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non-linear quenching

• Transverse field Ising model in one dimension and
Kitaev model in two dimensions

• Effects of topology and interactions on quenching

• Periodic driving, Floquet edge modes and
topological invariants

• Manipulating the Dirac dispersion in graphene and
dynamical localization

p.2/92



Defect formation due to quench

It was pointed out long ago that taking a system across a critical temperature
can produce a variety of defects

In the early universe, cooling may have led to formation of topological defects
(like domains, strings or magnetic monopoles) due to spontaneous
symmetry breaking of some scalar field

Zel’dovich, Kobzarev and Okun, JETP 40, 1 (1974); Kibble, J. Phys. A 9, 1387 (1976)

A quench across the normal-superfluid transition in 4He can lead to domains
with different phases of the Bose condensate, or to the production of vortices

Zurek, Nature 317, 505 (1985)

Review: Zurek, Phys. Rep. 276, 177 (1996)

The density of defects depends on the rate of quenching

In the case of 4He, Zurek predicted that the density of vortices will scale with
the quenching time as 1/

√
τ
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Kibble-Zurek scaling

Hand waving derivation:

Suppose that we vary the temperature T linearly in time to take it across
the critical value Tc. So the time dependence is T − Tc = t/τ

A defect is formed when T is close to Tc, say, when the correlation time
ξt ∼ (T − Tc) τ

The correlation length ξ is given by ξt ∼ ξz and also by ξ ∼ (T − Tc)−ν ,

where ν and z are called the correlation length exponent and dynamical critical
exponent respectively

Hence ξz ∼ ξ−1/ν τ, and ξ ∼ τν/(zν+1)

In d dimensions, the volume associated with a point defect is v ∼ ξd.

Hence the defect density is given by

n = 1/v ∼ 1/τdν/(zν+1)

It turns out that the same scaling law holds for quenching across a
quantum critical point at zero temperature
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Quantum critical point (QCP)

A quantum system at zero temperature, i.e., in its ground state, may undergo
a phase transition as some parameter γ in the Hamiltonian is varied

Suppose that γ = γc is the QCP, and the system is ordered (disordered)
for γ < γc ( > γc)

If M~r denotes the order parameter field, then

〈0|M~r|0〉 = m

where m 6= 0 ( = 0) for γ < γc ( > γc)
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Quantum critical point

The ground state of a quantum system may undergo a phase transition as
a parameter in the Hamiltonian is varied

Example: the Ising model in a transverse field in one dimension

H = −
X

n

[ σz
nσ

z
n+1 + γ σx

n ], where σa
n are Pauli matrices

There is a QCP at γc = 1 related to the finite temperature
critical point of the classical Ising model in two dimensions (solved by Onsager)

For γ = 0, the ground state of the system has ferromagnetic order with
all spins having σz = 1 or − 1

The order parameter O = | 〈 σz
n 〉 | goes from 1 to 0 as γ goes from

0 to γc, and is 0 for γ ≥ γc

For γ = ∞, all spins have σx = 1 in the ground state of the system
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Transverse Ising model · · ·

The two-spin correlation function 〈σz
0σ

z
n〉 − 〈σz

0〉2 goes to zero exponentially as
exp(−|n|/ξ) as |n| → ∞, where the correlation length ξ diverges near the
QCP as | γ − γc |−ν

Consider the spectrum of the low-lying excitations ω(k)

At the QCP γ = γc, ω(k) vanishes at some momentum kc as | k − kc |z

Near the QCP, the gap ∆E = ω(kc) between the ground state
and the first excited state vanishes as ∆E ∼ | γ − γc |zν

These relations define two critical exponents ν and z

(there are other critical exponents, such as 〈σz
0〉 ∼ |γc − γ|1/8,

but we don’t need those exponents at the moment)

For the transverse Ising model, ω(k) = 2
p

(γ − 1)2 + 4γ cos2(k/2) (shown below),
so that γc = 1, kc = π. ω goes to zero linearly as |γ − γc| for k = kc and
as |k − kc| for γ = γc. So the critical exponents are z = ν = 1
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Transverse Ising model · · ·
H = −

X

n

[ σz
nσ

z
n+1 + γ σx

n ]

For γ → ∞, the ground state is

and the lowest excited state has a spin pointing in the wrong direction

For γ → 0, the ground states are

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

and

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

and the lowest excited state is a domain wall (a topological defect)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓
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Quenching in transverse Ising model

What happens if we change γ from ∞ to 0 in a time τ ?

For γ → 0, the ground states are

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

and

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

But due to quenching at a finite rate, the state actually observed as γ → 0

will have some defects

↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓

Some of the defects are topological (domain walls), while others are not
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Defect scaling law

How does the defect density depend on the quenching time τ ?

Consider a linear quench with γ = −t/τ, where −∞ < t < 0

Main result: For the transverse Ising model, if τ is much larger than the
inverse of the band width of the low-energy excitations, then the density
of defects n scales as 1/

√
τ

Reason: When one quenches across a QCP, there are necessarily a
number of low-energy modes for which the quenching is not adiabatic.
These modes give rise to defects

Zurek, Dorner and Zoller, Phys. Rev. Lett. 95, 105701 (2005)
Polkovnikov and Gritsev, Nature Physics 4, 477 (2008)
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Jordan-Wigner transformation

The model can be solved exactly by mapping spin-1/2’s to fermions using the
Jordan-Wigner transformation

Lieb, Schultz and Mattis, Ann. Phys. 16, 407 (1961)
Kogut, Rev. Mod. Phys. 51, 659 (1979)

We define

an =

2

4

n−1
Y

m=−∞
σz

m

3

5 σ+
n ,

a†n =

2

4

n−1
Y

m=−∞
σz

m

3

5 σ−
n ,

where σ±
n = (1/2) (σx

n ± iσy
n)

Then {am, an} = 0 and {am, a
†
n} = δmn

These operators create and annihilate spinless fermions
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Hamiltonian

In terms of the fermion operators, the Hamiltonian

H = −
X

n

[ σx
nσ

x
n+1 + γ σz

n ]

becomes

H = −
X

n

[ 2γa†nan + a†n+1an + a†nan+1 + a†na
†
n+1 + an+1an ]

Define the Fourier transforms

ak =
1√
N

X

n

an e
−ikn and an =

1√
N

X

−π<k<π

ak e
ikn

where N is the number of sites. Then the Hamiltonian becomes

H = 2
X

0<k<π

[−(γ + cos k) (a†kak + a†−ka−k) − i sin k (aka−k − a†−ka
†
k)]
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Energy spectrum
The Hamiltonian is

H = 2
X

0<k<π

[−(γ + cos k) (a†kak + a†−ka−k) − i sin k (aka−k − a†−ka
†
k)]

Thus the system decouples into non-interacting fermions with momenta ± k

For each pair of momenta ± k, there are four states: | φ > (empty state),
| k >, | − k > (one-fermion states), and | k, − k > (two-fermion state)

The one-fermions states have zero energy, while the states | φ〉 and i | k, − k〉
are governed by the 2 × 2 Hamiltonian

hk =

0

@

−4(γ + cos k) 2 sin k

2 sin k 0

1

A ,

The ground state lies in this two-dimensional subspace, and
the energy spectrum is ω(k) = 2

p

(γ − 1)2 + 4γ cos2(k/2)

As γ varies with time, only these two states can mix with each other
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Quenching of γ

Thus, we only have to deal with a two-level system for each value of ± k

Damski, Phys. Rev. Lett. 95, 035701 (2005)

For γ = −t/τ, the Hamiltonian is given by

hk =

0

@

2(t/τ − cos k) 2 sin k

2 sin k −2(t/τ − cos k)

1

A ,

plus a constant

If we start in the ground state of this system at t = −∞,

which state do we reach at t = 0 ?

This is the famous Landau-Zener problem

Zener, Proc. R. Soc. London Ser A 137, 696 (1932)
Landau and Lifshitz, Quantum Mechanics: Non-relativistic Theory
(Pergamon, Oxford, 1965) p.14/92



Landau-Zener problem

Given a two-level system with a time-dependent Hamiltonian

H =

0

@

t/τ b

b −t/τ

1

A ,

the instantaneous eigenvalues are given by ±
p

b2 + t2/τ2
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Landau-Zener transition
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If we start in the ground state at t→ −∞, the probability of ending in
the excited state at t→ ∞ is given by p = exp [ − πb2τ ]

Landau and Zener, 1932

If we do not begin or end at t = ±∞, we get p ∼ 1/(b4τ2)

The cross-over between the two results occurs if the initial or final times
are of the order of bτ p.16/92



Scaling argument for p

The probability of ending in the excited state is p = exp [ − πb2τ ]

Note that p → 0 or 1 as τ → ∞ (adiabatic) or 0 (sudden quench)

A simple scaling argument shows that p must be a function of b
√
τ .

The Schrödinger equation is

i
∂

∂t

0

@

ψ1

ψ2

1

A =

0

@

t/τ b

b −t/τ

1

A

0

@

ψ1

ψ2

1

A

Multiplying throughout by
√
τ and re-defining t′ = t/

√
τ , we obtain

i
∂

∂t′

0

@

ψ1

ψ2

1

A =

0

@

t′ b
√
τ

b
√
τ −t′

1

A

0

@

ψ1

ψ2

1

A

Hence, if we start with ψ1(t′ = −∞) = 1, then p = |ψ1(t′ = ∞)|2 must be a
function of the single parameter b

√
τ which must → 0 or 1 as b

√
τ → ∞ or 0
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Defect scaling law

Returning to the Hamiltonian for the transverse Ising model

H = 2
X

0<k<π

[−(γ + cos k) (a†kak + a†−ka−k) + sin k (aka−k + a†−ka
†
k)],

the total defect density is

n =

Z π

0

dk

2π
pk =

Z π

0

dk

2π
exp [ − 2πτ sin2 k ]

For large τ, the integral is dominated by the contributions from k = 0 and π

We then get n ∼
R ∞
0 dk exp [ − 2πτk2 ] ∼ 1√

τ

The power law for n versus τ arises because the quench takes the system
across a QCP where the energy vanishes at some values of k.
So no matter how slowly we quench across this point, there are low-energy
modes (with energies . 1/

√
τ) for which the quenching is not adiabatic p.18/92



General defect scaling law

A ‘hand waving’ derivation for the defect scaling for quenching across a QCP
for a system in d dimensions, with critical exponents ν and z :

By analogy with the two-level analysis for the transverse Ising model, we assume
a Hamiltonian of the form

H =

0

@

∆E sign(t) |k|z

|k|z −∆E sign(t)

1

A ,

where ∆E ∼ |γ − γc|zν , and we assume a quench of the form γ − γc ∼ t/τ

We now try a scaling argument as before. Multiplying the Schrödinger equation
i∂ψ/∂t = Hψ by τzν/(zν+1) and re-defining t′ = t/τzν/(zν+1), we see that
the probability of ending in the excited state is given by a function pk(kτν/(zν+1))

Hence the defect density is given by n ∼
R ∞
0 ddk pk ∼ 1

τdν/(zν+1)

For d = ν = z = 1, we recover n = 1/
√
τ p.19/92



General defect scaling law · · ·

For translation invariant systems, the relation

n ∼ 1

τdν/(zν+1)

has been derived by Polkovnikov, Phys. Rev. B 72, 161201(R) (2005)
using first-order perturbation theory and scaling arguments for the dispersion
of the low-lying excitations ω(k) and the derivative 〈 k | ∂

∂γ
| 0 〉.

The existence of two-level systems is not necessary

The ‘hand waving’ argument for this is similar in spirit to the Kibble-Zurek argument
given earlier: the defects are produced by a region in momentum space with
volume kd, where (γ − γc)τ ∼ t ∼ 1/ω, with k ∼ (γ − γc)ν and ω ∼ kz .

Then we find that the density of defects n ∼ kd ∼ 1/τdν/(zν+1)

For d ≥ 2(z + 1/ν), we get n ∼ 1/τ2 due to contributions from all momenta,
not just small momenta. This is because in practice γ − γc only goes between
two finite positive and negative values, not ±∞, and the excitation probability
is then of the order of 1/τ2
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General defect scaling law · · ·

The Kibble-Zurek scaling relation is

n ∼ 1

τdν/(zν+1)

We now discuss some generalizations of this scaling relation:

(i) quenching across a gapless surface in momentum space

(ii) quenching along a critical line in parameter space

(iii) non-linear quenching

Each of these is found to modify the power law
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Gapless surface in momentum space

Suppose that at the point γ = γc, the energy vanishes on a surface of d−m

dimensions in momentum space, rather than at an isolated point

Then the momentum integration which appears in the expression for the defect
density will be over m dimensions instead of d dimensions

Hence, we will get

n ∼
Z ∞

0
dmk pk(kτν/(zν+1)) ∼ 1

τmν/(zν+1)

There is actually a model where this happens: the Kitaev model which has
d = 2, m = 1, ν = z = 1. Thus n ∼ 1/

√
τ instead of 1/τ as it should

have been for a two-dimensional model with ν = z = 1
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Kitaev model

This is the only known spin model in two dimensions which is exactly solvable
Kitaev, Ann. Phys. 321, 2 (2006)

The model has spin-1/2’s on a honeycomb lattice, with highly anisotropic
couplings between nearest neighbors. The Hamiltonian is

H =
X

j+l=even

(J1 σ
x
j,lσ

x
j+1,l + J2 σ

y
j−1,lσ

y
j,l + J3 σ

z
j,lσ

z
j,l+1)

Can assume that all couplings Ji ≥ 0

x y
z

a

b
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Jordan-Wigner transformation

The Kitaev model can be solved exactly by mapping it to Majorana fermions by
a Jordan-Wigner transformation, even though it is a model in two dimensions

a~n =

2

4

~n−1
Y

~m=−∞
σz

~m

3

5 σy
~n

(σx
~n) for even (odd) numbered chains

b~n =

2

4

~n−1
Y

~m=−∞
σz

~m

3

5 σx
~n (σy

~n
) for even (odd) numbered chains

depending on whether ~n lies on the A or B sub-lattice

These operators satisfy the anticommutation relations

{ a~m , a~n } = { b~m , b~n } = 2 δ~m~n, and { a~m , b~n } = 0

These are Majorana operators since they are Hermitian

The string of σz
~m’s is chosen to go along the x and y bonds, towards the

right (left) on even (odd) numbered chains
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Jordan-Wigner transformation

H =
X

j+l=even

(J1 σ
x
j,lσ

x
j+1,l + J2 σ

y
j−1,lσ

y
j,l + J3 σ

z
j,lσ

z
j,l+1)

The xx and yy interactions become local and quadratic in the Majorana
fermion operators under the Jordan-Wigner transformation

The zz interaction would normally become non-local and quartic in the
fermion operators

But in this model, this remains local and only couples fermions on nearest
neighbor sites due to a large number of conserved quantities
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Conserved quantities

x y
z

1
2

3

4

5
6

Wp

The model has a conserved quantity W associated with each hexagon:

W = σy
1 σ

z
2 σ

x
3 σ

y
4 σ

z
5 σ

x
6

Hence there are 2N/2 decoupled sectors corresponding to the values of
W = ± 1 in the N/2 different hexagons (the number of sites is N)

Because of these conserved quantities, the zz interactions become
local in terms of the Majorana fermions
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Kitaev model · · ·

1

2

W
1

W
2

W
3

. . .

If 1/2 lies on an even/odd numbered chain, then σz
1σ

z
2 ∼ a1 b1 W1 W2 W3 · · ·

In any particular sector with some given values of Wi, the zz interaction
reduces to a product of two fermion operators. The ground state turns out
to lie in a sector in which all the Wi = 1. In that sector, we find that

H = i
X

~n

[ J1 b~n a~n− ~M1
+ J2 b~n a~n+ ~M2

+ J3 b~n a~n ] ,

where ~M1 =
√

3
2
î+ 3

2
ĵ and ~M2 =

√
3

2
î− 3

2
ĵ
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Brillouin zone

Define the Fourier transforms

a~n =

r

4

N

X

~k

[ a~k
ei~k·~n + a†

~k
e−i~k·~n ],

b~n =

r

4

N

X

~k

[ b~k e
i~k·~n + b†

~k
e−i~k·~n ],

where ~k runs over only half the Brillouin zone (due to their Majorana mature)
which looks as follows:

kx

ky

2π

3

−2π

3

2π√
3
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Hamiltonian

The Hamiltonian of the Kitaev model is

H =
X

~k

“

a†~k
b†~k

”

H~k

0

@

a~k

b~k

1

A ,

H~k
= 2 [J3 + J1 cos(~k · ~M1) + J2 cos(~k · ~M2)] σ

2

+ 2 [J1 sin(~k · ~M1) − J2 sin(~k · ~M2)] σ
1,

where ~M1 =
√

3
2
î+ 3

2
ĵ and ~M2 =

√
3

2
î− 3

2
ĵ

This is a system of non-interacting Majorana fermions

Depending on the values of J1, J2, J3, there may or may not be a gap
between the ground state and the first excited state
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Phase diagram of Kitaev model

If J1 < J2 + J3, J2 < J3 + J1 and J3 < J1 + J2, the system is gapless
along some lines in half the Brillouin zone

For all other values of (J1, J2, J3), the system is gapped

The phase diagram can be shown in terms of points in an equilateral triangle
satisfying J1 + J2 + J3 = 1 (the value of Ji is the distance from the
opposite side)

GAPLESS

GAPPEDGAPPED

GAPPED

J1J2

J3
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Quenching in the Kitaev model

Let us hold J1, J2 fixed, and vary J3 in time as Jt/τ, from t = −∞ to t = ∞
(as shown by the red dotted line). Then the system will pass through the gapless
region for some time

GAPLESS

J1J2

J3

Sengupta, Sen and Mondal, Phys. Rev. Lett. 100, 077204 (2008)
Mondal, Sen and Sengupta, Phys. Rev. B 78, 045101 (2008) p.31/92



Scaling of defect density
In the gapless region, the energy of the low-lying excitations typically vanishes
on some lines in half the Brillouin zone as indicated in red below

kx

ky

Thus the Kitaev model has d = 2 but m = 1. Also, ν = z = 1

Hence the defect density scales as n ∼ 1/
√
τ instead of 1/τ

n =
3
√

3

4π2

Z Z

d2~k p~k

p~k
= e−2πτ [J1 sin(~k· ~M1)−J2 sin(~k· ~M2)]2/J
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Plot of defect density

n versus Jτ and α = tan−1(J2/J1)

The defect density is maximum when α = π/4, i.e., when J1 = J2 because
this is when the system stays in the gapless phase for the longest time
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Quenching along a critical line

A different situation arises if one quenches along a critical line in parameter space.
In terms of a two-level system, suppose that the Hamiltonian for the modes with
momenta ± k is

H =

0

@

|k|a t/τ |k|z

|k|z −|k|a t/τ

1

A

A scaling argument then shows that the defect density scales as
n ∼ 1

τd/(2z−a) for a system in d dimensions

Example: the spin-1/2 XY chain with a transverse magnetic field.
The Hamiltonian is

H = −
X

n

[σx
nσ

x
n+1 + σy

nσ
y
n+1 + γ(σx

nσ
x
n+1 − σy

nσ
y
n+1) + hσz

n]

Mukherjee, Divakaran, Dutta and Sen, Phys. Rev. B 76, 174303 (2007)
Divakaran, Dutta and Sen, Phys. Rev. B 78, 144301 (2008)
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Quenching along a critical line · · ·

H = −
X

n

[σx
nσ

x
n+1 + σy

nσ
y
n+1 + γ(σx

nσ
x
n+1 − σy

nσ
y
n+1) + hσz

n]

γ

h
-1 1

The critical lines are given by h = −1, h = 1 and − 1 ≤ h ≤ 1, γ = 0

If we quench along the red line h = 1, we get d = 1, z = 2, a = 1

Hence the defect density scales as n ∼ 1/τd/(2z−a) ∼ 1/τ1/3
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Different quenching possibilities
γ

h
-1 1

Quenching along one of the blue vertical lines h = ±1 gives n ∼ 1/τ1/3

The quenching procedure discussed earlier was to keep γ fixed at a
non-zero value and cross one of the lines h = ±1. This gives n ∼ 1/τ1/2

Finally, quenching through one of the multicritical points at h = ±1, γ = 0

gives d = 1, z = 3, a = 0. Hence n ∼ 1/τd/(2z−a) ∼ 1/τ1/6

Divakaran, Mukherjee, Dutta and Sen, J. Stat. Mech. (2009) P02007
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Anisotropic critical point

It may be possible to engineer systems in optical lattices where the dispersion at
a QCP is anisotropic in momentum space. For instance, a semi-Dirac system
in two dimensions would have the Hamiltonian

Hk =

0

@

µ ivF |ky| + k2
x/(2m)

−ivF |ky| + k2
x/(2m) −µ

1

A

If the chemical potential µ is slowly quenched through zero as t/τ,

the defect density will be given by

n ∼
Z Z

dkxdky exp

»

−πτ
„

v2F k
2
y +

k4
x

(2m)2

«–

∼ 1

τ3/4

Dutta, Singh and Divakaran, EPL 89, 67001 (2010)
Hikichi, Suzuki and Sengupta, Phys. Rev. B 82, 174305 (2010)
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Non-linear quenching

We can change the quenching parameter γ through a QCP
in a non-linear way. A ‘hand waving’ way of doing this is to take

H =

0

@

∆E sign(t) |k|z

|k|z −∆E sign(t)

1

A ,

where ∆E ∼ |γ − γc|zν , and we set |γ − γc| = |t/τ |α

Then a scaling argument will show, for a system in d dimensions,
that the defect density goes as n ∼ 1

τdνα/(zνα+1)

The power law is modified as if we have linear quenching but ν → να

For d = ν = z = 1, we obtain n ∼ 1
τα/(α+1)

Sen, Sengupta and Mondal, Phys. Rev. Lett. 101, 016806 (2008)
Mondal, Sengupta and Sen, Phys. Rev. B 79, 045128 (2009)
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Non-linear quenching · · ·

Plots of ln(n) versus ln(τ) for the one-dimensional Kitaev model
(with J1 + J2 held fixed and J1 − J2 varied as |t/τ |αsign(t) ) for
α = 2 (black line), α = 4 (red), α = 6 (blue) and α = 8 (green)

The slopes of these lines agree reasonably with the theoretical values
of − α/(α+ 1) as shown in the table
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Quenching in a Luttinger liquid

The loading of interacting bosons onto a one-dimensional optical lattice provides
an example of quenching in a Luttinger liquid

Suppose that the periodic potential of the optical lattice is changed in time as
V (x, t) = V (t) cos(2πx/a), where the lattice spacing a is commensurate
with the bosonic density. The potential couples right and left moving particles
and gives rise to a ‘mass’
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Luttinger liquid · · ·

In terms of the bosonic field variable φ, the action is of the sine-Gordon form

S =
1

2

Z Z

dxdt

"

1

v

„

∂φ

∂t

«2

− v

„

∂φ

∂x

«2

+ V (t) cos(2
√
πKφ)

#

where the Luttinger parameter K is governed by the interaction strength.
K → 1 for strongly repulsive interactions, while K → ∞ for weakly
repulsive interactions

The ‘cosine’ term has scaling dimension K since the equal-time correlation function

〈 cos(2
√
πKφ(x, 0)) cos(2

√
πKφ(0, 0)) 〉 ∼ 1

|x|2K

The coefficient of the cosine term, V (t), has scaling dimension 2 −K since the
action must be dimensionless and x and t have scaling dimension − 1 each.
So if the cosine term gives rise to a mass gap m, we must have V (t) ∼ m2−K .

The corresponding correlation length must scale as ξ ∼ 1/m ∼ V (t)−1/(2−K).

Hence the correlation length exponent is ν = 1/(2 −K)
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Quenching in a Luttinger liquid

If the periodic potential is changed slowly as V (t) = αt, the Kibble-Zurek
expression implies, with d = z = 1, that the number of excitations must
scale as

n ∼ αdν/(zν+1) ∼ α1/(3−K)

for 0 < K < 2

K = 2 (ν = ∞) is the Kosterlitz-Thouless point

For K > 2, the cosine term is irrelevant, and the excitations receive
contributions from all modes, not just the low-momentum modes.
Then one finds that n ∼ α

De Grandi, Barankov and Polkovnikov, Phys. Rev. Lett. 101, 230402 (2008)
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Ising chain in a general magnetic field

The defect density or residual energy scales as 1/τdν/(zν+1). For the Ising chain
at the QCP, i.e,

H = −
X

n

[ σz
nσ

z
n+1 + σx

n ]

the dynamical critical exponent z = 1 because it is described by a ‘Lorentz
invariant’ theory in which the frequency and wave number scaling in the same way

But the correlation length exponent ν depends on how the theory is perturbed
from the QCP

So far we have only considered perturbation by a transverse field
δH = γx

P

n σx
n for which ν = 1. But if we perturb it by

a longitudinal field δH = γz
P

n σz
n, then ν = 8/15

This can be seen as follows. Since the longitudinal magnetization vanishes as

〈σz
n〉 ∼ γ

1/8
x , the scaling dimension of σz

n is 1/8. Hence the scaling
dimension of γz must be 15/8, so that the change in the action
δS =

R R

dxdt γz σz(x, t) is dimensionless

If ξz is the correlation length corresponding to the longitudinal perturbation,

we must have γz ∼ 1/ξ
15/8
z , or ξz ∼ γ

−8/15
z . Hence ν = 8/15
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Ising chain in a magnetic field · · ·

The defect density or residual energy scales as 1/τdν/(zν+1)

If we quench through the QCP in a general direction with both
γx and γz going through zero, the defect density will have terms scaling
as 1/τ1/2 and 1/τ8/23 respectively. The latter one dominates for large τ

So if we consider the Hamiltonian

H = −
X

n

[ σz
nσ

z
n+1 + σx

n + g (cosφ σx
n + sinφ σz

n) ]

and quench g through zero, the defect density will scale as 1/τ1/2 if φ = 0, π

and as 1/τ8/23 for any other value of φ

Pollmann, Mukerjee, Green and Moore, Phys. Rev. E 81, 020101(R) (2010)
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Entanglement entropy

If a system consists of two parts A and B and is in a state |Ψ〉,
the entanglement entropy between the two parts is defined to be

E(Ψ) = − tr(ρA log2 ρA)

where ρA is the density matrix of part A when part B is integrated out.
(Interchanging A and B gives the same value for E(Ψ) )

Namely, if

|Ψ〉 =
X

ij

cij |Ai〉 ⊗ |Bj〉

then (ρA)ii′ =
P

j cij c
∗
i′j
, and E(Ψ) = − P

k λk log2 λk where
λk are the eigenvalues of ρA
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Entanglement entropy · · ·

For a one-dimensional system close to a QCP which is described by a conformal
field theory, the entanglement entropy between the two halves of an infinitely long
system is given by (c/6) log2 ξ and (c/3) log2 ξ for open and periodic boundary
conditions respectively, where c is the central charge of the conformal field theory
and ξ is the correlation length

The factor of 2 between the two expressions can be understood from the picture

A

B

A B

Vidal, Latorre, Rico and Kitaev, Phys. Rev. Lett. 90, 227902 (2003)
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Entanglement entropy due to quench

If the system is quenched through a QCP, an entanglement entropy is generated
which is given by the above expression, where ξ ∼ 1/n ∼ τν/(ν+1)

(we have set d = z = 1). Hence, for an open chain, ∆Equench = c ν
6 (ν+1)

log2 τ

For the transverse Ising chain in a magnetic field, we get different behaviors
depending on whether ν = 1 or 8/15, i.e., whether φ = 0 or 6= 0

(c = 1/2 for this system)

Entropy versus Γ = 1/τ for quenching from gi = 0.5 to gf = − 0.5

Pollmann et al., Phys. Rev. E 81, 020101(R) (2010) p.47/92



Evolution of entropy with time
If the Hamiltonian is held fixed after the quench, the entanglement entropy grows linearly
in time for the following reason. Just after the quench, a number of defects are produced;
pairs of quasiparticle excitations (defects) which are produced close to each other are
entangled. As these excitations move away from each other with constant velocity in
opposite directions, the entropy increases linearly with the size of the entangled region

Calabrese and Cardy, Phys. Rev. Lett. 96, 136801 (2006)

Quenching from gi = 0.4 to gf = − 0.4 with φ = 0

Pollmann et al., Phys. Rev. E 81, 020101(R) (2010) p.48/92



Loschmidt echo
The oscillations seen in the entanglement entropy as a function of time can be understood
thus. Consider quenching an integrable system which can be written as a product of
two-level systems parameterized by the wave number k. In one of these sub-systems,
let the probabilities of being in the ground and excited states be 1 − pk and pk.

Now these states evolve with the final Hamiltonian; if their energy difference is ∆Ek,

the overlap between the state just after the quench and after an additional time t is

〈ψk(0)|ψk(t)〉 =
“ √

pk
√

1 − pk

”

0

@

√
pk

√
1 − pk e

−i∆Ekt

1

A

The square of the overlap between the state of the entire system just after the quench
and after a time t is then given by

|〈Ψ(0)|Ψ(t)〉|2 = ⊗ |〈ψk(0)|ψk(t)〉|2

= exp

»

−L
Z

dk

2π
log [1 − 4pk(1 − pk) sin2(∆Ekt/2)]

–

where L is the system size. The mode for which pk = 1/2 gives rise to cusps
in the above expression whenever sin2(∆Ekt/2 = 1

This phenomenon only occurs if the system decomposes into a product of
two-level systems. It does not occur if the system is non-integrable p.49/92



Loschmidt echo · · ·
The overlap squared = eαL versus of time for an integrable system (φ = 0) and
a non-integrable system (φ = π/32) after quenching from gi = 0.5 to gf = − 0.5

Pollmann et al., Phys. Rev. E 81, 020101(R) (2010) p.50/92



Thermalization

In many cases it is found that a system evolves into an effectively thermal
state following a rapid quench. For instance, expectation values of
operators are be given by a sum over states n weighted by the
Boltzmann factor e−βEn with some effective inverse temperature β

Rigol, Dunjko and Olshanii, Nature 452, 854 (2008)

This gets modified if the system is integrable, i.e., has a number of
conserved quantities C1, C2, · · · . Then the weights of the different
states must include a factor which takes into account the values of
the conserved quantities, i.e., e−βEn − λ1C1n − λ2C2n − ···,

where λi is a Lagrange multiplier which ensures that the
expectation value of Ci is equal to the value that it had initially

Rigol, Dunjko, Yurovsky and Olshanii, Phys. Rev. Lett. 98, 050405 (2007)

In an integrable model of interacting fermions in one dimension (Luttinger model),
the final distribution is given by a momentum-dependent temperature

Iucci and Cazalilla, Phys. Rev. A 80, 063619 (2009)
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Effect of finite temperature

Patane, Silva, Amico, Fazio and Santoro, Phys. Rev. Lett. 101, 175701 (2008)

At finite temperatures, the effect of the QCP remains visible
in a cone shaped region whose width grows as T ∼ ∆E ∼ |h− hc|zν

In this region, defects are produced thermally at a rate T θ , where θ is an
exponent which depends on the form of the thermal bath. If we cross this
region with a velocity v, the time spent there is ∼ |h− hc|/v ∼ T 1/(zν)/v,

and the density of defects formed from each initial state is T θ+1/(zν)/v
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Effect of finite temperature

The total density of defects formed at finite temperature is therefore given by
(
R

ddk) T θ+1/(zν)/v.

The region of k which is excited is of order T 1/z . Hence
R

ddk ∼ Td/z

Thus the density of thermally produced defects is of order T θ+1/(zν)+d/z/v

This is to be compared to the density of defects produced by quantum effects
at zero temperature given by 1/τdν/(zν+1) ∼ vdν/(zν+1), since v ∼ 1/τ

The relative magnitude of the two gives the cross-over velocity

vc ∼ T (θ+1/(zν)+d/z)(zν+1)/(dν+zν+1)

For v ≪ vc, the defect production is dominated by thermal effects, while
for v ≫ vc, it is dominated by zero temperature quantum excitations

For the transverse Ising chain coupled to an Ohmic bath, θ = 2 and vc ∼ T 8/3
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Adiabatic theorem
If we start in the ground state of a quantum system and slowly vary its Hamiltonian
at a rate 1/τ to go across a quantum critical point (QCP), the state reached
eventually differs from the final ground state in having some low-energy excitations

Kibble-Zurek scaling:

The density of point-like excitations scales as 1/τdν/(zν+1), where d, ν, z

are the spatial dimensionality, correlation length exponent and dynamical
critical exponent at the QCP

In the adiabatic limit τ → ∞, the system reaches the final ground state
and no excitations are produced

This is the adiabatic theorem of quantum mechanics
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Failure of adiabatic theorem

The theorem fails if the system has topological order and the initial and final
ground states lie in different topological sectors

Suppose that the different topological sectors are labeled by a topological quantity.
The ground state may have a degeneracy, with the different ground states lying in
different sectors

It may happen that there is a topological sector which contains a ground state G

on one side of a QCP but does not contain a ground state on the other side
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Topological blocking

Suppose that the Hamiltonian is varied in time in such a way that the
time evolution does not change the topological sector

Then a system which begins in the ground state G on one side of the QCP
will never reach a ground state on the other side, no matter how slow
the quenching across the QCP is

We call this topological blocking

This is insensitive to local perturbations or terms which break local symmetries
since topological sectors are not connected to each other by local operators
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Ising chain in a transverse field

One-dimensional Ising model in a transverse magnetic field has the Hamiltonian

H = − J
N

X

i=1

σx
i σ

x
i+1 − h

N
X

i=1

σz
i

The system is ordered (ferromagnetic) if h < J, and disordered (paramagnetic)
if h > J. There is a QCP at h = J

This maps, via the Jordan-Wigner transformation, to a system of spinless fermions

H = − J

N−1
X

i=1

(c†i − ci) (c†i+1 + ci+1) + J Tz (c†N − cN ) (c†1 + c1)

+ h
N

X

i=1

(2c†i ci − 1)
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Ising chain in a transverse field

The Hamiltonian commutes with the parity of the total fermion number NF =
P

i c
†
i ci

Tz =
Y

i

σz
i = (−1)NF

For an even number of sites N, the fermionic system has periodic (antiperiodic)
boundary conditions if the number of fermions is odd (even), i.e., if Tz = − 1 (1)

After Fourier transforming, we find that the allowed momenta include
k = 0, π if Tz = − 1, and do not include k = 0, π if Tz = 1

In the ferro phase, the ground state is doubly degenerate, with one ground state each
in the two sectors Tz = 1 and Tz = − 1

In the para phase, there is a unique ground state lying in the sector with Tz = 1.

The lowest energy state in the sector with Tz = − 1 is separated from the
ground state by a finite gap
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Hamiltonian in momentum space

In momentum space, the fermionic Hamiltonian is

H =
X

0<k<π

h

c†k c−k

i

hk

2

4

ck

c†−k

3

5

hk = (2h − 2J cos k) τz + 2J sin k τx

If the momenta k = 0, π are present, the Hamiltonian contains two more terms,
(2h− 2J) c†0c0 + (2h+ 2J) c†πcπ

Now we quench from the ferro to the para phase by varying h from 0 to 2J as

h(t) = 2J
t

T
for 0 < t < T

The modes with k = 0, π do not evolve at all. All the other modes are described
by two-level systems of the Landau-Zener form
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Landau-Zener problem

Upon passing through the QCP, the two-level systems labeled by ± k get excited
with a probability pk given by the Landau-Zener formula. Integrating pk over
0 < k < π gives a density of excitations with the Kibble-Zurek scaling 1/(JT )1/2

if the quenching is slow, i.e., if JT ≫ 1

However, the mode at k = 0 does not evolve and remains in the same state;
hence this has an excitation probability equal to 1
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Topological blocking

So, if the system contains the momentum k = 0, i.e., if the number of fermions
is odd, the system necessarily goes to an excited state even for very slow quenching
through the QCP. The ground state −− > ground state evolution is blocked in the
odd fermion sector

Kells, Sen, Slingerland and Vishveshwara, Phys. Rev. B 89, 235130 (2014)
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Periodically varying potentials
Potentials varying periodically in time can lead to many interesting effects
in quantum systems

They can lead to pumping of charge between two reservoirs at the same
chemical potential and temperature. Two sinusoidal potentials with a phase
difference of φ pump charge proportional to
sinφ (can be related to geometric phase)

f = 10MHz, dot resistance ∼ 13kΩ

T = 330mK

Different curves are for different
magnetic fields up to 80mT

Switkes et al., Science 283, 1905 (1999)
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SAW on a carbon nanotube

A surface acoustic wave travelling on a piezoelectric substance (quartz) sets up
an ‘electrical potential wave’ which moves along the length of the carbon nanotube

f = 3.2GHz, λ = 1µm, ∆Q ∼ 40 per cycle, I ∼ 20nA, T = 5K

Possible use as a standard current if ∆Q is exactly quantized

Leek et al., Phys. Rev. Lett. 95, 256802 (2005)
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A mechanism of charge pumping
Consider a ‘potential wave’ which periodically travels from one end of the wire to the other.
Then the minima of the potential can trap electrons and carry them from one end to the other
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Electron numbers and potentials for pumping at eight sites

Agarwal and Sen, J. Phys. Condens. Matter 19, 046205 (2007)
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Adiabatic scattering theory

Consider a system connected to N leads. Suppose that the system is periodically
driven with a very long time period T, and S (t) is the instantaneous (frozen)
scattering matrix given by a N × N unitary matrix. Namely,

0

B

B

B

B

B

@

ψ1,out

ψ2,out

· · ·
ψN,out

1

C

C

C

C

C

A

= S

0

B

B

B

B

B

@

ψ1,in

ψ2,in

· · ·
ψN,in

1

C

C

C

C

C

A

Then the number of electrons flowing into lead j over one time period is given by

∆Qj =
i

2π

Z T

0
(dSS†)jj

Büttiker, Thomas and Pretre, Z. Phys. B 94, 133 (1994)
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Adiabatic scattering theory
If the instantaneous scattering matrix is completely reflecting, S will be a diagonal
matrix with matrix elements of the form Sjj = eiθj . Hence the number of electrons
flowing into lead j is

∆Qj =
i

2π

Z T

0
dt (dSS†)jj = − 1

2π

Z T

0
dθj

This must be an integer since θj is periodic in time. Quantized charge pumping
occurs if the instantaneous potential has zero transmission probability at all times !

If there are two periodically varying weak potentials V1(t) and V2(t), one can show
that the number of electrons flowing into any of the leads is proportional to the area
enclosed by the closed curve traced out by these potentials in one time period

∆Qj ∼
I

dV1 V2

If V1 = a1 sin(ωt) and V2 = a2 sin(ωt+ φ), then ∆Qj ∼ a1a2 sin(φ)

Brouwer, Phys. Rev. B 58, R10135 (1998)
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Periodically varying potentials

Potentials varying periodically in time can produce states at the edges of a
non-topological system

Lindner, Refael and Galitski, Nature Phys. 7, 490 (2011)

We saw that

H = −
X

n

h

γ (f†nfn+1 + f†n+1fn) − ∆ (fnfn+1 + f†n+1f
†
n) + µ f†nfn

i

can have either topological phases with end modes or non-topological phases
with no end modes

We will vary µ periodically in time and see if this can generate end modes

We will consider periodic kicks

µ = c0 + c1

∞
X

n=−∞
δ(t− nT )
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Floquet theory for periodic kicks

i
∂ψ

∂t
= [H0 + V0

∞
X

n=−∞
δ(t− nT )] ψ

Define the Floquet operator as the symmetrized product

U = exp[− i

2
V0] exp[−iH0T ] exp[− i

2
V0]

The wave functions must be eigenvectors of the Floquet operator with
eigenvalues eiθn

U and eiθn can be found numerically

If we write θn = − ǫnT, ǫn is called the quasienergy
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Finding Majorana modes

The Hamiltonian for a N -site system

H(t) = −
X

n

h

γ(f†nfn+1 + f†n+1fn) − ∆(fnfn+1 + f†n+1f
†
n) + µ(t)f†nfn

i

can be written in terms of Majorana fermions as

H(t) = i
2N
X

r,s=1

vr Mrs(t) vs

where vr = a1, b1, · · · , aN , bN , and Mrs (t) is a real antisymmetric matrix.
The Heisenberg equations take the form

dvr

dt
= i [H, vr] = 4

X

s

Mrsvs

The 2N -dimensional column v(t) satisfies v(T ) = U v(0)

where U = T exp[4
R T
0 dt M(t)]
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Finding Majorana modes · · ·

Since M is a real antisymmetric matrix, U = T exp[4
R T
0 dt M(t)]

is a real orthogonal matrix

The eigenvalues of U generally come in pairs e±iθ,

since Ux = eiθx implies Ux∗ = e−iθx∗

If there is a single mode ψ at one end of a long chain, we must have
eiθ = e−iθ, namely, eiθ = ±1, and ψ = ψ∗

Thus, a Majorana end mode has Floquet eigenvalue equal to ± 1

If Floquet eigenvalues equal to ± 1 exist, they must be separated from all
the other eigenvalues by a gap. Namely, if the eigenvalues are plotted on
a unit circle, there must be a gap ∆θ between the eigenvalues at
θ = 0 or π and all the other eigenvalues
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Gap in Floquet eigenvalue spectrum
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There are four eigenvalues each at the centres of the gaps at + 1 and − 1

Thakurathi, Patel, Sen and Dutta, Phys. Rev. B 88, 155133 (2013)
p.71/92



Inverse participation ratio

A convenient way of distinguishing the end modes from the bulk modes
is through the inverse participation ratio

Normalize the jth eigenvector of U, called ψj(m), so that

X

m

|ψj(m)|2 = 1

We define the inverse participation ratio of the state as

Ij =
X

m

|ψj(m)|4

If ψj(m) is spread over L sites, then |ψj(m)|2 ∼ 1/L at those sites.
Hence Ij ∼ 1/L

So the more localized states will have the larger values of Ij
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End modes for periodic kicks
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End modes for periodic kicks
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Number of end modes versusω
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Topological invariant

Is there a topological invariant which can predict the numbers of end modes with Floquet
eigenvalues equal to + 1 and − 1 ?

We can find a Floquet operator for each momentum k. For

H(t) = −
X

n

h

γ(f†nfn+1 + f†n+1fn) − ∆(fnfn+1 + f†n+1f
†
n) + µ(t)f†nfn

i

µ(t) = c0 + c1

∞
X

n=−∞
δ(t− nT )

we have

Uk = eic1σz
e−i2T [(γ cos k−c0) σz + ∆ sin k σy ] eic1σz

This can be re-written as a single exponential

Uk = e−i(a2,k σy + a3,k σz)

where the ai,k are some functions of k
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Floquet operator Uk

Given

Uk = eic1σz
e−i2T [(γ cos k−c0) σz + ∆ sin k σy ] eic1σz

the coefficients a2,k and a3,k in

Uk = e−i(a2,k σy + a3,k σz)

are not defined uniquely. To define them uniquely, we impose the constraint

0 < a2
2,k + a2

3,k < π

This can be imposed if Uk is not equal to ± I. We find that this is true for
all values of ω = 2π/T except

ω =
4π(c0 ± γ)

nπ − 2c1

where n is an integer
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Topological invariant

Given Uk = e−i(a2,k σy + a3,k σz), we have a closed curve in two-dimensional
space, (a2,k, a3,k), as k goes from − π to π

The winding number of this curve exactly matches the total number of
Majorana modes at each end of the system
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Winding number
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Closed curves for four different frequencies for a 200−site system with
γ = 1, ∆ = −1, µ(t) = 2.5 + 0.2

P

n δ(t− 2πn/ω).

For ω = 3, 7, 12, 17, the winding numbers are 2, 2, 1, 0 respectively

However, the winding numbers do not give the numbers of end modes
with Floquet eigenvalues equal to + 1 and − 1 separately
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A new topological invariant

Is there a topological invariant which will separately give the numbers of
Floquet eigenvalues equal to + 1 and − 1 ?

Y es !

For k = 0 and π, we have

U0 = ei[2T (c0−γ) + 2c1] σz
and Uπ = ei[2T (c0+γ) + 2c1] σz

Define

b0 =
4(c0 − γ)

ω
+

2c1

π
and bπ =

4(c0 + γ)

ω
+

2c1

π

We see that U0 (Uπ) becomes equal to ± I when b0 (bπ) becomes equal to
an integer n. At these values of ω, the quasienergy bands becomes gapless at
k = 0 (π), and a Majorana end mode with Floquet eigenvalue equal to (−1)n

appears or disappears
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New topological invariant
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Plot of b0 and bπ as a function of ω. For each value of ω, the number of
even and odd integers lying between b0 and bπ gives the number of Majorana
end modes with Floquet eigenvalues equal to + 1 and − 1 respectively

Thakurathi, Patel, Sen and Dutta, Phys. Rev. B 88, 155133 (2013)
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Kitaev model

A

B

J3

J1 J2

~M1

~M2

H =
X

j+l=even

(J1 σ
x
j,lσ

x
j+1,l + J2 σ

y
j−1,lσ

y
j,l + J3 σ

z
j,lσ

z
j,l+1)

A and B are the sublattices
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Floquet Majorana edge modes

Give periodic kicks of the form J3 = J0 + Jp
P∞

n=−∞ δ(t− nT )
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Zigzag edge states for a system with Nx ×Ny = 27 × 14,

J1 = 0.7, J2 = 0.15, J0 = 0.15, Jp = 0.2 and ω = 3

There are also armchair edge states for the same parameters

Thakurathi, Sengupta and Sen, Phys. Rev. B 89, 235434 (2014)
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Floquet Majorana edge modes

For a Majorana mode with momentum k along the edge, the system can be mapped
to the transverse field Ising model with parameters which are functions of k

Majorana edge modes with Floquet eigenvalue (−1)n should appear or disappear
at the frequency

ωk =
4π [J0 ± Jk]

nπ − 2Jp

Jk =
q

J2
1 + J2

2 + 2J1J2 cos k

where n is an integer
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Floquet Majorana edge modes
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Regions where Majorana modes with momentum k exist on a zigzag edge.
The system has a width of 100 sites, and J1 = 0.7, J2 = 0.15, J0 = 0.15, Jp = 0.3

The red lines show the analytical predictions for the values of ω where
Majorana modes appear or disappear
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Periodic driving in graphene
Periodic driving can be used to manipulate the energy-momentum dispersion in graphene

The Hamiltonian is

H~k
= − γ

0

@

0 1 + ei~k· ~M1 + ei~k· ~M2

1 + e−i~k· ~M1 + e−i~k· ~M2 0

1

A

where ~M1 = (3a/2)(1, 1/
√

3) and ~M2 = (3a/2)(1,−1/
√

3). The energies are

given by ± E~k
, where E~k

= γ[3 + 2 cos(
√

3kya) + 4 cos(
√

3kya

2
) cos( 3kxa

2
)]1/2
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Periodic driving in graphene
The energy vanishes at two points called ~K, ~K′ given by ± (0, 4π/(3

√
3a))

We now apply δ-function kicks at all unit cells of the system,

Hkick =
X

~n

(αxσ
x + αyσ

y + αzσ
z)

∞
X

m=−∞
δ(t−mT )

The Floquet operator is then U~k
= e−i~α·~σ e−iH~k

T . The eigenvalues of U~k
equal

to e−iǫ~k
T give the quasienergies ǫ~k. Depending on the values of αx, αy , αz ,

the quasienergy dispersion can be modified in a variety of ways

To visualize the modified dispersion, we study the wave packet dynamics. We begin with
a Gaussian wave packet with a momentum ~k0 = (k0x, k0y) and a width σ. Namely,

Ψ(~r, t = 0) = 1
σ
√

2π
exp(− r2

4σ2 ) exp(i~k0 · ~r), whose Fourier transform is given by

Ψ(~k, t = 0) = σ
√

8π exp[−σ2{(kx − k0x)2 + (ky − k0y)2}]

We numerically evolve each momentum component in time using U~k
and then

superpose them to see the wave packet in real space
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Flat dispersion in one direction

Quasienergy dispersion ǫ~k (in units of 1/T ) when αx = γT = 1 and αy = αz = 0.

There is a dispersionless line along the kx direction when kya = ±π/
√

3

A wave packet localized on this gapless line will move only in the y direction
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Wave packet moving in one direction

Time evolution of a wave packet initially centered at ~r = (0, 0), at
t = T, 4T, 16T, 32T, 64T for no kicking (upper panel) and for αx = γT = 1

and αy = αz = 0 (lower panel), with koxa = 1, koya = π√
3

and σ = 10
2
√

2
a

The upper panel shows that the wave packet spreads out in both x and y directions.
The lower panel shows that the wave packet only moves in the y direction
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Semi-Dirac dispersion

Quasienergy dispersion ǫ~k (in units of 1/T ) when αy =
√

3, γT = 1 and
αx = αz = 0

The dispersion is linear in the kx direction and quadratic in the ky direction
near two gapless points lying at kx = 2π/9, ky = ±2π/

√
3

This is a semi-Dirac dispersion
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Dynamical localization
For αz = π/2 and αx = αy = 0, we find that the quasienergy is completely
dispersionless. So a wave packet of any shape and size will not move at all !
We call this dynamical localization

Time evolution of a wave packet initially centered at ~r = (0, 0), for no kicking (upper
panel) and for αz = π/2, γT = 1, αx = αy = 1 (lower panel), with koxa = 1 and
koya = 0 and σ = 10

2
√

2
a. The upper panel shows that the wave packet moves in

the x direction. The lower panel clearly shows that the wave packet is localized

Agarwala, Bhattacharya, Dutta and Sen, Phys. Rev. B 93, 174301 (2016)
p.91/92



Other topics

We have not discussed the following aspects of quenching and Floquet dynamics

• Effects of disorder on defect production by quenching

Caneva, Fazio and Santoro, Phys. Rev. B 76, 144427 (2007)

• Effects of interactions on Floquet dynamics

Mikami, Kitamura, Yasuda, Tsuji, Oka and Aoki, Phys. Rev. B 93, 144307 (2016)

• Phase band crossings in Floquet dynamics of integrable systems

Mukherjee, Sen, Sen and Sengupta, arXiv:1605.09178
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