Extended degeneracy in the square J_1 - J_2 - J_3 antiferromagnet

R. Ganesh Bimla Danu *IMSc Chennai*

Gautam Nambiar IISc, Bangalore & IMSc, Chennai

arXiv:1603.06599

Competing Interactions

Classical limit

Quantum S=1/2 limit

 J_2/J_1

no magnetic order

 $J_2 = J_1/2$

Columnar VBS	ED	Kotov et al, PRB 1999
Staggered VBS	RG of coupled chains	Metavitsiadis et al, PRB 2014
Plaquette singlet order	ED and QMC	Capriotti and Sorella, PRL 2000
Gapped spin liquid	DMRG	Jiang et al, PRB 2012
Gapless spin liquid	variational wavefunction	Hu et al, PRB 2013

Quantum S=1/2 limit

 J_2/J_1

no magnetic order

 $J_2 = J_1/2$

Columnar VBS	ED	Kotov et al, PRB 1999
Staggered VBS	RG of coupled chains	Metavitsiadis et al, PRB 2014
Plaquette singlet order	ED and QMC	Capriotti and Sorella, PRL 2000
Gapped spin liquid	DMRG	Jiang et al, PRB 2012
Gapless spin liquid	variational wavefunction	Hu et al, PRB 2013

Need new physical ideas to make progress!

Classical degeneracy

Origin of quantum disordered phase: extended classical degeneracy at $J_2=J_1/2$

$$H_{J_2=J_1/2} = \sum_{\boxtimes} H_{\boxtimes} = \sum_{\boxtimes} \frac{J_1}{4} (\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 + \mathbf{S}_4)^2$$
Chandra, Coleman and Larkin, PRL 1990

Energy is the sum of positive terms ⇒ ground state should satisfy

$$\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 + \mathbf{S}_4 = 0$$

on every square ⇒ infinite degeneracy!

high frustration — allows several competing phases

Tuning knob to reduce degeneracy: ferromagnetic J₃

 $J_3 < 0 \Rightarrow$ shaded squares must have the same configuration

- four site magnetic unit cell
- shaded square must satisfy zero-sum condition
- unshaded squares automatically satisfy zero-sum condition
- free parameters: (θ, φ) for just one shaded square

Zero-sum condition on a single square

Four spins with the constraint $\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 + \mathbf{S}_4 = 0$

 \Rightarrow two free parameters upto a global rotation: $\theta \in [0,\pi]$ and $\varphi \in [0,2\pi)$

 (θ, φ) define an emergent vector order parameter!

J₁-J₂-J₃ classical phase diagram Spiral ansatz: $\mathbf{S}_i = S \{ \cos(\mathbf{Q} \cdot \mathbf{r}_i) \hat{x} + \sin(\mathbf{Q} \cdot \mathbf{r}_i) \hat{y} \}$

J₁-J₂-J₃ classical phase diagram Spiral ansatz: $\mathbf{S}_i = S \{ \cos(\mathbf{Q} \cdot \mathbf{r}_i) \hat{x} + \sin(\mathbf{Q} \cdot \mathbf{r}_i) \hat{y} \}$

$J_{2=}J_{1/2}; J_{3}<0$ line

Coexisting spirals:

 $\mathbf{S}_{i} = S\{\cos\left(\mathbf{Q}_{1}.\mathbf{r}_{i}\right)\hat{u} + \cos\left(\mathbf{Q}_{2}.\mathbf{r}_{i}\right)\hat{v} + \cos\left(\mathbf{Q}_{3}.\mathbf{r}_{i}\right)\hat{w}\}\$

Uniform spin length at every site \Rightarrow

$$|\hat{u}|^{2} + |\hat{v}|^{2} + |\hat{w}|^{2} = 1$$
$$\hat{u} \cdot \hat{v} = \hat{v} \cdot \hat{w} = \hat{w} \cdot \hat{u} = 0$$

This reduces to a four site magnetic unit cell with

Selected spirals
with J₃ < 0
$$S_1 + S_2 + S_3 + S_4 = 0$$

 Q_1
 Q_2
 Q_3
Three Q vectors satisfy 2Q = 0
 \Rightarrow spirals can coexist
Villain, J. Phys. France 1977

Two kinds of Goldstone modes occur in every g.s.: linear ($\varepsilon_{\mathbf{k}} \sim \mathbf{k}$) - characteristic of anti-ferromagnetism quadratic ($\varepsilon_{\mathbf{k}} \sim \mathbf{k}^2$) - characteristic of ferromagnetism

Quantum g.s. selection by spin waves

Quantum g.s. selection by spin waves

Holstein Primakov spin wave theory for spin-S: $E_{state} = S^2 E_{classical} + S \sum_{\mathbf{k}} \sum_{j} \epsilon_{j,\mathbf{k}}$

> zero point energy of spin waves (1/S correction) - breaks degeneracy

Zero point energy vs. (θ, φ)

Zero point energy is minimum for Néel state,

 $\{\Theta, \varphi\} = \{\pi/2, 0\}$

⇒ quantum fluctuations 'select' Néel order

Exact diagonalisation for S=1/2

Exact diagonalisation for S=1/2

Quantum fluctuations strongly prefer Néel order ⇒ Néel order eats into classical stripe region

Plaquette factorised ansatz

Thermal g.s. selection by spin waves - purely classical model

Free energy due to spin wave excitations at low temperatures:

$$F = k_B T \sum_{\mathbf{k}} \sum_{i} \ln(\epsilon_{i,\mathbf{k}})$$

Free energy vs. (θ, φ) $\hat{n} = \hat{z} \mathbf{Q} = (\pi, 0)$

Three degenerate minima: Néel, horizontal stripe and vertical stripe ⇒ system will pick one of three

 $\Rightarrow \mathbb{Z}_3$ symmetry breaking

Classical Monte Carlo results

- At any non-zero temperature, rotational symmetry is restored - in accordance with Mermin-Wagner theorem
- Discrete \mathbb{Z}_3 symmetry breaking persists upto some T_c
- Phase transition seen in classical Monte Carlo
- Critical exponents of 3-state Potts model universality class

 $\alpha/\nu \approx 0.402(0.4) \quad \beta/\nu \approx 0.132(0.1333) \quad \gamma/\nu \approx 1.561(1.7333)$

Summary

- Quantum disordered phase in square J₁-J₂ AFM arises from infinite degeneracy in classical limit
- Ferromagnetic J₃ partially lifts this degeneracy ~ coexisting spirals or equivalently four-site magnetic unit cell
- With J₃ coupling, quantum disordered term gives rise to Néel order, as seen from
 - spin wave theory
 - exact diagonlisation
 - plaquette factorised variational ansatz
- Quantum disordered phase in J₁-J₂ model must be driven by classical degeneracy of single-spiral states — suggests square J₁-J₂ XY model has the same disordered g.s.
- Classical model at finite temperatures: \mathbb{Z}_3 symmetry breaking with a phase transition in the 3-state Potts model class