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What happens after the quench in a closed quantum
system?

• Linear growth of the entanglement entropy; collapse and revival
of the Loschmidt echo; light cone like propagation of quantum
correlations

• Thermalization

• Statistics of work done

• Periodically driven closed quantum systems

• Periodic steady state: heating effect
• Periodic driving: Entanglement entropy

• Follow the subsequent real time evolution: non-analyticities



Loschmidt overlap and the rate function of return
probability

Sudden Quench:

Initial state |ψ0: Ground state of the initial Hamiltonian Hi

Suddenly quench Hi (λi ) to H(λf )

Loschmidt Overlap: L(t) = 〈ψ0| exp(−iHf (λf )t|ψ0〉
Rate function: I (t) = − ln(|〈ψ0|e−iH(hf )t|ψ0〉|2)/N → Double quenches

Quantum dynamical phase transition: 〈ψ0| exp(−iHf (λf )t|ψ0〉 = 0

Slow Ramping: Kibble-Zurek Scaling

Initial state |ψ0〉: Ground state of the initial Hamiltonian Hi

Change λi to λf slowing using a protocol, e.g., λ(t) = λi + (λf − λi )t/τ
The final state is ψf ; not an eigenstate of the final Hamiltonian Hf

Set time t = 0

L(t) = 〈ψ0| exp(−iHf (λf )t|ψ0〉; I (t) = − ln(|〈ψf |e−iH(hf )t|ψf 〉|2)/N

Role of slow quench is to prepare a desired initial state which evolves with the final Hamiltonian



What we call a dynamical phase transition?

• NO local order parameter; no universal exponents

• Quenched quantum systems

• Non-analyticities in dynamical free energy

• manifested in the subsequent real time evolution of the quenched
system: rate function of the return probability

• Is there any connection with equilibrium QCP?



The simplest paramagntic model

H = −
∑

<ij> σ
x
i σ

x
i+1 − h

∑
i σ

z
i

For h > 1, 〈σxi 〉 = 0; Paramagnetic

For h < 1; 〈σxi 〉 6= 0; Ferromagnetic

• Quantum phase transitions at λ = |h − 1| = 0: Quantum critical
point (QCP)

Studies have been generalized to various integrable and non-integrable models

Dutta, Aeppli, Chakrabarti, Divakaran, Rosenbaum and Sen, Cambridge University Press, 2015



Dynamical Phase Transition: Sudden quenches

• Phase Transitions → marked by non-analyticities in the free energy of
a system.

CANNONICAL PARTITION OVERLAP AMPLITUDE
FUNCTION (sudden quenching)

Z (β) = Tre−βH G (t) = 〈ψ0(λi )|e−iH(λf )t |ψ0(λi )〉

Equilibrium phase transition Dynamical Phase Transition
(EPT) (DPT)

analouge
Temperature driven EPT ←→ Real time evolution

Generalising to complex plane: Z (z) = 〈ψ0(λi )|e−zH(λf )|ψ0(λi )〉, z ∈ C

z = R
z = it: overlap amplitude

Heyl et. al., PRL 110, 135704 (2014); A. Silva, PRL 101, 120603 (2008)



Dynamical Phase Transition (DPT)

Thermodynamic limit: “Free Energy”

f (z) = − lim
N→∞

lnZ (z)

N
= − lim

N→∞

ln 〈ψ0(λi )|e−zH(λf )|ψ0(λi )〉
N

• Non-analytic f (z) ⇒ Z (z)→ 0: find z ⇒ marks DPTs

⇒ Fisher zeros: z for which Z (z)→ 0

⇒ Fisher zeros in complex z plane

⇒ Real(z)=0: non-analyticities in time

• Reflected in the non-analyticities in Rate function:

I (t) = − ln(|〈ψ0(λi )|e−itH(λf )|ψ0(λi )〉|2)

N

• Double Quench: Rate function of the return probability



DPT ⇔ EPT in sudden quenching Heyl et. al. PRL 110, 135704
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Figure: Non-analytitcities appearing periodically; first derivative of the
“free energy” is discontinuous

Heyl, Polkovnikov and Kehrein, PRL 110, 135704 (2014).



DPT: Sudden quenching

• Across the QCP or Equilibrium Phase Transition (EPT)

⇒ Fisher zeros cross the imaginary time axis.

⇒ At corresponding times non-analyticities appears.

⇒ DPTs are present

• Within one phase

⇒ Fisher zeros DO NOT cross the imaginary time axis.

⇒ NO non-analyticities.

⇒ DPTs are ABSENT
There are indeed exceptions



First signature of DPTs

Are DPTs characteristic of integrability?

Hpollmann =
∑

i

[
σx
i − σz

i σ
z
i+1 + g(cosφσx

i + sinφσz
i )
]

• gc = g = 0⇒ H → critical

• φ = 0, π ⇒ Transverse Ising chain → integrable → ν = 1

• φ 6= 0, π ⇒ non-integrable → except g = 0 → ν = 8/15

• g → g(t) = −t/τ or g = gi + (gf−gi )t
τ

•|〈ψ0(gf , τ)|e−iHf t |ψ0(gf , τ)〉|2 = e−α(t)L

• α(t)⇒ −I (t): Rate function

Pollmann, Mukerjee, Green and Moore, PRE 81, 020101(R) (2010)



Integrable vs non-integrable:FM case

Figure:

• gi = 0.5 to gf = −0.5. Fig. (a) φ = 0 and Fig. (b) φ = π/32.

• sharp non-analyticities present in I (t) for φ = 0, ramped across the
QCP: integrable case.

• No non-analyticities present for the non-integrable case
Anti-ferromagnetic version of the model, there exist DPTs: Sharma, Suzuki and Dutta, PRB (2015)



Integrable system: What happens to Fisher zeros in slow
quenching?

Hk =

(
h − cos k −i sin k
i sin k −h + cos k

)
• h→ t/τ ⇒ |ψg

i 〉 → |ψf 〉

Rate function: I (t) = − ln(|〈ψf |e−iH(hf )t|ψf 〉|2)/N

• The evolution in rate starts after the quenching process is finished.

• |ψkf 〉 = vk |ψg
k (hf )〉+ uk |ψe

k(hf )〉

S. Sharma, U. Divakaran, A. Polkovnikov, A. Dutta, PRB, 2016; U. Divakaran, S. Sharma, A. Dutta, PRE, 2016



Slow quenching: Rate function and Free energy

• Rate function: I (t) = − ln(|〈ψf |e−H(hf )it |ψf 〉|2)/N

= −
∫ π

0
dk
2π log

(
1− 4|uk |2|vk |2 sin2 εfkt

)
/N

• Free energy: fk(z) = − limN→∞ ln 〈ψf |e−zHf |ψf 〉/N

= −
∫ π

0
dk
2π ln

(
|vk |2 + |uk |2 exp(−2εfkz)

)
• Transition probability: pk = |uk |2 = |〈ψkf |ψe

k(hf )〉|2

fk(z) = −
∫ π

0

dk

2π
ln
(
(1− pk) + pk exp(−2εfkz)

)



Slow quenching: zn(k)

• Free energy: fk(z) = −
∫ π

0
dk
2π ln

(
(1− pk) + pk exp(−2εfkz)

)
• Non-analytic f (z) → Argument of log = 0

zn(k) =
1

2εfk

(
ln(

pk
1− pk

) + iπ(2n + 1)

)

I (t) = −
∫ π

0

dk

2π
ln
(

1 + 4pk(pk − 1) sin2 εfkt
)
. (1)

• k∗ ⇒ pk∗ = 1/2 “infinite temperature” state

t∗n =
π

εfk∗

(
n +

1

2

)

n = 0, 1, 2, · · ·



DPTs in slow quenching
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• two t∗n s corresponding to two critical points t∗n = t±n

• h = −1 occurs at t+
n = 1/2εf(π−k∗)

• t−n = 1/2εfk∗ at h = 1



Role of τ
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Topological aspect of DPT: Slow Quenching

• Quantum non-cyclic evolution of the system: Pancharatnam
geometrical phase (PGP) phase

Dynamical Topological Order Parameter (DTOP)

• Characterizes topological properties of the real-time dynamics rather
than of the instantaneous wave function or the instantaneous Hamiltonian

• Changes its value at DPT ⇒ non-analyticities in Loschmidt overlap

• Recall: |ψkf 〉 = vk |ψg
k (hf )〉+ uk |ψe

k(hf )〉

Lk = 〈ψfk | exp(−iHf t)|ψfk 〉 = |rk | exp(iφk)

• φk = tan−1
(
−|uk |2 sin(2εfk t)

|vk |2+|uk |2 cos(2εfk t)

)
• Dynamical phase: φdynk = −

∫ t

0
ds〈ψfk (s)|Hf |ψfk (s)〉 = −2|uk |2εfkt

J. C. Budich and M. Heyl, PRB 93, 085416 (2016)



Properties of Dynamical Geometric Phase

• Geometric phase: φGk = φk − φdynk

φGk = tan−1

(
−|uk |2 sin(2εfkt)

|vk |2 + |uk |2 cos(2εfkt)

)
+ 2|uk |2εfkt

• As k goes from 0 to π, φGk goes from −π to π thus completing a full
circle =⇒ φGπ − φG0 = 0 mod 2π

• φGk |k∗ is fixed to 0 or π for all values of t

φGk |k∗ = tan−1
(
− tan(εfk∗t)

)
+ 2|uk∗ |2εfk∗t,

• At DPTs φk(t) is ill-defined: Variation of φGk as a function of k and
t/t0.
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Dynamical Topological Quantum Number

• Quantized winding number

νD =
1

2π

∮ π

0

∂φGk
∂k

Generalized Gauss’s Law

• Serves as an order parameter

• νD may show an integer jump or a drop ⇒ ∆νD(t∗)

• integrating the full derivative of a periodic function (modulo 2π), the
integral remains constant.

• unless there is some discontinuity in the phase, which should be
manifested in the δ-function type contribution to the derivative of the
geometric phase.

• such discontinuities develop only at DPT: Analyze the behavior of at k∗

∂φGk
∂k

∣∣
k∗

= 2 tan(εfk∗t)
∂|vk |2

∂k

∣∣
k∗

+ 2
∂|uk |2

∂k

∣∣
k∗

(εfk∗t). (2)



νD vs Rate function: PM (non-topological) −→ FM
(topological)
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(e) • hi = 10 to hf = 0.5 crossing h = 1

• sgn(∂k |uk |2|k∗ ) and hence ∆νD is negative

S. Sharma, U. Divakaran, A. Polkovnikov, A. Dutta, PRB (2016).



νD vs Rate function: PM −→ FM−→ PM
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(g) • DPT at t+
n associated with a positive topological

charge (+1)

• t−n denotes a DPT with a negative topological charge

(−1)

• t+
6 < t−5 ⇒ there are two successive DPTs both with

positive topological charge occurring at t+
5 and t+

6

• leads to jump in νD (t) by a factor of unity



Conclusion

• Aparrently, there exists a new class of phase transitions, known as
dynamical phase transitions reflected in the non-analyticities in the
rate-function

Integrable models

• Fisher-zeros and DPTs for a slow quenching depends on pk = 1/2.

• Topological order parameter can be associated with the existence of
DPTs in slow and sudden quenching.

Numerous open questions: higher dimension and topological structure, universality, diverging length scale, Role

of integrability, Experimental signature



Model considered: AFM transverse Ising chain in a
longitudinal field

Original Hamiltonian

H =
∑
i

σzi σ
z
i+1 − Γ

∑
i

σxi − h
∑
i

σzi

Longitudinal field: h→ −t/τ Transverse field: Γ = 1

• h = 0, Γ = Γc = ±1→integrable

• h 6= 0→ renders the model non-integrable

h

Γ
AFM

PM(Γ=0,h=2)

(Γ=1,h=0)



Scaling: Model considered

• Small h, Γ = Γc = 1 : Gap (∆E ) → ∆E ∼ hνhz = h2

• z = 1⇒ νh = 2.
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Our result: Slow quenching, non-integrable model
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• Non-analyticities in the rate function.

• DPTs present in this non-integrable case.

Reason?



Slow quenching

h

Γ
AFM

PM(Γ=0,h=2)

(Γ=1,h=0)

+t

>

−t

>

R
el

ax
at

io
n

 t
im

e

Adiabatic region Adiabatic regionImpulse

0 time

Figure:

• In slow quenching system stays in the instantaneous ground state:
Adiabatic region

• Excitations occur close to critical point: impulse region

• System doesn’t get time to respond and hence freezes: impulse region

• It’s like a small sudden quenching close to the critical point.

• Region of interest: Close to QCP.



Effective integrable Hamiltonian

H̃eff = −
∑
i

τ̃ zi τ̃
z
i+1 −

∑
i

τ̃ xi + h2
∑
i

τ̃ xi

Hk(h) = 2

(
(1− h2)− cos k −i sin k

i sin k −(1− h2) + cos k

)
εk = 2

√
{(1− h2)− cos k}2 + sin2 k → 3 QCPs

h = 0, kc = 0 and h = ±
√

2, kc = π

A.A.Ovchinnikov, D.V.Dmitriev, V.Ya.Krivnov and V.O.Cheranovskii, Phys. Rev. B 68, 214406 (2003)



• Interested in h = 0, kc = 0→ expand around k → 0

Hk(h) = 2

(
−h2 + k2

2 −ik
ik h2 − k2

2

)

• linear quenching −→ reverse quenching problem
in the original model

• εk =
√

(h2 − k2/2)2 + k2

⇒ ∆εk = 2εk |h=0 ∼ k ⇒ z = 1

⇒ ∆εk |k→0 ∼ h2 ⇒ νz = 2 ⇒ ν = 2

• pk = F(k2τ 4/3) F scaling function

• εres ∼
∫
dkkF(k2τ 4/3) ∼ τ−4/3

KZ prediction d = z = 1, ν = 2



Our results: slow quenching

• Unique model example → work with equivalent integrable
model for τ � 1

• Enables us to explain periodic occurrence of DPTs for a slow
quenching across the QCP in non-integrable model
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Our results: sudden quenching
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• Absence of DPTs

• Interaction term in the equivalent Hamil-

tonian does not change sign

• Implies quenching does not take the sys-

tem across the QCP of Hamiltonian
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Our results: sudden quenching
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(e) • DPTs present

• Nature of the ground state changes
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• generic feature of a sudden quench across

the QCP

• Inset: initial and final Hamiltonians es-

sentially reduce to an assembly of non-

interacting spins

• Leading to Rabi oscillations between two

fully polarized states



Conclusion

• There exists a new class of phase transitions, known as dynamical
phase transitions reflected in the non-analyticities in the rate-function

Non-integrable model

• Contrary to the observation of Pollmann et al. DPTs are observed in a
slow quenching of a non-integrable model

• The model can be mapped to an integrable problem for a slow
quenching.

Two-level problem

• Fisher-zeros and DPTs for a slow quenching depends on pk = 1/2.

• Topological order parameter can be associated with the existence of
DPTs in slow and sudden quenching.

The occurrence and absence of DPTs are still to be explored in
many situations



A quick derivation of KZ scaling
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Consider a linear driving λ = t/τ
Non-adiabatic effect dominates when

ξτ ∼
(
t̂

τ

)−νz
=
λ

λ̇
= τ

• Characteristic time scale: t̂ ∼ τ zν/(zν+1); ξ ∼ τν/(zν+1)

• Defect density n ∼ 1
ξd
∼ τ−νd/νz+1


