^{\dagger} c_{\vec{j}}^{\dagger} \rangle_n = \langle c_{\vec{i}}^{\dagger} c_{\vec{j}}^{\dagger} \rangle_{\infty} + \frac{1}{(2\pi)^d} \int_{\vec{k} \in BZ/2} d^d k \sin(\vec{k} \cdot (\vec{i} - \vec{j}))$$

$$\times \left[\hat{n}_{\vec{k}3} (\hat{n}_{\vec{k}1} + i\hat{n}_{\vec{k}2}) \cos(2n\phi_{\vec{k}}) + i(\hat{n}_{\vec{k}1} + i\hat{n}_{\vec{k}2}) \sin(2n\phi_{\vec{k}}) \right]$$

• Stationary points of $\phi_{\vec{k}}$ control the late time relaxations.

A B A A B A

э

1D Ising model

- $H_{\vec{k}} = (g(t) b_{\vec{k}})\tau_3 + \Delta_{\vec{k}}\tau_1$. Here $g(t) = h(t), b_k = \cos(k), \Delta_k = \sin(k)$
- Distance measure

$$\mathcal{D} = \mathrm{Tr}[(\mathcal{C}_{\infty}(I) - \mathcal{C}_n(I))^{\dagger}(\mathcal{C}_{\infty}(I) - \mathcal{C}_n(I))]^{1/2}/(2I)$$

- For $\omega \gg 1$, $H_F \sim (1/T) \int_0^t H(t) dt$. Stationary points at $k = 0, \pi$ only.
- New stationary point emerges at $\sim 1.16\pi$ for this protocol

Entanglement generation in periodically driven integrable systems

2D Kitaev Model

- $H_{\vec{k}} = (g(t) b_{\vec{k}})\tau_3 + \Delta_{\vec{k}}\tau_1$. Here $g(t) = J_3(t), b_{\vec{k}} = J_1 \cos(k_x) + J_2 \cos(k_y), \Delta_{\vec{k}} = J_1 \sin(k_x) + J_2 \sin(k_y)$
- Special symmetry of the Kitaev model $H_{\vec{k}} = h[g_p(k_x) + \alpha_p g_p(k_y); \beta(t)]$ where $g_1 = \cos(k_i)$, $g_2 = \sin(k_i), \beta(t) = J_3(t)/J_1$ and $\alpha_1 = \alpha_2 = J_2/J_1$.
- Implies that if $\partial |\vec{\epsilon}_{\vec{k}}| / \partial k_x = 0$ then $\partial |\vec{\epsilon}_{\vec{k}}| / \partial k_y = 0$

Properties of the Diagonal ensemble

Use

 $\langle \psi(nT)|O_k|\psi(nT)\rangle = p_k \langle 1_k|O_k|1_k\rangle + (1-p_k) \langle 2_k|O_k|2_k\rangle$ where $p_k = |\langle 1_k|\psi_k(t=0)\rangle|^2$ (thus cross-terms are dropped).

- Total entropy per site of the DE $\frac{S_{tot}}{L} = \frac{1}{\pi} \int_0^{\pi} S(k) dk$ where $S(k) = -p(k) \log(p(k)) - (1 - p(k)) \log(1 - p(k))$
- S(k) maximized for p(k) = 1/2.
- S_{tot}/L shows a rich behaviour as a function of ω .
- Can be connected to special values ω_c where the number of zeroes of *ϵ*_{k3} in k ∈ [0, π] changes by one.

Diagonal ensemble (continued)

Arnab Sen, IACS, Kolkata Entanglement generation in periodically driven integrable systems

(日) (圖) (E) (E)

э

Conclusions and future directions

- Two dynamical regimes for relaxation of correlation functions in periodically driven many-body systems
- These regimes separated by a dynamical transition
- Non-monotonic behaviour of the entanglement entropy of the steady state as a function of ω (related to change in number of zeroes of ε₃(k))
- Generalizations to models with disorder, and to other kinds of integrable models??
- Non-integrable (generic) models??