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Origin of quantum disordered phase:  
extended classical degeneracy at J2=J1/2 
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Energy is the sum of positive terms 
 ⇒ ground state should satisfy 

on every square
S1 + S2 + S3 + S4 = 0

⇒ infinite degeneracy! 
high frustration — allows several 

competing phases

Chandra, Coleman and Larkin, PRL 1990



Tuning knob to reduce 
degeneracy: ferromagnetic J3
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J3<0 ⇒ shaded squares must have the same configuration 
•  four site magnetic unit cell  
•  shaded square must satisfy zero-sum condition 
•  unshaded squares automatically satisfy zero-sum condition 
•  free parameters: (𝜃,𝜑) for just one shaded square
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Zero-sum condition on a 
single square 
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Four spins with the constraint S1 + S2 + S3 + S4 = 0

⇒ two free parameters upto a global rotation: 𝜃 ∈ [0,𝜋] and 𝜑 ∈ [0,2𝜋)

(𝜃,𝜑) define an emergent vector order parameter!



J2/J1
J2=J1/2

Spiral ansatz:

Square J1-J2 classical AFM

Si = S {cos(Q · ri)x̂+ sin(Q · ri)ŷ}

J2=J1/2 J2>J1/2J2<J1/2

Qy

Qx

(⇡,⇡)

(⇡, 0)

(0,⇡)infinite degeneracy!

Selected spirals 
with J3 < 0



J1-J2-J3 classical phase diagram 

Spiral ansatz: Si = S {cos(Q · ri)x̂+ sin(Q · ri)ŷ}
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J1-J2-J3 classical phase diagram 

Spiral ansatz: Si = S {cos(Q · ri)x̂+ sin(Q · ri)ŷ}
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Villain, J. Phys. France 1977

⇒ spirals can coexist



J2=J1/2; J3<0 line 

Selected spirals 
with J3 < 0

Three Q vectors satisfy 2Q ≣ 0 
⇒ spirals can coexist

Q1
Q2

Q3

Villain, J. Phys. France 1977

Coexisting spirals: 
Si = S{cos (Q1.ri)û+ cos (Q2.ri)v̂ + cos (Q3.ri)ŵ}

Uniform spin length at every site ⇒
|û|2 + |v̂|2 + |ŵ|2 = 1

û · v̂ = v̂ · ŵ = ŵ · û = 0

This reduces to a four site magnetic unit cell with 
S1 + S2 + S3 + S4 = 0



J2=J1/2; J3=0 g.s. degeneracy 

J2/J1
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Spiral ansatz: Si = S {cos(Q · ri)x̂+ sin(Q · ri)ŷ}

Selected Q values

g.s. manifold composed of two sectors 

single spiral states with 
any Q on the BZ boundary coexistence states with 

Q1, Q2 and Q3 

- ferromagnetic J3 picks 
this sector 

Q1
Q2

Q3

Xiong and Wen 2013



J2=J1/2; J3<0 line 
Classical ground state manifold: 

four site magnetic unit cell with the condition

S1 S2

S3S4

S1 + S2 + S3 + S4 = 0

⇒ two parameter family of states 

parametrised by (𝜃,𝜑)  

Some (symmetric) ground states from the manifold:
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FIG. 4: Parametrizing the ground of a single square with a
zero-total-sum constraint by two angles: we first take all spins
to lie in one plane so that S1 and S2 make an angle 2✓. We
choose S3 = �S2 and S4 = �S1 to satisfy the zero-total-spin
constraint. We then rotate S3 and S4 about the S1 +S2 axis
by an angle '.

IV. SPIN WAVE ANALYSIS

We have established that the classical model with
J2 = J1/2 and J3 < 0 has a two parameter ground
state manifold. This degeneracy can be broken by ther-
mal/quantum fluctuations by the well-known ‘order by
disorder’ mechanism32. To demonstrate this, we con-
sider spin wave fluctuations about a generic state in the
ground state manifold.

As argued above, all the allowed ground states have a
four-site magnetic unit cell. Performing the usual Hol-
stein Primakov transformation and retaining O(S) terms,
we obtain a quadratic Hamiltonian of the form

HO(S) = �8J3N⇥S2+
X
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The sum is over half the Brillouin zone and N⇥
is the number of unit cells in the system – shaded
squares in Fig. 3(right). We have denoted  †

k =

{ a†
1,k a†

2,k a†
3,k a†

4,k }, where a†
i,k creates a spin wave

fluctuation with momentum k on the sublattice i. The
8 ⇥ 8 matrix with O(S) terms can be diagonalized by a
bosonic Bogoliubov transformation to give

HO(S) = �8J3N⇥S2 +
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where ✏
j,k are the spin wave energies, ck is a k-dependent

constant and �†
j,k is the eigenmode creation operator. In

Fig. 5, we illustrate the spin wave spectrum for four pos-
sible ground states. We have chosen four highly symmet-
ric configurations for the purpose of illustration: Néel,
stripe, coplanar and tetrahedral orders. In the ground
state manifold, the Néel and stripe phases are the only
allowed collinear ground states. The only way to form
a coplanar state is with spins forming right angles with
each other, pointing towards the vertices of a square. Of

the non-coplanar states, the most symmetric is the one
with four spins pointing along the vertices of a tetrahe-
dron.

As in the four states in Fig. 5, we find two kinds of
Goldstone modes in all allowed ground states: linear
modes with ✏

j,k ⇠ k as well as quadratic modes with
✏
j,k ⇠ k2. Linear modes usually occur in antiferromag-

nets while quadratic modes occur in ferromagnets. Our
system combines both these elements.
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FIG. 5: Spin wave dispersion of four possible ground states: a)
Néel, b) stripe, c) coplanar, and d) tetrahedral (non-coplanar)
states. The schematic in each panel shows the four spins in
the magnetic unit cell. In all the ground states, there are
goldstone modes which go to zero linearly as well as those
that go to zero quadratically.

A. Quantum order by disorder

At zero temperature, the spin wave Hamiltonian
gives an O(S) correction to the ground state energy:
�E =

P
k

0 P4
j=1 {✏

j,k + ck}. This can be interpreted
as zero point energy due to spin wave fluctuations. In
Fig. 6(left), the zero point energy is plotted as a function
of J3 for the four classical ground states shown in Fig. 5.
The Néel state has the lowest energy as shown. Indeed,
the Néel state has the lowest zero point energy among
all ground states for any J3 < 0. This is illustrated in
Fig. 7(left) which plots �E for a particular value of J3

(J3 = �J1) as a function of ✓ and ' on the surface of
the n̂{✓,'} Bloch sphere. Thus, with quantum spins at
zero temperature, we expect the (J2 = J1/2, J3 < 0) line
to show Néel order. We confirm this expectation for the
case of S = 1/2 in Sec. VI using exact diagonalization.

While the Néel state has the lowest energy, it may be
destabilized for small S values by quantum fluctuations.
The Néel ordered-moment has a 1/S correction given by
�m = 1

4N⇥

P
k

P
i

ha†
i,ka

i,ki. When �m ⇠ S, we may
surmise that Néel order becomes unstable. We plot �m
as a function J3 in Fig. 6(right). For the extreme quan-
tum limit of S = 1/2, we see that the Néel state is stable
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We have established that the classical model with
J2 = J1/2 and J3 < 0 has a two parameter ground
state manifold. This degeneracy can be broken by ther-
mal/quantum fluctuations by the well-known ‘order by
disorder’ mechanism32. To demonstrate this, we con-
sider spin wave fluctuations about a generic state in the
ground state manifold.

As argued above, all the allowed ground states have a
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sible ground states. We have chosen four highly symmet-
ric configurations for the purpose of illustration: Néel,
stripe, coplanar and tetrahedral orders. In the ground
state manifold, the Néel and stripe phases are the only
allowed collinear ground states. The only way to form
a coplanar state is with spins forming right angles with
each other, pointing towards the vertices of a square. Of

the non-coplanar states, the most symmetric is the one
with four spins pointing along the vertices of a tetrahe-
dron.
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FIG. 5: Spin wave dispersion of four possible ground states: a)
Néel, b) stripe, c) coplanar, and d) tetrahedral (non-coplanar)
states. The schematic in each panel shows the four spins in
the magnetic unit cell. In all the ground states, there are
goldstone modes which go to zero linearly as well as those
that go to zero quadratically.

A. Quantum order by disorder
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gives an O(S) correction to the ground state energy:
�E =
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as zero point energy due to spin wave fluctuations. In
Fig. 6(left), the zero point energy is plotted as a function
of J3 for the four classical ground states shown in Fig. 5.
The Néel state has the lowest energy as shown. Indeed,
the Néel state has the lowest zero point energy among
all ground states for any J3 < 0. This is illustrated in
Fig. 7(left) which plots �E for a particular value of J3

(J3 = �J1) as a function of ✓ and ' on the surface of
the n̂{✓,'} Bloch sphere. Thus, with quantum spins at
zero temperature, we expect the (J2 = J1/2, J3 < 0) line
to show Néel order. We confirm this expectation for the
case of S = 1/2 in Sec. VI using exact diagonalization.

While the Néel state has the lowest energy, it may be
destabilized for small S values by quantum fluctuations.
The Néel ordered-moment has a 1/S correction given by
�m = 1

4N⇥

P
k

P
i

ha†
i,ka

i,ki. When �m ⇠ S, we may
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J2 = J1/2 and J3 < 0 has a two parameter ground
state manifold. This degeneracy can be broken by ther-
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disorder’ mechanism32. To demonstrate this, we con-
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ric configurations for the purpose of illustration: Néel,
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At zero temperature, the spin wave Hamiltonian
gives an O(S) correction to the ground state energy:
�E =
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Fig. 6(left), the zero point energy is plotted as a function
of J3 for the four classical ground states shown in Fig. 5.
The Néel state has the lowest energy as shown. Indeed,
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all ground states for any J3 < 0. This is illustrated in
Fig. 7(left) which plots �E for a particular value of J3

(J3 = �J1) as a function of ✓ and ' on the surface of
the n̂{✓,'} Bloch sphere. Thus, with quantum spins at
zero temperature, we expect the (J2 = J1/2, J3 < 0) line
to show Néel order. We confirm this expectation for the
case of S = 1/2 in Sec. VI using exact diagonalization.

While the Néel state has the lowest energy, it may be
destabilized for small S values by quantum fluctuations.
The Néel ordered-moment has a 1/S correction given by
�m = 1

4N⇥

P
k

P
i

ha†
i,ka

i,ki. When �m ⇠ S, we may
surmise that Néel order becomes unstable. We plot �m
as a function J3 in Fig. 6(right). For the extreme quan-
tum limit of S = 1/2, we see that the Néel state is stable

Néel Stripe Coplanar Tetrahedral



Spin wave fluctuations
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linear (𝜀k ~ k) - characteristic of anti-ferromagnetism 
quadratic (𝜀k ~ k2) - characteristic of ferromagnetism



Quantum g.s. selection by 
spin waves

Holstein Primakov spin 
wave theory for spin-S: 

zero point energy of spin 
waves (1/S correction) 
- breaks degeneracy

Estate = S2Eclassical + S
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Quantum g.s. selection by 
spin waves
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zero point energy of spin 
waves (1/S correction) 
- breaks degeneracyZero point energy vs. (𝜃,𝜑) 
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Exact diagonalisation for S=1/2
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Exact diagonalisation for S=1/2

0.3 0.4 0.5 0.6 0.7
-3

-2

-1

0

J2/J1

J3/J1

0.3 0.4 0.5 0.6 0.7
-3

-2

-1

0

J2/J1

J3/J1

Néel Phase (!,!)
Stripe Phase 
(!,0)!or!(0,!)

Quantum Paramagnetic Phase

0.3 0.4 0.5 0.6 0.7
-3

-2

-1

0

J2/J1

J3/J1

Néel Phase (!,!)
Stripe Phase 
(!,0)!or!(0,!)

Quantum Paramagnetic Phase

Néel phase (!,!)
Stripe phase 
(!,0) or (0,!) 

Quantum paramagnet

0.0

0.1

0.2

0.3

0.4

0.5

m
s2 (

Q
)

L=20, (π,π)
L=20, (π,0)

L=32, (π,0)
L=32, (π,π)

Extrapolated, (π,π)

J2/J1=0.5

Extrapolated, (π,0)

0.0

0.1

0.2

0.3

0.4

0.5

m
s2 (

Q
)

L=20, (π,π)
L=20, (π,0)

L=32, (π,0)
L=32, (π,π)

Extrapolated (π,π)
Extrapolated
(π,0)

J2/J1=0.51

-4 -3 -2 -1 0
0.0

0.1

0.2

0.3

J3/J1
m

s2 (
Q

)

 L=20, (π,π)
 L=20, (π,0)

 L=32, (π,0)
 L=32, (π,π)

 Extrapolated, (π,π)
 Extrapolated, (π,0)

J2/J1=0.52

0.0

0.1

0.2

0.3

m
s2 (

Q
)

L=20, (π,π)
L=20, (π,0)

L=32, (π,0)
L=32, (π,π)

Extrapolated, (π,π)
Extrapolated, (π,0)

J2/J1=0.53

0.0

0.1

0.2

0.3

m
s2 (

Q
)

L=20, (π,π)

L=32, (π,0)

L=20, (π,0)
L=32, (π,π)

Extrapolated, (π,π)
Extrapolated, (π,0)

J2/J1=0.54

-1.8 -1.4 -1.0 -0.6 -0.2
0.0

0.1

0.2

0.3

J3/J1

m
s2 (

Q
)

L=20, (π,π)
L=20, (π,0)

L=32, (π,0)
L=32, (π,π)

Extrapolated, (π,π)
Extrapolated, (π,0)

J2/J1=0.55

Quantum fluctuations strongly prefer Néel order 
⇒ Néel order eats into classical stripe region



Plaquette factorised ansatz
Classically, magnetic unit cell has four sites  

⇒ suggests plaquette-factorisable quantum wavefunction
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Thermal g.s. selection by spin 
waves - purely classical model
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excitations at low temperatures: 

Free energy vs. (𝜃,𝜑) 

Three degenerate minima:  
Néel, horizontal stripe and vertical 

stripe   
⇒ system will pick one of three 

⇒ ℤ3 symmetry breaking



Classical Monte Carlo results
• At any non-zero temperature, rotational symmetry is restored 

- in accordance with Mermin-Wagner theorem 
• Discrete ℤ3 symmetry breaking persists upto some Tc 
•  Phase transition seen in classical Monte Carlo  
•  Critical exponents of 3-state Potts model universality class
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Summary
• Quantum disordered phase in square J1-J2 AFM arises from infinite 

degeneracy in classical limit 

• Ferromagnetic J3 partially lifts this degeneracy ~ coexisting spirals or 
equivalently four-site magnetic unit cell 

• With J3 coupling, quantum disordered term gives rise to Néel order, as seen 
from  

• spin wave theory 

• exact diagonlisation 

• plaquette factorised variational ansatz 

• Quantum disordered phase in J1-J2 model must be driven by classical 
degeneracy of single-spiral states — suggests square J1-J2 XY model has 
the same disordered g.s. 

• Classical model at finite temperatures: ℤ3 symmetry breaking with a phase 
transition in the 3-state Potts model class


