

Subroto Mukerjee Department of Physics, Indian Institute of Science

Current frontiers in condensed matter ICTS Jun 29 2016

Sayonee Ray

Vijay Shenoy

Funding: ISF-UGC Indo-Israeli grant arxiv:1603.09478

How is superconductivity destroyed by a boost?

How is superconductivity destroyed by a boost?

Superconducting gap decreases with boost and goes to zero at v_c

How is superconductivity destroyed by a boost?

Superconducting gap decreases with boost and goes to zero at v_c

Landau critical velocity

$$v_c = \operatorname{Min.}\left(v_s, \left(\left[\sqrt{\Delta^2 + \mu^2} - \mu\right]/m\right)^{1/2}\right)$$

Sound velocity of bosonic collective mode

Fermionic (single-particle) excitations

Baym and Pethick, Phys. Rev. A 86 023602 (2012)

What happens if the gap is zero to begin with?

What happens if the gap is zero to begin with?

1D superconductor at T=0

No long-range order (Mermin-Wagner-Coleman theorem)

Algebraic long-range order

What happens if the gap is zero to begin with?

1D superconductor at T=0

No long-range order (Mermin-Wagner-Coleman theorem)

Algebraic long-range order

$$\langle O_{SU} \rangle = 0 \qquad \langle O_{SU}(x) O_{SU}(x') \rangle \sim 1/|x - x'|^{\eta}$$

What happens if the gap is zero to begin with?

1D superconductor at T=0

No long-range order (Mermin-Wagner-Coleman theorem)

Algebraic long-range order

$$\langle O_{SU} \rangle = 0 \qquad \langle O_{SU}(x) O_{SU}(x') \rangle \sim 1/|x - x'|^{\eta}$$

What does a boost do to this kind of superconductor?

What is known?

Mean-field

Boost destroys superconductivity via Clogston-Chandrasekhar type mechanism. Critical velocity < Landau critical velocity

T.-C. Wei and P. M. Goldbart, Phys. Rev. B 80, 134507 (2009).

Fluctuations

Interaction with walls can induce phase slips "dynamically" destroying superconductivity, finite ω and T

T. Eggel, M. A. Cazalilla and M. Oshikawa, Phys. Rev. Lett.107, 275302 (2011).

Bosonization treatment taking into account quantum fluctuations

Bosonization treatment taking into account quantum fluctuations

Superconductivity can be strengthened upon applying a boost

Bosonization treatment taking into account quantum fluctuations

Superconductivity can be strengthened upon applying a boost

A boost can open or close gaps depending on whether the system has spinless or spin 1/2 fermions

Low energy theory for interacting 1D spinless Fermi system

$$\mathcal{H} = \frac{v}{2} \int dx \left[K \Pi(x)^2 + \frac{1}{K} \left(\nabla \phi(x) \right)^2 \right]$$

Low energy theory for interacting 1D spinless Fermi system

$$\mathcal{H} = \frac{v}{2} \int dx \left[K \Pi(x)^2 + \frac{1}{K} \left(\nabla \phi(x) \right)^2 \right]$$
$$\mathcal{L} = \frac{1}{2K} \int dx dt \left[\frac{1}{v} \left(\partial_t \phi \right)^2 - v \left(\partial_x \phi \right)^2 \right]$$

Low energy theory for interacting 1D spinless Fermi system

$$\mathcal{H} = \frac{v}{2} \int dx \left[K \Pi(x)^2 + \frac{1}{K} \left(\nabla \phi(x) \right)^2 \right]$$
$$\mathcal{L} = \frac{1}{2K} \int dx dt \left[\frac{1}{v} \left(\partial_t \phi \right)^2 - v \left(\partial_x \phi \right)^2 \right]$$

K-Luttinger parameter $\langle O_{SU}(x)O_{SU}(x')\rangle \sim 1/|x-x'|^{1/K}$

 $\langle O_{CDW}(x)O_{CDW}(x')\rangle \sim 1/|x-x'|^K$

Low energy theory for interacting 1D spinless Fermi system

$$\mathcal{H} = \frac{v}{2} \int dx \left[K \Pi(x)^2 + \frac{1}{K} \left(\nabla \phi(x) \right)^2 \right]$$
$$\mathcal{L} = \frac{1}{2K} \int dx dt \left[\frac{1}{v} \left(\partial_t \phi \right)^2 - v \left(\partial_x \phi \right)^2 \right]$$
$$K \text{- Luttinger parameter}$$

 $\langle O_{SU}(x) O_{SU}(x') \rangle \sim 1/|x - x'|^{1/K}$

 $\langle O_{CDW}(x)O_{CDW}(x')\rangle \sim 1/|x-x'|^K$

K > 1 attractive interactions (dominant SU order) K < 1 repulsive interactions (dominant CDW order)

$$v = \sqrt{\left(v_F + \frac{g_4}{2\pi}\right)^2 - \left(\frac{g_2}{2\pi}\right)^2}$$

$$K = \sqrt{\frac{v^F - \left(\frac{g_2}{2\pi} - \frac{g_4}{2\pi}\right)}{v^F + \left(\frac{g_2}{2\pi} + \frac{g_4}{2\pi}\right)}}$$

Ref: Quantum physics in one dimension, Giamarchi

Momentum: $k \rightarrow k + u$

Momentum: $k \rightarrow k + u$

Different Fermi speeds for left and right movers

$$v_L^F(u) = v^F(u) - w(u); v_R^F(u) = v^F(u) + w(u)$$

Momentum: $k \rightarrow k + u$

Different Fermi speeds for left and right movers

$$v_L^F(u) = v^F(u) - w(u); v_R^F(u) = v^F(u) + w(u)$$

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$v(u) = \sqrt{\left(v^F(u) + \frac{g_4}{2\pi}\right)^2 - \left(\frac{g_2}{2\pi}\right)^2},$$

$$K(u) = \sqrt{\frac{v^F(u) - \left(\frac{g_2}{2\pi} - \frac{g_4}{2\pi}\right)}{v^F(u) + \left(\frac{g_2}{2\pi} + \frac{g_4}{2\pi}\right)}}$$

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$v(u) = \sqrt{\left(v^F(u) + \frac{g_4}{2\pi}\right)^2 - \left(\frac{g_2}{2\pi}\right)^2},$$

$$K(u) = \sqrt{\frac{v^F(u) - \left(\frac{g_2}{2\pi} - \frac{g_4}{2\pi}\right)}{v^F(u) + \left(\frac{g_2}{2\pi} + \frac{g_4}{2\pi}\right)}}$$

$$v_L^F(u) = v^F(u) - w(u); v_R^F(u) = v^F(u) + w(u)$$

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$v(u) = \sqrt{\left(v^F(u) + \frac{g_4}{2\pi}\right)^2 - \left(\frac{g_2}{2\pi}\right)^2},$$

$$K(u) = \sqrt{\frac{v^F(u) - \left(\frac{g_2}{2\pi} - \frac{g_4}{2\pi}\right)}{v^F(u) + \left(\frac{g_2}{2\pi} + \frac{g_4}{2\pi}\right)}}$$

$$v_L^F(u) = v^F(u) - w(u); v_R^F(u) = v^F(u) + w(u)$$

g's unchanged by boost because they only depend on momentum differences

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[\frac{K(u)\Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi\right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi\right) + \left(\partial_x \phi \Pi\right) \right] \right\}$$

$$\mathcal{L} = \frac{1}{2K(u)} \int dx dt \left[\frac{1}{v(u)} \left(\partial_t \tilde{\phi} \right)^2 - v(u) \left(\partial_x \tilde{\phi} \right)^2 \right]$$

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$\mathcal{L} = \frac{1}{2K(u)} \int dx dt \left[\frac{1}{v(u)} \left(\partial_t \tilde{\phi} \right)^2 - v(u) \left(\partial_x \tilde{\phi} \right)^2 \right]$$

$$\tilde{\phi}(x,t) = \phi(x+w(u)t,t)$$

Galilean transformation with speed w(u)

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$\mathcal{L} = \frac{1}{2K(u)} \int dx dt \left[\frac{1}{v(u)} \left(\partial_t \tilde{\phi} \right)^2 - v(u) \left(\partial_x \tilde{\phi} \right)^2 \right]$$

$$\tilde{\phi}(x,t) = \phi(x+w(u)t,t)$$

Galilean transformation with speed w(u)

$$\langle O_{SU}(x)O_{SU}(x')\rangle \sim 1/|x-x'|^{1/K(u)}$$

$$\mathcal{H} = \int dx \left\{ \frac{v(u)}{2} \left[K(u) \Pi^2 + \frac{1}{K(u)} \left(\partial_x \phi \right)^2 \right] - w(u) \left[\left(\Pi \partial_x \phi \right) + \left(\partial_x \phi \Pi \right) \right] \right\}$$

$$\mathcal{L} = \frac{1}{2K(u)} \int dx dt \left[\frac{1}{v(u)} \left(\partial_t \tilde{\phi} \right)^2 - v(u) \left(\partial_x \tilde{\phi} \right)^2 \right]$$

$$\tilde{\phi}(x,t) = \phi(x+w(u)t,t)$$

Galilean transformation with speed w(u)

$$\langle O_{SU}(x)O_{SU}(x')\rangle \sim 1/|x-x'|^{1/K(u)}$$

 $\langle O_{CDW}(x)O_{CDW}(x')\rangle \sim 1/|x-x'|^{K(u)}$
$$\langle O_{\rm SU}(x,t)O_{\rm SU}^{\dagger}(x',t')\rangle \sim e^{i2u(x-x')} \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{1/K(u)}$$

$$\langle O_{\rm CDW}(x,t)O_{\rm CDW}(x',t')\rangle \sim \cos\left[2k_F(x-x')\right] \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{K(u)}$$

$$\langle O_{\rm SU}(x,t)O_{\rm SU}^{\dagger}(x',t')\rangle \sim e^{i2u(x-x')} \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{1/K(u)}$$

$$\langle O_{\rm CDW}(x,t)O_{\rm CDW}(x',t')\rangle \sim \cos\left[2k_F(x-x')\right] \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{K(u)}$$

No conformal invariance

$$\langle O_{\rm SU}(x,t)O_{\rm SU}^{\dagger}(x',t')\rangle \sim e^{i2u(x-x')} \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{1/K(u)}$$

 $\langle O_{\rm CDW}(x,t)O_{\rm CDW}(x',t')\rangle \sim \cos\left[2k_F(x-x')\right] \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{K(u)}$

No conformal invariance

$$\tilde{\phi}(x,t) = \phi(x+w(u)t,t)$$

Galilean transformation with speed w(u)

$$\langle O_{\rm SU}(x,t)O_{\rm SU}^{\dagger}(x',t')\rangle \sim e^{i2u(x-x')} \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{1/K(u)}$$

 $\langle O_{\rm CDW}(x,t)O_{\rm CDW}(x',t')\rangle \sim \cos\left[2k_F(x-x')\right] \left(\frac{1}{\sqrt{[x-x'+w(u)(t-t')]^2+[v^F(u)]^2(t-t')^2}}\right)^{K(u)}$

No conformal invariance

$$\tilde{\phi}(x,t) = \phi(x+w(u)t,t)$$

Galilean transformation with speed w(u)

Conformal invariance restored in terms of $\tilde{\phi}$

 $K(u) = K(v^F(u))$ $v^F(u) \text{ is an even function of } u$

 $K(u) = K(v^F(u))$ $v^F(u) \text{ is an even function of } u$

$$K(u) \approx K(0) + \frac{u^2}{2} \frac{dK}{dv^F(u)} \frac{d^2 v^F(u)}{du^2} \Big|_{u=0} + \dots$$

for $u \ll k_F$

 $K(u) = K(v^F(u))$ $v^F(u) \text{ is an even function of } u$

$$K(u) \approx K(0) + \frac{u^2}{2} \frac{dK}{dv^F(u)} \frac{d^2 v^F(u)}{du^2} \Big|_{u=0} + \dots$$

for $u \ll k_F$

 $K(u) = K(v^F(u))$ $v^F(u) \text{ is an even function of } u$

$$K(u) \approx K(0) + \frac{u^2}{2} \frac{dK}{dv^F(u)} \frac{d^2 v^F(u)}{du^2} \Big|_{u=0} + \dots$$

for $u \ll k_F$

 $K(u) = K(v^F(u))$ $v^F(u) \text{ is an even function of } u$

$$\begin{split} K(u) &\approx K(0) + \frac{u^2}{2} \frac{dK}{dv^F(u)} \frac{d^2 v^F(u)}{du^2} \Big|_{u=0} + \dots \\ & \text{for } u \ll k_F \end{split}$$

$$\frac{dK}{dv^F} < 0 \text{ when } K > 1 \qquad \qquad \frac{dK}{dv^F} > 0 \text{ when } K < 1$$
$$\frac{d^2v^F}{du^2} = 0 \Rightarrow K(u) = K(0)$$

Boost has no effect when the dispersion is parabolic

Simplest dispersion on a lattice: $\epsilon_k = -2t \cos k$

$$\frac{d^2 v^F}{du^2} < 0$$

Simplest dispersion on a lattice: $\epsilon_k = -2t \cos k$

 $\Rightarrow K(u) > K(0)$ when K > 1

dominant superconductivity is strengthened upon boosting

Simplest dispersion on a lattice: $\epsilon_k = -2t \cos k$

 $\Rightarrow K(u) > K(0)$ when K > 1

dominant superconductivity is strengthened upon boosting

 $\Rightarrow K(u) < K(0)$ when K < 1

dominant CDW order is strengthened upon boosting

Simplest dispersion on a lattice: $\epsilon_k = -2t \cos k$

 $\Rightarrow K(u) > K(0)$ when K > 1

dominant superconductivity is strengthened upon boosting

 $\Rightarrow K(u) < K(0)$ when K < 1

dominant CDW order is strengthened upon boosting

The same effect for spin 1/2 fermions

Superconducting pairing susceptibility

$$\chi_{\text{pair}} = \lim_{\omega \to 0} \frac{1}{\Omega} \sum_{k} \frac{f(\xi_k) - f(-\xi_{-k})}{\omega - \xi(k) - \xi(-k) + i\delta}$$

Superconducting pairing susceptibility

$$\chi_{\text{pair}} = \lim_{\omega \to 0} \frac{1}{\Omega} \sum_{k} \frac{f(\xi_k) - f(-\xi_{-k})}{\omega - \xi(k) - \xi(-k) + i\delta}$$

 $\chi_{\text{pair}} \sim \log T \text{ as } T \to 0$

Superconducting pairing susceptibility

$$\chi_{\text{pair}} = \lim_{\omega \to 0} \frac{1}{\Omega} \sum_{k} \frac{f(\xi_k) - f(-\xi_{-k})}{\omega - \xi(k) - \xi(-k) + i\delta}$$

 $\chi_{\text{pair}} \sim \log T \text{ as } T \to 0$

Left mover \longleftarrow Right mover $LL \longleftrightarrow RR$ $q = 2k_F$

operative only at half-filling on a lattice

Left mover \longleftarrow Right mover $LL \longleftrightarrow RR$ $q = 2k_F$

operative only at half-filling on a lattice

 $L\uparrow, R\downarrow\longleftrightarrow R\uparrow, L\uparrow$

for spin 1/2 fermions

At any filling so exists even in the continuum

Left mover \longleftarrow Right mover $LL \longleftrightarrow RR$ $q = 2k_F$

operative only at half-filling on a lattice

 $L\uparrow, R\downarrow\longleftrightarrow R\uparrow, L\uparrow$

for spin 1/2 fermions

At any filling so exists even in the continuum

Sine-Gordon Hamiltonian

$Umklapp \mathcal{H} = \frac{v_{\nu}}{2} \int dx \left[K_{\nu} \Pi_{\nu}^{2} + \frac{1}{K_{\nu}} \left(\nabla \phi_{\nu} \right)^{2} + \frac{2g_{\nu}}{2\pi a^{2}} \cos \left(\alpha_{\nu} \phi_{\nu} \right) \right] \\ \nu = \text{charge, spin}$

$$\begin{aligned} & \mathsf{Umklapp} \\ \mathcal{H} = \frac{v_{\nu}}{2} \int dx \left[K_{\nu} \Pi_{\nu}^{2} + \frac{1}{K_{\nu}} \left(\nabla \phi_{\nu} \right)^{2} + \frac{2g_{\nu}}{2\pi a^{2}} \cos \left(\alpha_{\nu} \phi_{\nu} \right) \right] \\ & \nu = \text{charge, spin} \end{aligned}$$

Renormalization group flows can be calculated for K and g g relevant \Rightarrow gapped, g irrelevant \Rightarrow gapless

$$\begin{aligned} & \mathsf{Umklapp} \\ \mathcal{H} = \frac{v_{\nu}}{2} \int dx \left[K_{\nu} \Pi_{\nu}^{2} + \frac{1}{K_{\nu}} \left(\nabla \phi_{\nu} \right)^{2} + \frac{2g_{\nu}}{2\pi a^{2}} \cos \left(\alpha_{\nu} \phi_{\nu} \right) \right] \\ & \nu = \text{charge, spin} \end{aligned}$$

Renormalization group flows can be calculated for K and g g relevant \Rightarrow gapped, g irrelevant \Rightarrow gapless

$$\begin{aligned} & \mathsf{Umklapp} \\ \mathcal{H} = \frac{v_{\nu}}{2} \int dx \left[K_{\nu} \Pi_{\nu}^{2} + \frac{1}{K_{\nu}} \left(\nabla \phi_{\nu} \right)^{2} + \frac{2g_{\nu}}{2\pi a^{2}} \cos \left(\alpha_{\nu} \phi_{\nu} \right) \right] \\ & \nu = \text{charge, spin} \end{aligned}$$

Renormalization group flows can be calculated for K and g g relevant \Rightarrow gapped, g irrelevant \Rightarrow gapless

Ref: Quantum physics in one dimension, Giamarchi

$$\mathcal{H} = \frac{v_{\nu}}{2} \int dx \left[K_{\nu} \Pi_{\nu}(x)^2 + \frac{1}{K_{\nu}} \left(\nabla \phi_{\nu}(x) \right)^2 + \frac{2g_{\nu}}{2\pi a^2} \cos(\alpha_{\nu} \phi_{\nu}) \right]$$

$$K_{\nu}^{c} = \frac{8\pi}{\alpha_{\nu}^{2}}$$
$$h_{\nu} = 2\left(\frac{K_{\nu}}{K_{\nu}^{c}} - 1\right)$$
$$g_{\nu}^{\perp} = K_{\nu}^{c}g_{\nu}$$

$$\frac{dg_{\nu}^{\perp}}{dl} = -h_{\nu}g_{\nu}^{\perp},$$

$$\frac{dh_{\nu}}{dl} = -\left(g_{\nu}^{\perp}\right)^{2}.$$

gv(u) is independent of the boost RG flow equations are unaffected by the boost

gv(u) is independent of the boost RG flow equations are unaffected by the boost

The boost only changes bare values of K and g

gv(u) is independent of the boost RG flow equations are unaffected by the boost

The boost only changes bare values of K and g

$$h_{\nu,i}(u) = 2\left(\frac{K_{\nu,i}(0)}{K_{\nu}^{c}} - 1\right) - \frac{v_{i}^{F}(0)f(u)}{v_{\nu}(0)K_{\nu}^{c}}\left[\left(K_{\nu,i}(0)\right)^{2} - 1\right]$$
$$g_{\nu,i}^{\perp}(u) = g_{\nu,i}^{\perp}(0)\left[1 - \frac{v_{i}^{F}(0)f(u)}{2v_{\nu}(0)}\left(K_{\nu,i}(0) + \frac{1}{K_{\nu,i}(0)}\right)\right].$$

$$f(u) = -\frac{v_i^F(0) - v_i^F(u)}{v_i^F(0)}$$

Spinless fermions

Spinless fermions

Boost can open a gap

Spinless fermions

The boost can open a gap for K < 1 Possibly algebraic CDW to long-ranged CDW

Boost can close gap

Interesting possibility

Unboosted system with charge and spin gap

Boost closes one of the gaps

Close charge gap but not spin gap - Luther-Emery fluid

Conclusions

- A boost has a non-trivial effect on algebraic order in 1D only for non-parabolic bands
- For a simple lattice dispersion, a boost can strengthen superconductivity (and CDW order)
- At commensurate filling, a boost can open or close gaps depending on whether the fermions are spinless or spinful
- Possible to obtain a Luther-Emery fluid by boosting starting from fully gapped state