Excitations of a quantum solid

Daniel Podolsky

Collaborators: S. Gazit, H. Nonne, A. Auerbach, D. Arovas

Helium 4 - Phase diagram

Inelastic neutron scattering

Optical mode observed!

Markovic et al., PRL 88, 195301 ('02)
(110)

Multiple optical modes?

Look at different directions and polarizations

Pelleg et al, PRB 73, 180301R ('06)

Markovic et al., PRL 88, 195301 ('02)

Pelleg et al., JLTP 151, 1164 ('08)

Harmonic theory of solids

Fluctuations:

Small fluctuations $\quad \sqrt{\left\langle\mathbf{u}^{2}\right\rangle} \ll \Delta R$

$$
U_{\mathrm{harm}}=\frac{1}{2} \sum_{\mathbf{R R}^{\prime}} \sum_{\mu \nu} u_{\mu}(\mathbf{R}) D_{\mu \nu}\left(\mathbf{R}-\mathbf{R}^{\prime}\right) u_{\nu}\left(\mathbf{R}^{\prime}\right)
$$

Monatomic Bravais lattice \Rightarrow acoustic phonons only
Corrections to harmonic theory:

$$
U_{\mathrm{anh}} \sim u^{3}+u^{4}+\ldots
$$

Lindemann criterion: $\sqrt{\left\langle\mathbf{u}^{2}\right\rangle}=0.1 \Delta R \quad \Rightarrow$ melting

Helium - A quantum solid

Atoms do not sit at minimum of V :

Large zero point motion:
H. Glyde, "Helium, Solid"

Rare-gas	Debye temperature crystal	Melting temperature $\theta_{\mathrm{D}}(\mathrm{K})$	Debye zero point energy $T_{M}(\mathrm{~K})$	Lindemann $E_{\mathrm{ZD}}=\frac{9}{8} \theta_{\mathrm{D}}$
$\delta=\left\langle u^{2}\right\rangle^{1 / 2} / R$				
${ }^{3} \mathrm{He}(\mathrm{bcc})$	19	0.65	21	0.368
${ }^{4} \mathrm{He}(\mathrm{bcc})$	25	1.6	28	0.292
Ne	66	24.6	74	0.091
Ar	84	83.8	95	0.048
Kr	64	161.4	72	0.036
Xe	55	202.0	62	0.028

Harmonic theory does not give correct acoustic phonon velocities

Large quantum fluctuations

\Rightarrow restoring force is non-linear

$$
-M-M-M-M_{-}^{u_{i}}-M-M-M-M
$$

$m \ddot{u}_{i}=-\kappa\left(u_{i}-u_{i+1}\right)-\kappa\left(u_{i}-u_{i-1}\right)+\gamma\left(u_{i}-u_{i+1}\right)^{2}+\gamma\left(u_{i}-u_{i-1}\right)^{2}+\cdots$
\Rightarrow Non-linear equations can in principle give multiple solutions (more phonons than number of degrees of freedom)
\Rightarrow How to construct a linear theory for optical modes?

A different point of view

Idealized crystal:

A different point of view

Helium:

Bragg peaks:

Focus on dynamics of principal Bragg vectors
Can we think of solid $\mathrm{He}-4$ as a charge density wave (CDW)?
A CDW allows naturally for gapped modes:
"phason"

$\omega \sim c q$
"amplitudon"

$\omega \sim \sqrt{m^{2}+c^{2} q^{2}}$

Ginzburg-Landau theory for 3D CDW

Density modulation: $\quad \rho(\mathbf{r})=n(\mathbf{r})-n_{0}$
Assume order parameter is small (large fluctuations):

$$
F_{\mathrm{GL}}=\frac{1}{2} \int d \mathbf{r}_{1} d \mathbf{r}_{2} \rho\left(\mathbf{r}_{1}\right) \chi^{-1}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \rho\left(\mathbf{r}_{2}\right)-B \int d \mathbf{r} \rho(\mathbf{r})^{3}+C \int d \mathbf{r} \rho(\mathbf{r})^{4}
$$

In Fourier space:

$$
\begin{aligned}
F_{\mathrm{GL}} & =\frac{1}{2} \int d \mathbf{k} \frac{1}{\tilde{\chi}(\mathbf{k})}|\rho(\mathbf{k})|^{2}-B \int d \mathbf{k}_{1} d \mathbf{k}_{2} d \mathbf{k}_{3} \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right) \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) \\
& \left.+C \int d \mathbf{k}_{1} d \mathbf{k}_{2} d \mathbf{k}_{3} d \mathbf{k}_{4} \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right) \rho\left(\mathbf{k}_{4}\right)\right) \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4}\right)
\end{aligned}
$$

Static susceptibility:

 Baym, Bethe, and Pethick, Nuc. Phys. A175, 225 (1971)Minimize $\mathrm{F}_{G L}$, order by order:

$$
\begin{aligned}
F_{\mathrm{GL}} & \left.=\frac{1}{2} \int d \mathbf{k} \frac{1}{\tilde{\chi}(\mathbf{k})}|\rho(\mathbf{k})|^{2}\right)-B \int d \mathbf{k}_{1} d \mathbf{k}_{2} d \mathbf{k}_{3} \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right) \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) \\
& \left.+C \int d \mathbf{k}_{1} d \mathbf{k}_{2} d \mathbf{k}_{3} d \mathbf{k}_{4} \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right) \rho\left(\mathbf{k}_{4}\right)\right) \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4}\right)
\end{aligned}
$$

1. "Condense" on sphere k=G

$$
\rho(\mathbf{k}) \neq 0 \quad|\mathbf{k}|=G
$$

2. Maximize number of triangles with zero total momentum

 Baym, Bethe, and Pethick, Nuc. Phys. A175, 225 (1971)Minimize $\mathrm{F}_{G L}$, order by order:

$$
\begin{aligned}
F_{\mathrm{GL}} & \left.=\frac{1}{2} \int d \mathbf{k} \frac{1}{\tilde{\chi}(\mathbf{k})}|\rho(\mathbf{k})|^{2}\right)-B \int d \mathbf{k}_{1} d \mathbf{k}_{2} d \mathbf{k}_{3} \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right) \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) \\
& \left.+C \int d \mathbf{k}_{1} d \mathbf{k}_{2} d \mathbf{k}_{3} d \mathbf{k}_{4} \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right) \rho\left(\mathbf{k}_{4}\right)\right) \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4}\right)
\end{aligned}
$$

1. "Condense" on sphere k=G

$$
\rho(\mathbf{k}) \neq 0 \quad|\mathbf{k}|=G
$$

2. Maximize number of triangles with zero total momentum

BCC wins:

Collective modes

Dynamical Ginzburg-Landau: $\quad L=\frac{1}{2} \int d^{3} r\left(\frac{\partial \rho}{\partial t}\right)^{2}-F_{\mathrm{GL}}$

Fluctuations about mean-field:

$$
\begin{gathered}
\rho(\mathbf{r}, t)=\sum_{i}\left(\bar{\rho}_{i}+\psi_{i}(\mathbf{r}, t)\right) e^{i \mathbf{G}_{i} \cdot \mathbf{r}} \\
\psi_{i}(\mathbf{r}, t)=\psi_{-i}^{*}(\mathbf{r}, t)
\end{gathered}
$$

Linearize Euler-Lagrange equations
6 pairs of reciprocal lattice vectors $\Rightarrow 12$ modes

Visualizing the optical modes

$d_{x y}$ "quadrupolon" has vanishing z-axis spring constant \Rightarrow flat band

Which gapped mode is lowest?

Breather or quadruplon, depends on GL parameters:

Neutron scattering

Dynamical structure factor: $\quad S(\mathbf{q}, \omega)=\operatorname{Im}\left\{\left\langle\delta \rho_{\mathbf{G}}(\mathbf{q}, \omega) \delta \rho_{-\mathbf{G}}(-\mathbf{q},-\omega)\right\rangle\right\}$
Compute by quantizing Ginzburg-Landau action. Result:

$$
S(\mathbf{G}+\mathbf{q}, \omega)=\sum_{\alpha} \frac{M_{\mathbf{G}, \alpha}(\mathbf{q})}{2 \omega_{\alpha}(\mathbf{q})}\left[\left(1+n_{B}\left(\omega_{\alpha}\right)\right) \delta\left(\omega-\omega_{\alpha}(\mathbf{q})\right)-n_{B}\left(\omega_{\alpha}\right) \delta\left(\omega+\omega_{\alpha}(\mathbf{q})\right)\right]
$$

Note - sum rule is satisfied:

$$
\int_{-\infty}^{\infty} d \omega \omega S(\mathbf{G}+\mathbf{q}, \omega)=1
$$

Hence, despite having more phonons than predicted by harmonic theory, the overall spectral weight remains the same. We have not introduced spurious degrees of freedom.
(110)

Comparison to experiment

Markovic et al., PRL 88, 195301 ('02)

Pelleg et al, PRB 73, 180301R ('06)

Quantum Monte Carlo

$A B$-initio simulations

$$
\begin{aligned}
H & =-\frac{1}{2 m} \sum_{i=i}^{N} \nabla_{i}^{2}+\sum_{i<j} V_{A z i z}\left(r_{i}-r_{j}\right) \\
n_{0} & =0.02854 \AA^{-3} \\
T & =1.6 K
\end{aligned}
$$

Place 2000 atoms in a box with periodic BC
Simulate using continuous space path integral QMC

Quantum Monte Carlo

2000 He 4 Atoms

BCC phase
large zero point motion

Structure factor:

$$
S(\mathbf{q}, \omega)=\langle\rho(\mathbf{q}, \omega) \rho(-\mathbf{q},-\omega)\rangle \quad \rho(\mathbf{q}, t)=\sum_{n} e^{i \mathbf{q} \cdot \mathbf{r}_{n}(t)}
$$

QMC simulations are performed along the imaginary time axis, perform numerical analytical continuation to real time.

QMC results

L(110) dispersion

At Bragg vector:

QMC results

L(110) dispersion

At Bragg vector:

Confirms presence of optical mode (e.g. not due to crystal domains).

QMC results

L(110) dispersion

At Bragg vector:

Confirms presence of optical mode (e.g. not due to crystal domains).
Small energy. Difficulty with analytical continuation?
Lowest optical mode missed by experiment?

Summary:

* In Helium, harmonic theory fails due to large zero point motion
* New "harmonic theory" for the optical modes
* QMC finds low energy optical mode - could it be there?
* Prediction: such modes should appear in other quantum solids (solid Helium-3, 2d and 3d CDWs, etc)

