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Dynamic Mott transitions: Motivation

General interest in understanding nonequilibrium transitions 
in quantum many-body systems:

(a) Is the transition continuous? What symmetries are broken? What
      are the critical exponents? Do they differ from corresponding
      equilibrium transitions? 
(b) How different are dynamic Mott transitions from 
      noninteracting counterparts (e.g. dielectric breakdown in  
      semiconductors)?
(c)  What is the role played by dissipative processes? Is a 
      “Hamiltonian” formulation possible?
(d) How does disorder affect the nonequilibrium transition?

Practical: Possibility of use in switching devices 
C. H. Ahn, J-M. Triscone, and J. Mannhart, Nature (2003)



A current driven vortex Mott transition

Frustration factor
(vortex filling)

Critical 
current

N. Poccia et al., Science (2015)
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Physical mechanism

As in semiconductors, electrical conduction in gapped phase 
proceeds through creation of free particle-hole excitations by 
Landau-Zener tunnelling.
T. Oka and H. Aoki, PRB  (2010); M. Eckstein, T. Oka, and P. Werner, 
PRL (2010); A. G. Green and S. L. Sondhi, PRL (2005)

Landau-Zener tunneling known to get enhanced in semiconductors
in the presence of dissipation.
E. Shimshoni and A. Stern, PRB (1993)

 
Q: What happens close to the Mott transition? What is the role of
     dissipation?
A: Dissipation enhances Landau-Zener tunneling in Mott insulators
    and ultimately leads to collapse of Mott gap. In the absence of
    dissipation, Mott gap not renormalized.  



Method

Use Landau-Dykhne formula:
A. M. Dykhne, JETP (1962)

Time-dependent phase factor 
related to driving field

Extension to complex plane

Finite imaginary part comes from 
branch points in the complex
-plane where the spectral gap 
closes.

Hubbard chain, no dissipation:
Oka & Aoki, PRB (2010)

Completely determined by the imaginary part of ! 

P01=|⟨1|0 ⟩|
2
=e−2 γ ,
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ℜ∫
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Dissipation and non-Hermiticity
Is a “Hamiltonian” description possible for nonequilibrium 
steady states? Yes!

Consider Legendre transformed Hamiltonian
T. Antal et al., Phys. Rev. Lett. 78 (1997); 
J. Cardy and P. Suranyi, Nucl. Phys. B (2000)

Model invariant under simultaneous Parity (P) & Time Reversal (T). 
PT-symmetry generically arises in situation of balanced gain and loss.
C. Bender and S. Boettcher, PRL (1998).

Real  eqv. to imaginary vector potential.

For small , spectral gap in H  <J> = 0 (Real eigenvalues for H')
For large , eigenstates those of J  <J>  0 (Complex eigenvalues)

H '=H−iλ J



Dissipation and non-Hermiticity
Intuitively construct a density matrix 
for the non-Hermitian model:

Finite real part of  necessary for 
relaxation to a nonequilibrium
steady state: 

Model then does describe a nonequilibrium (dissipative) 
metal-insulator transition.   characterizes both dissipation & drive.

Below some critical field F
C
 (corresponding to a critical 

C
) the 

spectral gap is finite and <J> =0, eigenvalues of H' are real.
At larger fields, a finite current flows, eigenvalues are complex.
Eigenstates break PT symmetry.

Nonequilibrium phase transition brought about by tuning  
mirrors the electric field driven dynamic Mott transition!

d ⟨ J ⟩
dt

=−λ(⟨J 2
⟩−⟨J ⟩2)

ρ(t)=
e−iH ' t

ρ(0)ei H ' t

tr [e−i H ' t
ρ(0)ei H ' t

]
, ⟨A ⟩≡tr (ρ A )



Fermionic dynamic Mott transition

Fermionic Hubbard chain at half filling subjected to vector
potential  = F t + i :

H=−t ∑
⟨ ij⟩ ,σ

[eiΨ(t )c iσ
+ c jσ+e−iΨ(t )c jσ

+ c iσ ]+∑
i

ni↑ni↓

Imaginary component of vector potential arises in an effective 
description of hopping in the presence of energy relaxation
processes (bath).

Physical meaning: Hopping amplitudes along and opposite the driving 
field have different magnitudes.

Examples: 
(1) Transport in disordered semiconductors in strong electric field 
      (B. Shklovskii, Sol. St. Comm. (1981))
(2) Mott transition in Vortex systems in tilted magnetic fields 
      (Lehrer & Nelson, PRB (1998))



Fermionic dynamic Mott transition

Fermionic Hubbard chain at half filling subjected to vector
potential  = F t + i :

Solvable by Bethe ansatz even for complex !  
Oka and Aoki, PRB (2010)

H=−t ∑
⟨ ij⟩ ,σ

[eiΨ(t )c iσ
+ c jσ+e−iΨ(t )c jσ

+ c iσ ]+∑
i

ni↑ni↓

I j=N↓/2(mod 1) ,
J α=(N−N↓+1) /2 (mod 1) ,
θ(x)=−2arctan( x /u),
u=U / 4 t

Lk j=2π I j+Ψ( t)−∑
α=1

N↓

θ(sin (k j)−λα) ,

∑
j=1

N

θ(sin (k j)−λα)=2 π J α−∑
β=1

N↓

θ(
λα−λβ

2 )

Solutions are in general complex.



Fermionic dynamic Mott transition

Real part of  linearly increases the crystal momenta with time,
and is responsible for Bloch oscillations. 

Landau-Zener tunneling takes place at some k =  + ib since 
the bandgap is smallest at the Brillouin zone boundaries.

Δ(b)=4 t [u−cosh(b)+∫
−∞

∞
dω
2 π

J 1(ω)e
ω sinh (b )

1+e2u|ω| ] ,
Δ(bc)≡0,

bc=sinh−1
(u)

Lieb & Wu, PRL (1968),
Fukui & Kawakami, PRB (1998)

Δ(χ)≈C1√χc−χ

By increasing the imaginary part of the vector potential, the
Mott gap gets ultimately closed & Landau-Zener factor collapses:

γ=C (χc−χ)
3 /2

Same dependence on electric field
follows.



Fermions: D > 1

Bethe ansatz not possible in higher dimensions. We use DMFT
with Iterative Perturbation Theory (IPT) based impurity solver:

See larger critical exponent
for gap scaling in 2D and 3D.

Δ(λ )∼(λ c−λ)
0.78 , D=2,

Δ(λ )∼(λ c−λ)0.86 , D=3

3D result lies close to exponent =1 
predicted in mean-field treatments
of equilibrium Hubbard models. 

Florens and Georges, PRB (2004)
Zhang and Rice, PRB (1970)



Dynamic Mott transition for dissipative Bosons

Consider problem of Mott transition of field-induced vortices in 
superconducting 2D proximity arrays (square lattice).

External current acts like an electric field on vortex “charges”. 
For dissipative (overdamped case), we get PT-symmetric 
Schrödinger equation [also see J. Rubinstein et al. PRL (2007); 
N. M. Chtchelkachev, PRL (2012)]

∂ψ

∂ t
=−D∇

2
ψ+i(I /ρ)x ψ+m2

ψ+2u|ψ|2ψ

BCs: Vortices confined in normal regions of size L. In the 
surrounding superconducting phase, =0. Confinement
leads to spectral gap. Examine evolution of gap with current: 

E1−E0≈2 ET √η (1−I 2
/I c

2) ,
ET=D /L2,

η=(π
2
/√2 (I c L/ET ρ))

γ∼( I c−I )3/2

Agrees with N. Poccia et al., Science (2015)



Summary and Outlook

●  We studied dynamic Mott transition in a dissipative fermionic
 half-filled Hubbard model and a bosonic vortex system.

● Nonequilibrium steady states were identified as stationary states
of certain non-Hermitian Hamiltonians endowed with PT-symmetry.

● Field-driven Mott transition in these systems is a PT-symmetry 
breaking transition. Key difference from non-dissipative case
is renormalization of Landau-Zener factor which can be large
even if the driving field is applied deep within the Mott phase. 

● Critical exponent for Landau-Zener factor agrees with experiments
on vortex Mott transition in superconducting proximity arrays.

● We need a microscopic derivation of fermionic non-Hermitian
models beginning with a Hermitian system coupled to a bath.

● We would like to understand the dynamic Mott transition in the
presence of disorder.
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