Excitations of a quantum solid

Daniel Podolsky

Collaborators: S. Gazit, H. Nonne, A. Auerbach, D. Arovas

Helium 4 – Phase diagram

Inelastic neutron scattering

Optical mode observed!

Markovic et al., PRL 88, 195301 ('02)

Multiple optical modes?

Look at different directions and polarizations

Pelleg et al, PRB **73**, 180301R ('06)

Markovic et al., PRL 88, 195301 ('02)

Pelleg et al., JLTP 151, 1164 ('08)

Harmonic theory of solids

Small fluctuations $\sqrt{\langle \mathbf{u}^2 \rangle} \ll \Delta R$

$$U_{\text{harm}} = \frac{1}{2} \sum_{\mathbf{R}\mathbf{R}'} \sum_{\mu\nu} u_{\mu}(\mathbf{R}) D_{\mu\nu}(\mathbf{R} - \mathbf{R}') u_{\nu}(\mathbf{R}')$$

Monatomic Bravais lattice \Rightarrow acoustic phonons only

Corrections to harmonic theory: $U_{\rm anh} \sim u^3 + u^4 + \dots$

Lindemann criterion: $\sqrt{\langle \mathbf{u}^2 \rangle} = 0.1 \Delta R$ $rac{l}{\Rightarrow}$ melting

Helium – A quantum solid

Atoms do not sit at minimum of V:

Large zero point motion:

H. Glyde, "Helium, Solid"

	Debye	Melting	Debye zero	Lindemann
Rare-gas	temperature	temperature	point energy	parameter
$\operatorname{crystal}$	$\theta_{\rm D}~({\rm K})$	$T_M(\mathbf{K})$	$E_{\rm ZD} = \frac{9}{8}\theta_{\rm D}$	$\delta = \langle u^2 \rangle^{1/2} / R$
3 He(bcc)	19	0.65	21	0.368
$(^{4}\text{He(bcc)})$	25	1.6	28	0.292
Ne	66	24.6	74	0.091
Ar	84	83.8	95	0.048
Kr	64	161.4	72	0.036
Xe	55	202.0	62	0.028

Harmonic theory does not give correct acoustic phonon velocities

Large quantum fluctuations

⇒ restoring force is non-linear

 $\bullet \mathcal{M} \bullet \mathcal{M} \bullet \mathcal{M} \bullet \mathcal{M} \bullet \mathcal{M} \bullet \mathcal{M} \bullet$

 $m\ddot{u}_{i} = -\kappa(u_{i} - u_{i+1}) - \kappa(u_{i} - u_{i-1}) + \gamma(u_{i} - u_{i+1})^{2} + \gamma(u_{i} - u_{i-1})^{2} + \cdots$

⇒ Non-linear equations can in principle give multiple solutions (more phonons than number of degrees of freedom)

⇒ How to construct a linear theory for optical modes?

A different point of view

Idealized crystal:

Focus on dynamics of principal Bragg vectors

Can we think of solid He-4 as a charge density wave (CDW)?

A CDW allows naturally for gapped modes:

"phason"

 $\omega \sim cq$

"amplitudon"

 $\sqrt{m^2 + c^2 q^2}$

Ginzburg-Landau theory for 3D CDW

Density modulation: $\rho(\mathbf{r}) = n(\mathbf{r}) - n_0$

Assume order parameter is small (large fluctuations):

$$F_{\rm GL} = \frac{1}{2} \int d\mathbf{r}_1 d\mathbf{r}_2 \,\rho(\mathbf{r}_1) \chi^{-1}(\mathbf{r}_1 - \mathbf{r}_2) \rho(\mathbf{r}_2) - B \int d\mathbf{r} \,\rho(\mathbf{r})^3 + C \int d\mathbf{r} \,\rho(\mathbf{r})^4$$

In Fourier space:

$$F_{\rm GL} = \frac{1}{2} \int d\mathbf{k} \frac{1}{\tilde{\chi}(\mathbf{k})} \left| \rho(\mathbf{k}) \right|^2 - B \int d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 \, \rho(\mathbf{k}_1) \rho(\mathbf{k}_2) \rho(\mathbf{k}_3) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) + C \int d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 d\mathbf{k}_4 \rho(\mathbf{k}_1) \rho(\mathbf{k}_2) \rho(\mathbf{k}_3) \rho(\mathbf{k}_4) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)$$

Static susceptibility:

$$\tilde{\chi}^{-1}(\mathbf{k}) = R + a \, (\mathbf{k}^2 - G^2)^2$$

"Should all crystals be BCC?" Alexander and McTague, PRL 41, 702 (1978) Baym, Bethe, and Pethick, Nuc. Phys. A175, 225 (1971)

Minimize F_{GL} , order by order:

$$F_{\rm GL} = \frac{1}{2} \int d\mathbf{k} \frac{1}{\tilde{\chi}(\mathbf{k})} |\rho(\mathbf{k})|^2 - B \int d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 \rho(\mathbf{k}_1) \rho(\mathbf{k}_2) \rho(\mathbf{k}_3) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$$

+ $C \int d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 d\mathbf{k}_4 \rho(\mathbf{k}_1) \rho(\mathbf{k}_2) \rho(\mathbf{k}_3) \rho(\mathbf{k}_4) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)$

- 1. "Condense" on sphere k=G
 - $\rho(\mathbf{k}) \neq 0 \qquad |\mathbf{k}| = G$

2. Maximize number of triangles with zero total momentum

"Should all crystals be BCC?" Alexander and McTague, PRL 41, 702 (1978) Baym, Bethe, and Pethick, Nuc. Phys. A175, 225 (1971)

Minimize F_{GL} , order by order:

$$F_{\rm GL} = \frac{1}{2} \int d\mathbf{k} \frac{1}{\tilde{\chi}(\mathbf{k})} |\rho(\mathbf{k})|^2 - B \int d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 \rho(\mathbf{k}_1) \rho(\mathbf{k}_2) \rho(\mathbf{k}_3) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$$

+ $C \int d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3 d\mathbf{k}_4 \rho(\mathbf{k}_1) \rho(\mathbf{k}_2) \rho(\mathbf{k}_3) \rho(\mathbf{k}_4) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)$

1. "Condense" on sphere k=G

$$\rho(\mathbf{k}) \neq 0 \qquad |\mathbf{k}| = G$$

2. Maximize number of triangles with zero total momentum

Collective modes

Dynamical Ginzburg-Landau:

$$L = \frac{1}{2} \int d^3 r \, \left(\frac{\partial \rho}{\partial t}\right)^2 - F_{\rm GL}$$

Fluctuations about mean-field:

$$\rho(\mathbf{r}, t) = \sum_{i} (\bar{\rho}_{i} + \psi_{i}(\mathbf{r}, t)) e^{i\mathbf{G}_{i} \cdot \mathbf{r}}$$
$$\psi_{i}(\mathbf{r}, t) = \psi_{-i}^{*}(\mathbf{r}, t)$$

Linearize Euler-Lagrange equations

6 pairs of reciprocal lattice vectors ⇒ 12 modes

Visualizing the optical modes

dxy "quadrupolon" has vanishing z-axis spring constant 🗢 flat band

Which gapped mode is lowest?

Breather or quadruplon, depends on GL parameters:

Neutron scattering

Dynamical structure factor: $S(\mathbf{q}, \omega) = \operatorname{Im} \{ \langle \delta \rho_{\mathbf{G}}(\mathbf{q}, \omega) \delta \rho_{-\mathbf{G}}(-\mathbf{q}, -\omega) \rangle \}$

Compute by quantizing Ginzburg-Landau action. Result:

$$S(\mathbf{G} + \mathbf{q}, \omega) = \sum_{\alpha} \frac{M_{\mathbf{G}, \alpha}(\mathbf{q})}{2\omega_{\alpha}(\mathbf{q})} \left[(1 + n_B(\omega_{\alpha}))\delta(\omega - \omega_{\alpha}(\mathbf{q})) - n_B(\omega_{\alpha})\delta(\omega + \omega_{\alpha}(\mathbf{q})) \right]$$

Note — sum rule is satisfied:

$$\int_{-\infty}^{\infty} d\omega \, \omega \, S(\mathbf{G} + \mathbf{q}, \omega) = 1$$

Hence, despite having more phonons than predicted by harmonic theory, the overall spectral weight remains the same. We have not introduced spurious degrees of freedom.

Comparison to experiment

Markovic et al., PRL 88, 195301 ('02)

Pelleg et al, PRB 73, 180301R ('06)

Quantum Monte Carlo

AB-initio simulations

Place 2000 atoms in a box with periodic BC

Simulate using continuous space path integral QMC

Quantum Monte Carlo

2000 He4 Atoms

BCC phase

large zero point motion

Structure factor:

$$S(\mathbf{q},\omega) = \langle \rho(\mathbf{q},\omega)\rho(-\mathbf{q},-\omega)\rangle \qquad \qquad \rho(\mathbf{q},t) = \sum_{n} e^{i\mathbf{q}\cdot\mathbf{r}_{n}(t)}$$

QMC simulations are performed along the imaginary time axis, perform numerical analytical continuation to real time.

QMC results

L(110) dispersion

At Bragg vector:

QMC results

L(110) dispersion

At Bragg vector:

Confirms presence of optical mode (e.g. not due to crystal domains).

QMC results

L(110) dispersion

At Bragg vector:

Confirms presence of optical mode (e.g. not due to crystal domains).

Small energy. Difficulty with analytical continuation? Lowest optical mode missed by experiment?

- * In Helium, harmonic theory fails due to large zero point motion
- * New "harmonic theory" for the optical modes

- * QMC finds low energy optical mode could it be there?
- * Prediction: such modes should appear in other quantum solids (solid Helium-3, 2d and 3d CDWs, etc)