Current Frontiers in Condensed Matter Physics ICTS, Bangalore, 2016.6.20-29

 \boldsymbol{e}_1

Magnetic properties of volborthite determined by a coupled-trimer model

Shunsuke Furukawa Dept. of Physics, Univ. of Tokyo

O. Janson *et al.,* arXiv:1509.07333 (to appear in Phys. Rev. Lett.)

✓Volborthite = coupled trimers

✓ Scenario for a bond nematic state in a magnetic field

Collaboration

DFT+U modeling

O. Janson (TU Wien) K. Held (TU Wien)

Exact diagonalization

P. Sindzingre (Paris VI) J. Richter (Magdeburg)

Effective model analysis

S. F. (Univ. of Tokyo)

T. Momoi (RIKEN)

Introduction: spin-1/2 kagome antiferromagnet (AFM) 3 /22

spin άb

kagome

➤Candidate of a quantum spin liquid DMRG: Gapped Z₂ spin liquid (S_{topo}=log 2)

Variational MC: Gapless spin liquid

Unusual magnetization process

Nishimoto et al. Nat. Comm. 4, 2287 (2013) Capponi et al., PRB 88, 144416 (2013) Schlenburg *et al.*, PRL **88**, 167207 (2002)

Hida, JPSJ 70, 3673 (2001) Cabra et al., PRB **71**,144420 (2005)

Quantum nature

Schwinger boson: Sachdev, PRB 45, 12377 (1992)

S. Yan et al., Science **332**, 1173 (2011) Depenbrock et al., PRL 109, 067201 (2012) H.-C. Jiang et al., Nat. Phys. 8, 902 (2012)

Y. Ran et al., PRL 98, 117205 (2007) Y. Iqbal et al., PRB 89, 020407 (2014)

Volborthite Cu₃V₂O₇(OH)₂2H₂O

Orbital arrangement

Single-crystal X-ray diffraction: orbital switching at T=310 K

H. Yoshida *et al.*, Nat. Comm. **3**, 860 (2012)

cf. Other kagome candidates

herbertsmithite ZnCu₃(OH)₆Cl₂ vesignieite BaCu₃V₂O₈(OH)₂

Y. Okamoto et al., J. Phys. Soc. Jpn. 78, 033701 (2009)

Comparisons of magnetic susceptibilities

Volborthite: Deviation from kagome AFM? (-> less frustrated?) Yet shows rich field-induced phenomena.

Magnetization process of a single crystal

7 /22

Field-induced phases of a single crystal - I

Field-induced phases of a single crystal - II

9 /22

Previous model: coupled frustrated chains

10 /22

50

150

h(T)

200

Modeling with single-crystal structural data ^{11/22}

Fit with susceptibility

 $J \simeq 252 \text{ K}$ g = 2.151 $J : J' : J_1 : J_2 = 1 : (-0.2) : (-0.5) : 0.2$

Magnetization process

Effective model for low fields $h = g\mu_B H/k_B \ll J$ 14/22

Pseudospin-1/2 moment living on each trimer

$$T_{\boldsymbol{r}} = \left(|d_{+\frac{1}{2}}\rangle_{\boldsymbol{r}}, |d_{-\frac{1}{2}}\rangle_{\boldsymbol{r}} \right) \frac{\boldsymbol{\sigma}}{2} \begin{pmatrix} \boldsymbol{r} \langle d_{+\frac{1}{2}} | \\ \boldsymbol{r} \langle d_{-\frac{1}{2}} | \end{pmatrix}$$

 $|d_{+\frac{1}{2}}\rangle = \frac{1}{\sqrt{6}} \left(|\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\uparrow\rangle - 2|\uparrow\downarrow\uparrow\rangle\right)$

cf. distorted diamond chains Tonegawa et al., 2000; Honecker & Laeuchli, 2001 2nd-order strong-coupling expansion

(c) (d → 4 magnetic trimer

$$\mathcal{J}_1 = -34.9 \text{ K}$$

 $\mathcal{J}_2 = 36.5 \text{ K}$
 $\mathcal{J}_2 = 6.8 \text{ K}$
 $\mathcal{J}_3 = 4.6 \text{ K}$

effective model

Magnetization process for low fields

Exact diag. of the effective model: tripled size can be simulated. Saturation of pseudospins = 1/3 plateau of the original model

Reproduced the change of the slope!

Nature of field-induced phases I

Field theory for $|\mathcal{J}_1| \ll \mathcal{J}_2$

Starykh et al., PRB 82, 014421 (2010)

H. Ishikawa *et al.*, PRL **114**, 227202 (2015) M. Yoshida *et al.*, arXiv:1602.04028

Nature of field-induced phases II

Three leading effective couplings

Anisotropic version of J₁-J₂ model on square lattice

Nematic order due to condensation of two-magnon bound states

Shannon, Momoi, & Sindzingre, PRL 96, 027213 (2006)

Mechanism for a bond nematic state

cf. Bose-Einstein condensation of single magnons

$$\langle b_j \rangle = \langle S_j^+ \rangle \neq 0$$

Transverse magnetic order

Review article: T. Giamarchi et al., Nat. Phys. 4, 198 (2008) $TICuCl_3$ (Exp. & Theory): Nikuni et al., PRL 84, 5868 (2000)

Bimagnon condensation

Shannon, Momoi, & Sindzingre, PRL **96**, 027213 (2006)

$$b_{j}b_{j'}\rangle = \langle T_{j}^{+}T_{j'}^{+}\rangle \neq 0$$

$$\stackrel{\text{(b)}}{\overset{(\text{b})}{\mathcal{D}_{ij}} \equiv \langle T_{i}^{x}T_{j}^{x} - T_{i}^{y}T_{j}^{y}\rangle}{\overset{(\text{b})}{\overset{(\text{b})}{\mathcal{D}_{ij}} = \langle T_{i}^{x}T_{j}^{x} - T_{i}^{y}T_{j}^{y}\rangle}$$

$$\stackrel{(\text{b})}{\overset{(\text{b})}{\overset{(\text{b})}{\mathcal{D}_{ij}} = \langle T_{i}^{x}T_{j}^{x} - T_{i}^{y}T_{j}^{y}\rangle}{\overset{(\text{b})}{\overset{(\text{b})}{\mathcal{D}_{ij}} = 0}$$

Bond nematic order

Leading magnon instability from the plateau ¹⁹/²²

Exact diag. calculation of n-magnon states (n=1,2,3,4) In the $\mathcal{J}_1 - \mathcal{J}_2 - \mathcal{J}_2'$ model

Nematic order In an extended region of the parameter space

Full effective model

- > Longer-range interactions such as $J_3 = 4.6 \text{ K}, J'_3 = 1.7 \text{ K}$ tend to destabilize bimagnons, leading to a confentional single-magnon condensation.
- Slight tuning of the original model (e.g., increased J'=-0.25J) recovers bimagnons.

Consistent with experiment! Yet, the fit with χ is disproved.

The best parameter set for describing the system is still under investigation.

Open issue: Dzyaloshinskii-Moriya interactions

M. Yoshida, JPS Meeting, 2015.3

H. Ishikawa *et al.,* PRL **114**, 227202 (2015) M. Yoshida *et al.,* arXiv:1602.04028

Summary

O. Janson *et al.*, arXiv:1509.07333 (to appear in Phys. Rev. Lett.)

22 /22

Coupled trimers vs. coupled frustrated chains ²³/²²

Field-induced phenomena in a single crystal ²⁴/²²

➢ Wide 1/3 plateau
 M. Yos
 26 T → 74 T → Over 100 T ?!
 Faraday rotation exp.,
 T. Yamashita *et al.*, JPS Meeting, 2015.3
 Much larger than the kagome AFM case!!
 ➢ "N" phase between SDW and plateau:
 Originates from condensation of multimagnon bound states?

H. Ishikawa *et al.*, PRL **114**, 227202 (2015) M. Yoshida *et al.*, arXiv:1602.04028

25 /22

Spatially anisotropic triangular antiferromagnet (case of J2, J1>0, J2'=0)

Starykh, Katsura, and Balents, PRB 82, 014421 (2010) Bosonization analysis for J'/J<<1

(d) Ideal 2d model

Chen, Ju, Jiang, Starykh, and Balents, PRB 87, 165123 (2013) DMRG calculation

Bosonization analysis

Starykh, Katsura, and Balents, PRB 82, 014421 (2010)

Bosonization analysis
Starykh, Katsura, and Balents,
PRB 82, 014421 (2010)

$$H_{1} \approx J' \sum_{y,z} \int dx \left\{ 2M^{2} + 2S_{y,z;0}^{z}S_{y+1,z;0}^{z} \right\}$$

$$S^{z}(x) \sim M + S_{0}^{z}(x) + e^{i(\pi-2\delta)x}S_{\pi-2\delta}^{z}(x) + e^{-i(\pi-2\delta)x}S_{\pi+2\delta}^{z}(x),$$

$$S^{+}(x) \sim e^{-i2\delta x}S_{2\delta}^{+}(x) + e^{i2\delta x}S_{-2\delta}^{+}(x) + (-1)^{x}S_{\pi}^{+}(x).$$

$$Scaling dimensions$$

$$Q marginal$$

$$+2 \sin \delta[S_{y,z;\pi-2\delta}^{z}S_{y+1,z;\pi+2\delta}^{z} + \text{H.c.}] \quad 1/2\pi R^{2} = 2K : 1 \rightarrow 2$$

$$SDW \text{ at low and middle h}$$

$$+\frac{1}{2}[-i\mathcal{S}_{y,z;\pi}^{+}\partial_{x}\mathcal{S}_{y+1,z;\pi}^{-} + \text{H.c.}] \quad 1 + 2\pi R^{2} = 1 + 1/2K : 2 \to 3/2 \text{ cone}$$
 at high h

$$+\cos \delta [\mathcal{S}_{y,z;2\delta}^+ \mathcal{S}_{y+1,z;2\delta}^- + \mathcal{S}_{y,z;-2\delta}^+ \mathcal{S}_{y+1,z;-2\delta}^- + \text{H.c.}]$$

Consider only the 2nd and 3rd terms

$$H'_1 = \sum_{y,z} \int dx \{ \tilde{\gamma}_{\text{SDW}} \cos[2\pi(\phi_{y,z} - \phi_{y+1,z})/\beta] \}$$

$$- \tilde{\gamma}_{\text{cone}}(\partial_x \theta_{y,z} + \partial_x \theta_{y+1,z}) \cos[\beta(\theta_{y,z} - \theta_{y+1,z})]\}, \quad (27)$$

 $\tilde{\gamma}_{\text{SDW}} = J' A_1^2 \sin \delta$ and $\tilde{\gamma}_{\text{cone}} = J' A_3^2 \beta / 2$.

TABLE I. Scaling dimensions of scaling fields associated with spin fluctuations in the one-dimensional Heisenberg chain at magnetization M. The third and fourth columns give the scaling dimensions in the limit of zero and full polarization, respectively.

Operator	Δ	M = 0	$M \rightarrow 1/2$
\mathcal{S}_0^z	1	1	1
$S_{\pi\pm 2\delta}^{z}$	$1/4 \pi R^2$	1/2	1
$S^{\pm}_{+2\delta}$	$\pi R^2 + 1/4\pi R^2$	1	5/4
\mathcal{S}_{π}^{\pm}	πR^2	1/2	1/4

T=200 K

The transition between them occurs at 155 K. The $P2_1/a$ phase has lattice constants of a = 10.6489(1) Å, b = 5.8415(1) Å, c = 14.4100(1) Å, and $\beta = 95.586(1)^{\circ}$ at 50 K, while the I2/a phase has a = 10.6237(3) Å, b = 5.8468(1) Å, c = 14.3892(7) Å, and $\beta = 95.3569(1)^{\circ}$ at 200 K. The two structures are basically similar to each

Effective model for low fields $h = g\mu_B H/k_B \ll J$ 32/22

Take the lowest-energy doublet in each trimer, perform 2nd-order strong-coupling expansion cf. distorted diamond chains Tonegawa et al., 2000; Honecker & Laeuchli, 2001
 Saturation of pseudospins = 1/3 plateau of the original model
 Exact diag. of the effective model: tripled size can be simulated.

Reproduced the change of the slope!

34 /22

