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Spin Ice

Science 294, 1495 (2001)

the excited states are not accessed thermally.
The Ho3! moments therefore behave as almost
pure two-state spins that approximate classical
Ising spins pointing “in” or “out” of the ele-
mentary tetrahedra (Fig. 1). Direct evidence of
the single ion anisotropy comes from bulk mag-
netization (18, 19, 22), where saturation is ob-
served at roughly half the expected value, ow-
ing to the fact that applied fields of several
Tesla are too weak to turn the Ho3! significant-
ly away from their local quantization axes.

Experimental investigation of the spin
correlations in Ho2Ti2O7 began in 1996 (15).
Before this, susceptibility measurements (24 )
had revealed a peak in the susceptibility of
Ho2Ti2O7 at "1 K, suggestive of antiferro-
magnetic interactions. The first muon spin
relaxation (#SR) and neutron-scattering ex-
periments seemed to confirm this frustrated
antiferromagnetic scenario with no evidence
of long-range order down to $50 mK (15,
23). However, a pyrochlore antiferromagnet,
with essentially infinite local %111& Ising an-
isotropy, should develop a long-range or-
dered state at a critical temperature of order
of the Curie-Weiss temperature ('CW), "1 K
(25, 26). Consequently, the failure of Ho2Ti2O7

to display a transition down to "50 mK was
found to be rather paradoxical. However, new
susceptibility studies soon suggested a rather
different picture. The large moment of Ho3!

was found to produce a strong demagnetizing
field that caused the experimental Curie-Weiss
temperature (measured by the intercept of the
inverse susceptibility versus temperature curve)
to be either ferromagnetic or antiferromagnetic
depending on crystal shape. Careful correction
for this shape-dependent effect indicated that
'CW ( 1.9 ) 0.1 K, an intrinsically ferromag-
netic value. It therefore seemed that Ho2Ti2O7

should be described, at least to a first approxi-
mation, as a %111& Ising ferromagnet. But this
description at first seemed contrary to the ob-
served absence of long-range order—it was
“obvious” that a ferromagnet should order at
low temperature!

As often happens in science, the paradox
was resolved as soon as the obvious was aban-
doned in the face of experimental evidence.

Calculation showed that the ground state of a
tetrahedron of ferromagnetically coupled Ising
spins is the “two-in, two-out” state illustrated in
Fig. 1. It was then recalled that Anderson had
shown the pyrochlore lattice to be the medial
lattice (lattice formed by the midpoints of the
bonds) of the diamond-like oxide lattice of
cubic ice (14). Hence, the two-in, two-out
condition is analogous to the ice rules, and the
ground state of the nearest-neighbor ferromag-
netic model is, like that of ice, macroscopically
degenerate (15, 25). The absence of long-range
order in Ho2Ti2O7 could then be explained at
a qualitative level and the “spin ice” model,
the %111& Ising ferromagnet, was christened.
This simple model was found to be consistent
with the field-induced ordering patterns ob-
served by neutron scattering (15). On the basis
of similar susceptibility properties, Dy2Ti2O7

and Yb2Ti2O7 were also suggested to be
spin ice materials (27 ). So far, only
Ho2Ti2O7 (15, 28), Dy2Ti2O7 (29, 30), and,
more recently, Ho2Sn2O7 (31), have been
positively confirmed.

The magnetization and elastic neutron-scat-
tering measurements described above provided
the initial compelling arguments for the spin ice
phenomenology associated with Ho2Ti2O7 (15).
However, specific-heat measurements by
Ramirez and co-workers (29, 32) on Dy2Ti2O7

have given a more direct experimental evidence
of the macroscopic degeneracy associated with
the spin-ice rules. The top panel of Fig. 3 shows
the temperature dependence of the magnetic
specific heat, C(T), for a powdered sample of
Dy2Ti2O7 (29). The data show no sign of a
phase transition, as would be indicated by a
sharp feature in C(T). Instead, one observes a
broad maximum at a temperature Tpeak ( 1.2 K,

which is on the order of the energy scale of the
magnetic interactions in that material, as mea-
sured by the Curie-Weiss temperature, "1 K.
The specific heat has the appearance of a Schot-
tky anomaly, the characteristic curve for a sys-
tem with two energy levels. At the low-temper-
ature side of the Schottky peak, C(T) falls rap-
idly toward zero, indicating an almost complete
freezing of the magnetic moments.

Ramirez and colleagues determined the
ground-state entropy using a method analo-
gous to that applied by Giauque and co-
workers to water ice. In general one can only
measure a change in entropy between two
temperatures. Giauque et al. computed the
entropy change of water between liquid heli-
um temperatures and the gas phase by inte-
grating the specific heat (2) and then compar-
ing this value with the absolute entropy cal-
culated for the gas phase using spectroscopic
measurements of the energy levels of the
water molecule. The difference gave the re-
sidual entropy, later calculated by Pauling
(4 ). The approach of Ramirez and co-workers
was to integrate the magnetic specific heat
between T1 ( 300 mK in the frozen regime
and T2 ( 10 K in the paramagnetic regime,
where the expected entropy should be Rln(2)
for a two-state system. The magnetic entropy
change, *S, was determined by integrating
C(T)/T between these two temperatures:

*S1, 2 ( !
T1

T2
C+T,

T
dT (1)

The lower panel of Fig. 3 shows that the
magnetic entropy recovered is about 3.9 J
mol-1 K-1, a number that falls considerably
short of the value Rln(2) " 5.76 J mol-1

K-1. The difference, 1.86 J mol-1 K-1 is
quite close to Pauling’s estimate for the en-
tropy associated with the extensive degener-
acy of ice: (R/2)ln(3/2) ( 1.68 J mol-1 K-1,
consistent with the existence of an ice-rule
obeying spin ice state in Dy2Ti2O7.

Dipolar Spin Ice
As mentioned above, the magnetic cations Ho3!

and Dy3! in Ho2Ti2O7 and Dy2Ti2O7 carry a
very large magnetic moment, #, of about 10#B.
Furthermore, these moments are exceedingly
well characterized by almost perfect effective
classical Ising spins constrained to point along
the local %111& directions below a temperature
on the order of 200 K for Ho2Ti2O7 and 300 K
for Dy2Ti2O7. This is borne out from direct
experimental evidence (see Fig. 2), magnetiza-
tion measurements, inelastic neutron measure-
ments, and crystal field theoretical calculations
(17–21). Large magnetic moments are reason-
ably common among rare-earth materials, and
this gives rise to a sizable magnetic dipole en-
ergy. With a cubic unit cell dimension a " 10.1
Å, an estimate of the dipolar energy scale for
two %111& Ising moments, Dnn, gives

Fig. 3. (A) Specific-heat and (B) entropy data
for Dy2Ti2O7 (29) compared with Monte Carlo
simulation results for the dipolar spin ice model
(34), with Jnn ( -1.24 K, Dnn ( 2.35 K and
system size of 1024 spins.

Fig. 2. Flux-grown octahedral crystal of
Ho2Ti2O7 stuck to a NdFeB permanent magnet
at room temperature. The strong paramagnet-
ism reflects the large magnetic moment of
Ho3!.
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Geometrical Frustration 



Geometrical Frustration

• Large number of degenerate classical ground states

• Small perturbation leads to novel ground states

or

AF

Kagome Pyrochlore Hyperkagome Garnet
ZnCu3(OH)6Cl2 Tb2Ti2O7 Na4Ir3O8 Gd3Ga5O12 



〈111〉 Ising Anisotropy

Ho2Ti2O7 

Dy2Ti2O7

20#meV ~#230#K

A. Yaouanc et al., Phys. Rev. B 84, 172408 (2011)
S.Rosenkranz et al., J. Appl. Phys. 87, 5914 (2000)
D. A. Keen and A. L. Goodwin, Nature 521, 303 (2015)



Spin Ice

Nature 413, 48-51 (2001)

Magnetic Equivalent of Water Ice



Residual Entropy

• 〈111〉 Ising spins with 
ferromagnetic interaction 
on a pyrochlore lattice
• Number of ground states:

Ω ≈ 6N/4(6/16)N/4

• Residual Entropy per spin:

Same as Water Ice! (Pauling, 1935) A.P. Ramirez et al., Nature 399, 333,1999
B.C. den Hertog et al., PRL 84, 3430, 2000

ST=0 = kB
1

2
ln

3

2



Wrong Model? Correct Physics!

• Ice Rules: Nearest Neighbor Spin Ice (NNSI) Model

• Real Material: Ho3+, Dy3+ have large moments, dipolar 
interaction is dominant!

• Dipolar Spin Ice (DSI) Model

• Why does the spin ice materials obey ice rules?

• Self-screening of the dipolar interaction in the 
pyrochlore lattice: Projective Equivalence

Hdip = �J

3

X

hiji

�i · �j + Da3
X

i<j

 
3êi · êj � (êi · r̂ij)(êj · r̂ij)

r3
ij

!
�i�j

Hnn = �J

3

X

hiji

�i · �j

M. J. P. Gingras and B. C. den Hertog, Can. J. Phys. 79, 1339 (2001),
M. Enjalran and M. J. P. Gingras, Phys. Rev. B 70, 174426 (2004),

R. G.Melko and M. J. P. Gingras, J. Phys. Condens. Matter 16, R1277 (2004),
S. V. Isakov, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett., 95 217201 (2005).



Ground State of DSI

•  LRO ground state: MDG state

• Degeneracy lifted by the residual dipolar interaction

R. G. Melko, B. C. den Hertog, M. J. P. Gingras,  
Phys. Rev. Lett. 87, 67203 (2001)



Ground State of DSI

•First order transition to the MDG state
✦ symmetry breaking long-range order, q=(0,0,1).

• Pauling’s residual entropy is recovered.
• Impurity effects?

R.G. Melko et al. PRL 87, 067304; D. Pomaranski et al. Nat. Phys., 9, 353; P. Henelius et al. Phys. Rev. B 93, 024402 (2016)
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Figure 3 | Specific heat versus temperature of Dy2Ti2O7 in zero field.
Previous experimental results had no signature of an upturn below 0.6 K
(refs 2,8–11). The Dy nuclear hyperfine contribution (dashed line) is
insignificant at these temperatures30.
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Figure 4 | Specific heat and entropy for single-crystal Dy2Ti2O7 versus
temperature. a, Specific heat divided by temperature, c(T)/T, was
integrated from 0.34 to 12 K, where data from ref. 8 were used above 1 K.
b, The resulting cumulative entropy does not plateau at Pauling’s residual
value, as was previously reported2. Inset shows low-temperature detail.

to approximately 105 s at 0.34 K. These timescales are also
consistent with the Arrhenius behaviour observed with magnetic
measurements14–16, which provides compelling evidence that spin
relaxation is responsible for the slow thermal relaxation. Our
measurements became restricted by long timescales below 0.34 K
(0.45 K for the powder sample), where the material can require >1
week of equilibration. These timescales should provide guidance
for any experiment (for example, µSR or neutron scattering)
aimed at probing equilibrium characteristics of Dy2Ti2O7 in
this temperature range.

We have shown, contrary to popular understanding from the
body of experimental work so far, that thermally equilibrated,
nominally stoichiometric Dy2Ti2O7 does not possess Pauling’s
entropy at zero temperature (Fig. 4). Furthermore, the absence
of a low-temperature plateau in the entropy at Pauling’s value
provides powerful evidence that the spin-ice state in Dy2Ti2O7
disappears once the long internal equilibration times of thismaterial
are accounted for. By measuring over short timescales, earlier
investigations that obtain Pauling’s residual entropy were able to
capture spin-ice-like properties even at the lowest temperatures.We
conclude that the ground state of thermally equilibratedDy2Ti2O7 is
not a degenerate manifold of spin-ice states, and therefore its effect
on spin-ice andmonopole characteristics calls for further study.

The question still remains: what is the true ground state of
spin ice? Although the MDG model does agree qualitatively with
our results, it may be improved by the inclusion of perturbative
spin exchanges beyond the nearest neighbour29. The mechanisms
responsible for spin dynamics leading up to an ordered state
may be attributable to cluster-like processes involving six or more
spins, instead of the less energetically favourable single-monopole
event12,13. Compelling evidence for this type of process has already
been suggested by quantum mechanical models of spin ice, where
the Pauling degeneracy is lifted by a ground state formed through
the coherent superposition of classical spin-ice configurations6.

Received 12 June 2012; accepted 22 February 2013;

published online 7 April 2013
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Magnetic Anisotropy

•  [100] field:

•  [111] field:

•  [110] field: 

H. Fukazawa et al., 
Phys. Rev. B 65, 54410 (2002)
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NNSI in a [100] Field

• Kasteleyn transition 

★ From the Coulomb phase to a 
fully polarized (FP) state

★ Proliferation of `

★ Classical to quantum mapping 
2D bosonic model  
Bose condensate to vacuum 
transition (field �µ )

• FP state: q=(000)

B=Bc ! cos!, we find for large r and z

 C"r; z# ! S sin!
8"

3$z sin!%2 & "r2 ' $z sin!%2#
"r2 ' $z sin!%2#5=2

: (6)

For B ! 0 the form of this expression reduces to that of
Ref. [18] and has the cubic symmetry of the zero-field
problem. For finite field this symmetry is broken and
distances in the z direction acquire a scale factor
1=

!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1& "B=Bc#2

p
. Close to the Kasteleyn transition, there

is a second regime of behavior, which also follows from
Eq. (4) but is not displayed in Eq. (6). It arises because
correlations at distances shorter than the string separation
are controlled by the behavior of an isolated string, and
hence reduce to the correlations along a 2D random walk,
giving, for example, C"0; z# ( z&1.

We have investigated the transition via Monte Carlo
(MC) simulations, using a cluster algorithm [19–21].
This allows us to avoid the apparent first-order disconti-
nuities [11] that arise from loss of ergodicity with single
spin flip dynamics for T ) J. Each MC move consists of
the reversal of all spins on a string, which in the limit
T=J ! 0 and with periodic boundary conditions must
close on itself. The algorithm is efficient because in this
limit all attempted flips are accepted below saturation. A
typical simulation involves 4* 106 spins, studied for 106

MC steps at each temperature. Monte Carlo data for mag-
netization (Fig. 2), differential susceptibility and heat ca-
pacity (Fig. 3) show conclusively a 3D Kasteleyn transition
in the limit h ) J. For T < TK, the system is completely
frozen, with M ! Msat and Ch ! # ! 0, while for T > TK,
M varies continuously with T=TK. The behavior of Ch and
# close to TK, related by Ch ! h2#=T, is consistent with
the logarithmic singularity expected from Eq. (3). Away
from the limit h ) J, there is no sharp transition: instead
M varies smoothly with T.

Data for the correlation function, illustrated in Fig. 4,
show the behavior expected from Eq. (6). At the maximum
separation along the [100] direction in a system of linear
size L (r ! 0 and z ! L=2) correlations decrease with
increasing L as L&3, and increase in amplitude with
h=hc. Close to the transition, a slower decrease is observed
at short distances, consistent with the L&1 law expected for
isolated strings.

We supplement our simulations with analytical calcula-
tions for a related model: a Bethe lattice (BL) of tetrahedra,
whose central element is illustrated in Fig. 1. As on the
pyrochlore lattice, each tetrahedron is connected to four
others. Crucially, however, there are no closed loops of
tetrahedra [22]: the statistical mechanics can then be
solved exactly and a Kasteleyn transition appears at
TK. Analytical results for the BL are very close to the
simulation data for the pyrochlore lattice—in the absence
of adjustable parameters (Figs. 2 and 3)—providing
a posteriori justification for the BL approach. Small dif-
ferences are apparent only for h ) J: these arise because
the transition on the BL is necessarily mean field, and so
does not have the logarithmic contributions to critical
behavior of Eq. (3).

What about the experimental situation? Studies of mag-
netization as a function of [100] field strength at fixed
low temperature have been reported for the spin-ice ma-
terials Dy2Ti2O7 [12] and Ho2Ti2O7 [23]. Here we pre-
sent a comparison of our theoretical results with data
for Dy2Ti2O7. The measured magnetization flattens off
abruptly at the saturation value, Mexpt ! 10$B=

!!!
3

p
, in a

way reminiscent of the Kasteleyn transition. For tempera-
tures well below the scale set by the exchange constant,
experiments indicate that spin-ice materials are out of
equilibrium, as expected if the actual dynamics is local.
We therefore make a comparison at a temperature compa-
rable with the exchange energy. At such temperatures the
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If we start from a completely saturated state, which means that all the spins have an
angle of cos−1( 1√

3
) ∼ 54.736o between [100] field, flipping spins in successive [100]

layers generates another configuration, which is in an spin-ice state. If these two states
are in two different phases, the change between these two states will be a phase transition.
As long as we can analyze the relation between saturated state and spin ice state, it is able
to predict the transition temperature between these two phases. In Fig.( 1.7), a cluster of
spins are flipped, and the q = (000) phase becomes a spin ice state. The Zeeman effect
contributes to each spin an energy of − h√

3
in the saturated state. Therefore, the energy

difference ∆U = L( 2h√
3
). For each layer of tetrahedron, it has two options for choosing

the cluster of spins. Hence, the difference in entropy is written as ∆S = L ln 2. To
conclude the above arguments, an estimate of critical temperature could be given by an
analysis of the difference of Gibbs free energy

∆G = ∆U − T∆S (1.9)

= L(
2h√
3
− T ln 2) (1.10)

and when ∆G = 0, which implies an occured phase transition, critical temperature

Tk =
2h√
3 ln 2

. (1.11)

Figure( 1.8a) shows there exist two phases for NN spin ice model with [100] field, a
q = (000) state and a spin ice state. The phase transition between these two states is a
Kasteleyn transition[12] in three dimesions. The transition curve from higher temperature
to lower temperature becomes less sharp while the applied magnetic field gets larger. If
the system is mapped that the strings as worldlines for hard-core bosons moving in two
dimensions at zero temperature, it is possible to obtain thermodynamic behavior near the
critical point with the [100] direction as imaginary time[3]. Given the reduced tempera-
ture t ≡ T/Tk − 1, for t > 0, magnetizationM ∝ [1− at− bt ln(1/t)] and also obtain
that the specific heat and susceptibilty follow logarithm curve from higher temperature
to critical temperature. Figure ( 1.8b) shows the specific heat and susceptibility versus
temperature curve. These two curves are related by Ch = h2χ/T . The specific heat and
magnetization result show evidence of phase transition from high temperature to low tem-
perature. The disappearing transition and the less sharp evolution of the magnetisation is
because when J has the same scale as applied field, it is easier for the system to have
strings of spins crossing the system flipped(Fig.( 1.7).

The above discussion is based on the simulation of NN spin ice with a [100] field.
We realize the three dimensional Kasteleyn transition happenes in the pyrochlore spin ice
in a [100] field and knows the full phase diagram. We would like to study the physical
properties for an NN spin ice in a [100] field with further neighbor interaction, especially
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netization (Fig. 2), differential susceptibility and heat ca-
pacity (Fig. 3) show conclusively a 3D Kasteleyn transition
in the limit h ) J. For T < TK, the system is completely
frozen, with M ! Msat and Ch ! # ! 0, while for T > TK,
M varies continuously with T=TK. The behavior of Ch and
# close to TK, related by Ch ! h2#=T, is consistent with
the logarithmic singularity expected from Eq. (3). Away
from the limit h ) J, there is no sharp transition: instead
M varies smoothly with T.

Data for the correlation function, illustrated in Fig. 4,
show the behavior expected from Eq. (6). At the maximum
separation along the [100] direction in a system of linear
size L (r ! 0 and z ! L=2) correlations decrease with
increasing L as L&3, and increase in amplitude with
h=hc. Close to the transition, a slower decrease is observed
at short distances, consistent with the L&1 law expected for
isolated strings.

We supplement our simulations with analytical calcula-
tions for a related model: a Bethe lattice (BL) of tetrahedra,
whose central element is illustrated in Fig. 1. As on the
pyrochlore lattice, each tetrahedron is connected to four
others. Crucially, however, there are no closed loops of
tetrahedra [22]: the statistical mechanics can then be
solved exactly and a Kasteleyn transition appears at
TK. Analytical results for the BL are very close to the
simulation data for the pyrochlore lattice—in the absence
of adjustable parameters (Figs. 2 and 3)—providing
a posteriori justification for the BL approach. Small dif-
ferences are apparent only for h ) J: these arise because
the transition on the BL is necessarily mean field, and so
does not have the logarithmic contributions to critical
behavior of Eq. (3).

What about the experimental situation? Studies of mag-
netization as a function of [100] field strength at fixed
low temperature have been reported for the spin-ice ma-
terials Dy2Ti2O7 [12] and Ho2Ti2O7 [23]. Here we pre-
sent a comparison of our theoretical results with data
for Dy2Ti2O7. The measured magnetization flattens off
abruptly at the saturation value, Mexpt ! 10$B=

!!!
3

p
, in a

way reminiscent of the Kasteleyn transition. For tempera-
tures well below the scale set by the exchange constant,
experiments indicate that spin-ice materials are out of
equilibrium, as expected if the actual dynamics is local.
We therefore make a comparison at a temperature compa-
rable with the exchange energy. At such temperatures the
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FIG. 2 (color online). M vs T=TK obtained from simulations
for the pyrochlore lattice (dots) and analytically on the Bethe
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Ground States
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What is the ground state of a DSI in a [100] field?
High T: Coulomb Phase
Low B: MDG, High B: FP 
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structure factor and superfluid density are nonvanishing. Fur-
thermore, this is not a finite size effect: For larger systems,
!s maintains its value while S(" ,") diverges with L2 as it
should in the case of long range density wave order. This,
therefore, is a candidate for a checkerboard supersolid phase.
To verify this possibility, and check the thermodynamic

stability of the supersolid phase we show in Fig. 9 the den-
sity ! as a function of the calculated chemical potential # .
We see that for all the density values where Fig. 8 shows a
supersolid, i.e., 0.4!!!0.5, the curve in Fig. 9 has negative
slope and therefore negative compressibility $"%!/%# .
Consequently, the apparent checkerboard supersolid phase is
not stable thermodynamically and undergoes phase separa-

tion into a mixture of checkerboard solid and superfluid. This
same behavior had previously been established for the mag-
netization process of the spin-1/2 XXZ model on smaller
lattices.11
To establish this phase separation further, we simulated

the system in the grand canonical ensemble where # is the
input parameter and ! is calculated. If the system undergoes
phase separation, as shown in Fig. 9, then, for the corre-
sponding value of # , a histogram of the density should show
two peaks, one at !"0.5 and the other at !!0.5. This is
indeed what happens as shown in Fig. 10 for an 8#8 system
at V1"2.86. The simulation is done for several values of the
chemical potential. The phase transition takes place for the #
value with equal peaks. We verified that the peak separation
does not change when the system size is increased.
By repeating the simulations that led to Fig. 9 for various

values of V1, we map out the phase diagram in the

FIG. 10. Histogram of the particle density as the chemical po-
tential # is changed. The double peaks show phase separation.

FIG. 11. The phase diagram for V2"0. The solid line shows the
continuous transition to the Mott phase at full filling, the dashed
line shows the discontinuous first order transitions from the super-
fluid to the checkerboard solid at half filling. The tip of the lobe
!"0.5 is the Heisenberg point.

FIG. 12. Top: S(0,") &circles' and S(" ,0) &triangles'. Bottom:
(Wx

2) &circles' and (Wy
2) &triangles'. The larger (W2) &circles' is

parallel to the stripes, the lower is transverse. The system is 8
#8,V1"0,V2"5,*"6.

FIG. 13. Particle density ! versus chemical potential # . There is
a sharp increase in the compressibility as # is increased when the
system goes from the superfluid to the supersolid phase.
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Experimental Signatures

Figure 4.5: Magnetization Curves at 1.8 K along the [100], [110], [111] Axes[5]:The
figure shows experiment data of magnetization. All three plot enter saturated states.
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diffuse scattering persists in finite field and shows a steplike
decrease commensurate with the steplike increase in the
!2,0 ,0" scattering. The spin ice diffuse scattering disappears
as the Bragg scattering saturates in the fully ordered state.
This relationship between Q=0 Bragg and Q=X diffuse scat-
tering exists at all temperatures measured, but at elevated
temperatures !T!0.5 K" there is no hysteresis.

After the hysteresis loop at 0.05 K was completed, the
temperature was raised in zero field. As observed above and
shown in Fig. 7, there is a remnant magnetization at the point
where the hysteresis loop returns to zero field. As the tem-
perature rose, the Bragg scattering disappeared and the dif-
fuse scattering was re-established at T#0.5 K !see Fig. 8".

IV. DISCUSSION OF RESULTS WITH FIELD APPLIED
ALONG †001‡

Both materials show similar behavior: they are driven into
the Q=0 structure by the application of the field, with asso-
ciated complete removal of degeneracy. At low temperatures
this process is strongly hysteretic.

The postulated liquid-gas critical point was not irrefutably
absent. The prediction of Harris et al. can be cast as a first
order phase transition in finite field.11 In both materials this is
observed at 0.05 K, where the fact that the transition is first
order is clearly indicated by the hysteresis and absence of
diffuse or critical scattering at the incipient ordering wave
vectors. In Ho2Ti2O7 the transition becomes continuous
above 0.5 K, where there is no hysteresis. The critical point
must lie in this temperature range, if it does exist. Using the
effective nearest neighbor coupling strength $Jeff=1.8 K
!Ref. 42"% and expected rare earth moment sizes
!10.0"B atom−1" the critical point is expected at Tc=0.29 K
and Bc=0.27 T for Ho2Ti2O7. The development of the hys-
teresis in Ho2Ti2O7 occurs in the right temperature and field
regime but does not agree in detail with these predictions.

The behavior of the dipolar spin ice model in applied field is
largely unknown: it is possible that the critical point may
appear elsewhere in !B ,T" space for this model.

An alternative explanation of the observations is a cross-
over from an intermediate temperature regime !T#1 K" in
which ice rules correlations are established but exploration
of the ground state manifold is still possible, to a frozen low
temperature regime !T#0.5 K", where spin relaxation be-
comes extremely slow. This was clearly demonstrated in
Ho2Ti2O7 by the decay of the remnant magnetization into the
disordered spin ice state as the sample was heated from
0.05 K above 0.5 K !see Fig. 8". In zero field the disordered
spin ice state is favored, but the system is unable to relax
from the partially magnetized state until dynamics are re-
stored at T#0.5 K.

Accordingly the magnetization plateaus in the hysteresis
loops at 0.05 K must be due to metastable states produced by

FIG. 7. Ho2Ti2O7 !B & $001%": development of Q=0 magnetiza-
tion at different temperatures, with the field applied along $001%. As
the temperature decreases increasing hysteresis and metastable
states appear in the magnetization, although the final ordered state
is always the same. Lines are to guide the eye only, filled symbols
indicate the falling field leg, and successive higher temperature
loops are shifted by −1 T and +0.5"B atom−1.

FIG. 8. Ho2Ti2O7 !B & $001%": the intensity of the diffuse scatter-
ing, at the !1,0 ,0" position as a function of rising !top" and falling
!middle" field, at 0.05 K. The !2,0 ,0" peak intensity is shown as a
comparison !it has been divided by 100". As the fully ordered struc-
ture develops the sample passes through a partially ordered regime
in which both Bragg scattering and diffuse scattering from the short
range ordered spin ice state are observed !between 0.3 and 0.7 T".
At the end of the field cycle the sample is frozen in a partially
ordered state with a remnant magnetization. As the temperature is
raised above 0.5 K, the remnant magnetization decays and the dif-
fuse scattering characteristic of the zero field spin ice state is re-
established !bottom". Lines are to guide the eye only; filled symbols
indicate the falling field leg.

FENNELL et al. PHYSICAL REVIEW B 72, 224411 !2005"
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High T experiment Field too high, out of equilibrium? 

T. Fennel et al., Phys. Rev. B 72, 224411 (2005)
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Phase diagram

T. Fennell et al., Nature Physics 3, 566 - 572 (2007) 
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!S is 2:82! 0:1 (0.5 T), 2:84! 0:1 (0.75 T), 3:09! 0:1
(0.90 T) and 3:63! 0:1 J/(Kmol-Dy) (1.00 T). The entropy
difference between 0.5 T and 1T is ascribable to the release
of the residual entropy of Kagome ice. Around 0.5 T, the
ground state retains the residual entropy of Kagome ice. On
the other hand, above 1 T the residual entropy is released
even below 300mK. The residual entropy of the Kagome ice
state SKI is estimated as 0:81! 0:2 J/(mol-DyK) in the
present study, substantially different from the residual
entropy of spin ice state SSI, 1.68 J/(mol-DyK). The
previous results of residual entropy of Kagome ice state
are 0:44! 0:12 (our previous one),14) 0.6515) and 0:5!
0:15 J/(Kmol-Dy).11) In our previous experiment, we esti-
mated the entropy below 0.35K by the procedure similar to
that in the present study. Nevertheless, since the alignment
of sample was not as good as in the present one, we cannot
make a direct comparison of the two sets of the data. On the
other hand, in the previous report by Matsuhira et al.12) the
definition of the entropy is different from ours. They forced
the value of the entropy around 40K as R ln 2. However,
their estimation of phonon specific heat in the fields was just
the fitting Cphonon ¼ !T3 and in this case it was assumed that
additional entropy emerges at high temperature under high
magnetic field, possibly from the heat capacity of the
addenda. We believe that the differences of the value of the
Kagome ice residual entropy between the present and the
previous reports are caused mainly by the upturn at low
temperature discussed below. In the theoretical reports, only
nearest neighbor ferromagnetic interaction is consid-
ered.16,17) In real system, the long-range dipolar interaction
is also important, and this should tend to reduce the residual
entropy. Thus the theoretical value should give the upper
limit of SKI. Although not contradictory within experimental
uncertainty, however, the present value is also somewhat
greater than these theoretical predictions.

We show the 3D plot of the field–temperature dependence
of C=T (Fig. 6), as well as the field–temperature phase
diagram (Fig. 7) in the field along the ½111$ direction. In
Fig. 7, at zero field below the peak temperature (Fig. 7A) the
spin ice state is realized and the ground state has the residual
entropy Sresidual ¼ SSI. Above this crossover temperature
(Fig. 7B) all the spins are thermally fluctuating and direct
randomly; all-random state is realized. At a certain field
range and at low temperatures (Fig. 7C), directions of
parallel spins are fixed and Kagome ice state is realized. The
ground state has a different residual entropy Sresidual ¼ SKI.
At higher temperatures (Fig. 7D) the spins on the Kagome
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Figure 1 Spin ice and kagome ice. a, In a moderate field applied along the trigonal axis ([111]), the pyrochlore lattice can be viewed as stacked kagome planes (red),
separated by pinned interstitial spins (grey). A modified ice rule operates on the kagome planes and the spin configurations can be mapped onto a dimer model on the
honeycomb lattice (green/cyan). b, In high fields, the ice rule is broken and a fully ordered structure (upper tetrahedron) is formed. The transition from kagome ice to
long-range order shows a liquid–gas critical point in Dy2Ti2O7 (ref. 5) and in Ho2Ti2O7 a critical point of unknown type (see the main text and Fig. 5). c, The three phases are
revealed by the magnetic Bragg scattering, which shows two plateaux, the first for kagome ice and the second for the fully ordered state. d, The dimer model has a triangular
phase diagram with respect to the statistical weights Z1,2,3 of the three different dimer orientations. The central region corresponds to kagome ice and the lines correspond to
Kasteleyn transitions to long-range-ordered states (LRO), which occur when one dimer orientation outweighs the other two. The arrows represent two trajectories obtained by
tilting the field applied to kagome ice away from [111] by an angle �, as shown.

previously been observed in ferroelectric systems such as KD2PO4

(ref. 19) but they are less sharply defined in candidate magnetic
systems such as CsNiCrF6 (ref. 20), (Y1�x

Sc
x

)Mn2 (ref. 21) and spin
ice in zero field22,23. Our observation of them may be the first clear
example in magnetism.

The current study was motivated in part by the elegant
theoretical work of Moessner and Sondhi24. These authors studied
the near-neighbour spin-ice model, which assumes ice rules to
be enforced by near-neighbour (ferromagnetic) interactions. They
predicted that spin ice should be extremely sensitive to small tilts
of the applied magnetic field away from the crystallographic [111]
axis and that the entropy of the kagome-ice phase should vanish
in a special phase transition. We briefly outline their argument,
which is based on a mapping of the kagome-ice phase on to the
dimer model on the honeycomb lattice24. The honeycomb lattice
is formed by placing a lattice point at the centre of each triangle
of the original kagome lattice. A bond on the honeycomb lattice

therefore locates a spin on the kagome lattice (as in Fig. 1a). In
the kagome-ice phase, the ice rules compete with the applied
magnetic field such that every triangle of the kagome lattice has
two spins with positive projection on the field and one opposed
to the field. If the field-opposing spin represents a dimer (cyan,
Fig. 1a) on the honeycomb lattice, the kagome-ice state maps to
a disordered dimer state on the honeycomb lattice, as shown in
Fig. 1a. This dimer state was originally studied by Kasteleyn25,
who showed that the dimer correlations are critical (that is, they
decay as a power law with distance). Three dimer orientations
are available and Kasteleyn found a triangular phase diagram
depending on their statistical weights Z1, Z2 and Z3 (Fig. 1d).
When Z1 > Z2 = Z3 (for example), the first dimer orientation
will be selected and there will be a transition to a long-range-
ordered dimer solid, with a continuous vanishing of the entropy
of the critical phase. The physics of Kasteleyn’s model—that of
a critical disordered phase being continuously tuned towards
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Anomalous critical scattering

• For negative tilted field off [111],  critical scattering can not 
be captured by nearest-neighbor spin ice model
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Experiments in Dy2Ti2O7
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Figure 2: Low temperature real part of the ac-
susceptibility as a function of field at fixed temper-
atures as indicated in the plot. The excitation field
was 0.05 Oe at a frequency of 87Hz. The curves are
o↵set by 30% for clarity. As temperature is lowered
from 400 mK, the peak at approx. 1 T at 400mK
rapidly decreases in amplitude, and splits into two
peaks at lower temperatures.

of out-of-equilibrium behavior. At higher magnetic
fields, we only observe a small di↵erence in the
height of the peaks at around ±1T, depending on
whether the transitions are swept upwards or down-
wards in field. The position changes very little,
and the shape of the features is unaltered. As we
lower the temperature, the peak at ⇡ 1T decreases
markedly in amplitude, but without a correspond-
ing change in its high field side shoulder. Below
400mK, it eventually splits into two distinct fea-
tures. Their separation in the field axis (⇡ 0.1 T
at 300 mK) is consistent with previous measure-
ments for a similar sample orientation with respect
to [111] [19]. While the first set of peaks has a
correlate in the imaginary part of �� (not shown
here), no feature is discernible in ��00 for the peaks
at higher fields.

In Fig. 3, we have plotted the position of these
peaks as a function of field and temperature (white
circles), and the position of the critical point (black
circle). We have taken the specific heat data from
reference [11] and determined the position of the
peaks in C vs. H for di↵erent temperatures. These
are plotted in this same graphic as red symbols.

Figure 3: Phase diagram with field slightly tilted
from [111] (✓  5o). An intermediate phase is seen
between the kagome-ice and fully polarized regions.
The black circle is the critical point as identified
from a peak in the real part of the ac-susceptibility,
�0. The dotted white circles correspond to a small
doubled peaks seen in �0 with a corresponding fea-
ture in the imaginary part �00, while the white cir-
cles denote small peak in �0 with no signature in �00.
The red circles are taken from peaks in the specific
heat (C) measurements of reference [11]. The main
divergence of C seen in reference [11] and identified
as a critical point coincides with the critical point
(black circle).

The coincidence between these two experiments of
di↵erent quantities, on di↵erent samples, laborato-
ries and experimental setup is remarkable.

As mentioned before, this secondary peak at
higher fields is absent in the dM/dH data presented
on Ref. [9]. We measured the magnetization using
a Faraday balance on the same samples and un-
der similar temperature and field conditions than
before [16]. The main body of Fig. [17] shows our
dM/dH as a function of field, compared with curves
of �� at T = 100mK and frequencies spanning two
orders of magnitude (from ! ⇡ 10 to 1000Hz). For
clarity, we have multiplied�� by a factor of twenty.
The peak in dM/dH is markedly asymmetric, with
an extended tail in the high field side but no addi-
tional feature is seen at high fields, in coincidence
with Sakakibara’s observations. On the other hand,
the second peak is clearly seen for low tempera-
ture (T < 400mK) at all measured frequencies in

070009-4
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Conclusions and outlooks

• We  find a new intermediate half-polarized phase for 
a dipolar spin ice in a [100] field.

• Half-magnetization plateau is observed in the 
simulation, yet no clear experimental signatures 
available. 

• AFM ordering transition from kagome ice to Q=X 
state in the negative tilted field.

• Simulation sees a first-order transition, but the 
neutron shows critical scattering. Other effects?

• Defect Dynamics? Similar phases in dipolar QSI?
Lin and YJK, Phys. Rev. B 88, 220402(R) (2013) 

Kao, Holdsworth, and YJK Phys. Rev. B 93, 180410(R) (2016)


