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What does a boost do to this kind of superconductor?



What is known?
Mean-field 

Boost destroys superconductivity via  
Clogston-Chandrasekhar type mechanism.  
Critical velocity < Landau critical velocity

 T.-C. Wei and P. M. Goldbart, Phys. Rev. B 80, 134507 (2009).

Fluctuations

Interaction with walls can induce phase slips “dynamically” 
destroying superconductivity, finite ! and T

T. Eggel, M. A. Cazalilla and M. Oshikawa, Phys. Rev. Lett.107, 
275302 (2011). 
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Our calculations and results

Bosonization treatment taking into account quantum 
fluctuations

Superconductivity can be strengthened upon applying a boost

A boost can open or close gaps depending on whether the 
system has spinless or spin 1/2 fermions
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K - Luttinger parameter
hOSU (x)OSU (x

0)i ⇠ 1/|x� x0|1/K

hOCDW (x)OCDW (x0)i ⇠ 1/|x� x0|K

K > 1

K < 1

attractive interactions (dominant SU order)
repulsive interactions (dominant CDW order)
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Ref: Quantum physics in one dimension, Giamarchi
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Boost has no effect when the dispersion is parabolic
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) K(u) > K(0) when K > 1

dominant superconductivity is strengthened upon boosting 

) K(u) < K(0) when K < 1

dominant CDW order is strengthened upon boosting 

The same effect for spin 1/2 fermions
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FIG. 1. The ratio of the boosted and unboosted pairing susceptibility �(u)/�(0) at half-filling as a function of u. It can be
seen that the susceptibility increases with u which is consistent with the strengthening of superconducting order. Note that
there is a divergent factor of log T , where T is the temperature that cancels between the numerator and denominator of the
quantity �(u)/�(0).

For u = 0, the SU and CDW correlation functions are given by [8, 22]:
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This immediately yields
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for the equal time correlation functions.

If the transformed field S1.11 is used in S1.7 and S3.1, following the same procedure that gives Eq. (S3.2), we
obtain the space-time correlation functions for u 6= 0:
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from which it follows that the equal time correlation functions are
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LL ! RR q = 2kF

operative only at half-filling on a lattice

L ", R # ! R ", L "

for spin 1/2 fermions

At any filling so exists even in the continuum

Sine-Gordon Hamiltonian



Umklapp 



Umklapp 

H =

v⌫

2

Z
dx


K⌫⇧

2
⌫ +

1

K⌫
(r�⌫)

2
+

2g⌫

2⇡a

2
cos (↵⌫�⌫)

�

⌫ = charge, spin



Umklapp 

Renormalization group flows can be calculated for  K and g

g relevant ) gapped, g irrelevant ) gapless

H =

v⌫

2

Z
dx


K⌫⇧

2
⌫ +

1

K⌫
(r�⌫)

2
+

2g⌫

2⇡a

2
cos (↵⌫�⌫)

�

⌫ = charge, spin



Umklapp 

Renormalization group flows can be calculated for  K and g

g relevant ) gapped, g irrelevant ) gapless

y = g

H =

v⌫

2

Z
dx


K⌫⇧

2
⌫ +

1

K⌫
(r�⌫)

2
+

2g⌫

2⇡a

2
cos (↵⌫�⌫)

�

⌫ = charge, spin



Umklapp 

Ref: Quantum physics in one dimension, Giamarchi

Renormalization group flows can be calculated for  K and g

g relevant ) gapped, g irrelevant ) gapless

y = g

H =

v⌫

2

Z
dx


K⌫⇧

2
⌫ +

1

K⌫
(r�⌫)

2
+

2g⌫

2⇡a

2
cos (↵⌫�⌫)

�

⌫ = charge, spin



Umklapp 

dg?⌫
dl

= �h⌫g?⌫ , (1)

dh⌫

dl
= �

�
g?⌫

�2
.

h⌫ = 2
⇣

K⌫
Kc

⌫
� 1

⌘

g?⌫ = Kc
⌫g⌫

Kc
⌫ = 8⇡

↵2
⌫

H =

v⌫

2

Z
dx


K⌫⇧⌫(x)

2
+

1

K⌫
(r�⌫(x))

2
+

2g⌫

2⇡a

2
cos(↵⌫�⌫)

�



Umklapp 



Umklapp 
gv(u) is independent of the boost

RG flow equations are unaffected by the boost



Umklapp 
gv(u) is independent of the boost

RG flow equations are unaffected by the boost

The boost only changes bare values of K and g



Umklapp 
gv(u) is independent of the boost
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Spinless fermions 4

the initial (bare) values of h
⌫

and g?
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.
Eqs. ( 12) are valid even for u 6= 0. The only e↵ect of

the boost is to change the values of the initial parameters
in the following way (See the supplemental material [9])
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Even in this more general case with spin, the boost has
the e↵ect that K

⌫,i

(u) > K
⌫,i

(0)[K
⌫,i

(u) < K
⌫,i

(0)] if
K

⌫,i

(0) > 1[K
⌫,i

(0) < 1].
The value h⇤

⌫

(u) can be determined for a flow starting
at h

⌫,i

(u) and g?
⌫,i

(u) and is given by:

[h⇤
⌫

(u)]2 = 4

✓
K

⌫,i

(0)

Kc

⌫

� 1

◆2

� �g?
⌫,i

(0)
�2

+
vF
i

(0)f(u)

v
⌫

(0)Kc

⌫


4(K

⌫,i

(0)2 � 1)

 
1� K

⌫,i

(0)

Kc

⌫,i

!

+
g?
⌫,i

(0)2Kc

⌫

K
⌫,i

(0)
(K

⌫,i

(0)2 + 1)

�
.

(14)

It can be seen that in the presence of umklapp a sec-
tor is gapped (gapless) when K⇤

⌫

(u) < Kc

⌫

[K⇤
⌫

(u) � Kc

⌫

].
For spinless fermions, Kc

⇢

= 1/2 < 1 [8, 10] and so
when superconductivity dominates in the charge sector
(K

⇢,i

(0) > 1), it is strengthened when the system is
boosted just like in the absence of umklapp and the
charge sector continues to be gapless. When K

⇢,i

(0) < 1,
gapless CDW order results down to a critical value of
g?
⇢,i

, below which a gapped state is obtained, which can
even result in a long range CDW case.
It can be seen from Fig. 2 that upon the application

of a boost (which has the e↵ect of reducing the value of
K

⇢,i

), a gapless CDW state can be transformed into a
gapped one. Thus a boost can convert quasi-long-ranged
CDW order into true long-range order. If the CDW state
continues to remain gapless upon the application of a
boost, the order is strengthened like in the case without
umklapp.
For spinful fermions on a lattice, Kc

⇢

= Kc

�

= 1 [8].
Consequently, for K

⇢,i

< 1, the system is always gapped
and it is possible to have such a phase even whenK

⇢,i

� 1
depending on the value of g?

⇢,i

as can be seen in Fig. 2.
A boost cannot open a charge gap in this case unlike for
spinless fermions. However, it can close an existing gap
for systems with a certain range of values of K

⇢,i

and g?
⇢,i

as can be seen in Fig. 3. This happens only for K
⇢,i

> 1.
The boost has exactly the same e↵ect in the spin sector
as well.

FIG. 2. The e↵ect of a boost on the renormalization group
flows of the parameters K⌫ and g?⌫ . The boost changes the
initial values K⌫,i and g?⌫,i after which the flows are given by
Eqs. ( 12). This is shown for a system of spinless fermions
(top panel) with two loci of initial conditions (dashed blue
lines) which under the e↵ect of a boost are mapped onto two
di↵erent loci of initial conditions (red solid lines). The value
of K⇤

⇢ changes as a result. Additionally, the boost can also
transform a locus of initial values flowing to a gapless phase
into one which flows to a gapped phase as shown. The critical
value of K⇢ separating the gapped and gapless phases is Kc

⇢ =
1/2. The same e↵ect on a system of spin 1/2 fermions (bottom
panel). Here, there are two decoupled sectors corresponding
to ⌫ = ⇢,� and Kc

⌫ = 1. This has the e↵ect that a boost
can no longer open a gap: instead it can transform a locus
of points flowing to a gapped phase into one which flows to a
gapless phase.

The above conclusions open up the possibility of sce-
narios in which a system with a gap in the charge or spin
sector or both can be transformed into a di↵erent phase
by closing one or both gaps upon the application of a
boost. Of particular interest is the situation where the
system has both a charge and spin gap. If K

⇢,i

(0) and
g?
⇢,i

(0) lie in the red colored region between the dashed
and the solid line in Fig. 3, a boost can open up a charge
gap. If K

�,i

(0) and g?
�,i

(0) lie in the red region (beyond
the solid line), the boost cannot close the spin gap and
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the initial (bare) values of h
⌫

and g?
⌫

.
Eqs. ( 12) are valid even for u 6= 0. The only e↵ect of

the boost is to change the values of the initial parameters
in the following way (See the supplemental material [9])
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⇢

= 1/2 < 1 [8, 10] and so
when superconductivity dominates in the charge sector
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(0) > 1), it is strengthened when the system is
boosted just like in the absence of umklapp and the
charge sector continues to be gapless. When K
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(0) < 1,
gapless CDW order results down to a critical value of
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, below which a gapped state is obtained, which can
even result in a long range CDW case.
It can be seen from Fig. 2 that upon the application

of a boost (which has the e↵ect of reducing the value of
K
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), a gapless CDW state can be transformed into a
gapped one. Thus a boost can convert quasi-long-ranged
CDW order into true long-range order. If the CDW state
continues to remain gapless upon the application of a
boost, the order is strengthened like in the case without
umklapp.
For spinful fermions on a lattice, Kc
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Consequently, for K
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< 1, the system is always gapped
and it is possible to have such a phase even whenK
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A boost cannot open a charge gap in this case unlike for
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as can be seen in Fig. 3. This happens only for K
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> 1.
The boost has exactly the same e↵ect in the spin sector
as well.

FIG. 2. The e↵ect of a boost on the renormalization group
flows of the parameters K⌫ and g?⌫ . The boost changes the
initial values K⌫,i and g?⌫,i after which the flows are given by
Eqs. ( 12). This is shown for a system of spinless fermions
(top panel) with two loci of initial conditions (dashed blue
lines) which under the e↵ect of a boost are mapped onto two
di↵erent loci of initial conditions (red solid lines). The value
of K⇤

⇢ changes as a result. Additionally, the boost can also
transform a locus of initial values flowing to a gapless phase
into one which flows to a gapped phase as shown. The critical
value of K⇢ separating the gapped and gapless phases is Kc

⇢ =
1/2. The same e↵ect on a system of spin 1/2 fermions (bottom
panel). Here, there are two decoupled sectors corresponding
to ⌫ = ⇢,� and Kc

⌫ = 1. This has the e↵ect that a boost
can no longer open a gap: instead it can transform a locus
of points flowing to a gapped phase into one which flows to a
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The above conclusions open up the possibility of sce-
narios in which a system with a gap in the charge or spin
sector or both can be transformed into a di↵erent phase
by closing one or both gaps upon the application of a
boost. Of particular interest is the situation where the
system has both a charge and spin gap. If K
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Unboosted system with charge and spin gap
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Close charge gap but not spin gap - Luther-Emery fluid



Conclusions

• A boost has a non-trivial effect on algebraic order in 1D only 
for non-parabolic bands 

!
• For a simple lattice dispersion, a boost can strengthen 

superconductivity (and CDW order) 
!
• At commensurate filling, a boost can open or close gaps 

depending on whether the fermions are spinless or spinful 
!
• Possible to obtain a Luther-Emery fluid by boosting starting 

from fully gapped state


