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Helium 4 - Phase diagram



Inelastic neutron scattering
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Optical mode observed!
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Multiple optical modes?
Look at different directions 
and polarizationsCHAPTER 2. THEORETICAL AND HISTORICAL BACKGROUND21

Figure 2.8: {002} scattering plane of a bcc crystal in the reciprocal lattice. Solid
circles are Bragg points. Two examples of generating excitations are
shown, with two diÆerent polarizations: The blue arrow shows momentum
transfer Q which creates a phonon with a longitudinal polarization. Red-
Violet arrows show a similar process with a transverse polarization

Lubensky [23]). The scattering function is defined as the dynamic structure factor:

S(Q, !) =
(2º)3

v0
[
X

j

bp
m

(Q · ªjs)e
°W ]2

KbT

~!2
qsº

∞qs

!2 + ∞2
qs

(2.12)

where

∞qs =
!2

qs

2°qs
(2.13)

°qs is the peak half-width at half-maximum(HWHM). W is the Debye-Weller factor

that is defined in eq 2.17. Measuring the dynamic structure factor is the goal of

neutron scattering experiments. A factor that is proportional to (
°!
Q ·
°!
ª qs)2 is part of

the dynamic structure factor. Here,
°!
ª s denotes the polarization vector of excitation

belonging to branch s. This polarization can be Longitudinal (atoms vibrate along

the propagation direction of the wave) or transverse (atoms vibrate in perpendicular

to the propagation direction of the wave). Figure 2.8 shows the {002} reciprocal

scattering plane. In this plane it is possible to measure excitation along two principal

directions of bcc solids: [110] and [100] directions. For these two directions we can
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Figure 4.8: Dispersion relation in the (100) direction with longitudinal polarization.
Solid black squares represent experimental phonon peaks, open green
squares represent the phonon spectrum calculated using PIMC[10], blue
rectangles are experimental points for the LOB excitation, and solid red
circles are experimental points for the HOB excitation. Dashed lines are
guide to the eye.

lowest final momentum transfer possible, that gives a better resolution but lower flux.

All scans are summarized in figure 4.8, this is why there are multiple symbols for each

energy transfer. To summarize, with all the diÆerent setups the overall picture shows

three excitations. 1) A phonon branch that fits nicely to the PIMC simulation. 2) A

HOB excitation that was observed before in the (110) direction and now is seen in this

direction as well. Again the HOB interacts with the acoustic phonons causing mode

coupling between branches. 3) LOB excitation is observed in the two polarization.

It can be observed in high resolution scans, and it is missing from lower resolution

scans.

L(100)

Pelleg et al., JLTP 151, 1164 (’08)  
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Figure 4.6: Dispersion relation in the (100) direction with transverse polarization.
Solid black squares represent experimental points for phonons, open green
squares are for phonons calculated using PIMC [10], and the blue rectan-
gles are experimental points for the LOB excitation.

observed. A comparison with the old data by Minkiewicz [6], Markovich [8], and to

the calculation of the SCP theory [4] will be addressed later. Also, the origin of the

LOB will be discussed in the ”discussion” section. To conclude, not only a phonon

excitation was observed but another optic excitation was discovered, with very narrow

line-width and without dispersion.

4.3.2 Longitudinal polarization

In this polarization the data is not an easy to interpret as in the transverse polariza-

tion. The reasons might be that the longitudinal phonons are less intense. Certainly,

with more measurement time the ratio between signal to background was a lot bet-

ter. In addition, as will be discussed later on, the phonons and one of the optic-like

excitations interact. This interaction causes energy loss, so the scattered intensity

for certain values of energy is small. Moreover, in this direction the data is more

complex, since several excitations are found.

T(100)

Pelleg et al, PRB 73, 180301R (’06)  



Harmonic theory of solids

Equilibrium:

R

r(R) = R+ u(R)

Fluctuations:
R

r u

Lindemann criterion:                            a melting 
p

hu2i = 0.1�R

Uharm =
1

2

X

RR0

X

µ⌫

uµ(R)Dµ⌫(R�R0)u⌫(R
0)

 Small fluctuations
p

hu2i ⌧ �R

Monatomic Bravais lattice   a   acoustic phonons only

Uanh ⇠ u3 + u4 + . . .Corrections to harmonic theory:



Helium - A quantum solid

Harmonic theory does not give correct acoustic phonon velocities

Atoms do not sit  
at minimum of V:

CHAPTER 1. INTRODUCTION 5

Figure 1.1: Comparison between the potential function of a helium atom in a bcc
solid (red line)and of Argon (blue line)[2].

the potential is shown in figure 1.1. Now this potential cannot be considered harmonic

in order to calculate the collective modes using classic solid state theory. Moreover,

the two adjacent atoms that form the well, move with the same amplitude as the atom

inside the potential well. For this reason the potential cannot be considered static

as required by the classic theory. The theoretical description of quantum solids was

developed by several authors [3, 4], and is named the Self Consistent Phonon theory

(SCP). The implementation of the SCP theory to solid helium is presented in a book

by Glyde [4]. Measurements of the excitation spectrum of bcc solid helium were car-

ried by the Brookhaven group [5, 6]. The measurements in the (110) direction cover

the all Brillouin zone, while in the two other directions data exist just in the vicinity

of the zone origin. The agreement between theory and experiment (figure 1.2) is quite

good, except for the major discrepancy for one branch. The SCP theory could not

explain the large softening of one of the transverse phonons in the (110) direction, a

branch that was measured with good precision.

One way to solve this discrepancy was suggested by Gov et al. in 1999 [7]. An

H. Glyde, “Helium, Solid”

HELIUM, SOLID 1

Helium, Solid
Henry R. Glyde

Introduction

Helium was first solidified at the famous Kamerlingh Onnes low-temperature
physics laboratories in Leiden by W. H. Keesom [1] on June 25, 1926. The
initial experiments by Sir Francis Simon at Oxford University and by Keesom
and their collaborators focused on the melting curve, the specific heat, and the
thermal conductivity of solid helium as a test of our early understanding of
solids. These measurements showed, for example, that the Lindemann criterion
of melting does not hold in solid helium. This pioneering work up to 1957 is
elegantly and beautifully reviewed by Domb and Dugdale [2], a review that
stands today as an excellent introduction to solid helium along with the books
and reviews by Wilks [3], Keller [4], Wilks and Betts [5], Glyde [6], Dobbs [7]
and Roger et al. [8].

The pair potential v(r) between helium atoms is precisely known [9,10]. It is
weakly attractive at large separation, r ! 3 Å−1, with a maximum well depth
ϵ = 10.95 K. At close approach r ≤ σ = 2.63 Å, where hard-core radius σ
defined by v(σ) = 0, v(r) becomes steeply repulsive. The potential parameters
σ and ϵ of the rare gases are compared in Table 1. The potential seen by a
helium atom lying between two atoms in a linear lattice is depicted in Fig. 1.
The well shape, which is wide and anharmonic, is clearly dominated by the
repulsive core of v(r).

Table 1: Comparison of solid 3He (at V = 24 cm3/mole) and solid 4He (at V =
21.1 cm3/mole) with the heavier rare-gas crystals. The interatomic potential
parameters are the core radius σ [v(σ) = 0] and the well depth ϵ for the following
potentials: He [9,10]; Ne, HFD-C2 [9]; Ar, HFD-C [9]; Kr, HFD-C (HFGKK) [9].
For Xe we quote σ and ϵ from Barker et al. [11].

Debye Melting Debye zero Lindemann Potential parameters de Boer
Rare-gas temperature temperature point energy parameter parameter
crystal θD (K) TM (K) EZD = 9

8θD δ = ⟨u2⟩1/2/R σ (Å) ϵ (K) Λ
3He(bcc) 19 0.65 21 0.368 2.637 10.95 0.325
4He(bcc) 25 1.6 28 0.292 2.637 10.95 0.282
Ne 66 24.6 74 0.091 2.758 42.25 0.061
Ar 84 83.8 95 0.048 3.357 143.22 0.019
Kr 64 161.4 72 0.036 3.579 199.9 0.011
Xe 55 202.0 62 0.028 3.892 282.35 0.0065

Since helium is light, its thermal wavelength, λT , is long, e. g., at T = 1.0 K,
λT ∼ 10 Å for 4He. Helium is therefore difficult to localize. Attempts to localize
it lead to a high kinetic or zero point energy. Since v(r) is weak, helium does
not solidify under attraction via v(r). Rather, it solidifies only under pressure

Large zero point motion:



Large quantum fluctuations

a restoring force is non-linear

 a Non-linear equations can in principle give multiple solutions 
      (more phonons than number of degrees of freedom)

ui

müi = �(ui � ui+1)� (ui � ui�1) + �(ui � ui+1)
2 + �(ui � ui�1)

2 + · · ·

 a How to construct a linear theory for optical modes?



A different point of view

0 Q

Bragg peaks:

2Q . . .�Q�2Q. . .

Idealized crystal:



A different point of view

Can we think of solid He-4 as a charge density wave (CDW)?

Focus on dynamics of principal Bragg vectors

-2 -1 0 1 2 x

0.2

0.4

0.6

0.8

1.0

Helium: Bragg peaks:

0 Q 2Q . . .�Q�2Q. . .

A CDW allows naturally for gapped modes:
“phason"

! ⇠ cq

   “amplitudon"

! ⇠
p
m2 + c2q2



Ginzburg-Landau theory for 3D CDW

Density modulation: ⇢(r) = n(r)� n0

Assume order parameter is small (large fluctuations):

FGL =
1

2

Z
dr1dr2 ⇢(r1)�

�1(r1 � r2)⇢(r2)�B

Z
dr ⇢(r)3 + C

Z
dr ⇢(r)4

FGL =
1

2

Z
dk

1

�̃(k)
|⇢(k)|2 �B

Z
dk1dk2dk3 ⇢(k1)⇢(k2)⇢(k3)�(k1 + k2 + k3)

+ C

Z
dk1dk2dk3dk4⇢(k1)⇢(k2)⇢(k3)⇢(k4))�(k1 + k2 + k3 + k4)

In Fourier space:

k

R

G�G

�̃�1(k)
Static susceptibility:

�̃�1(k) = R+ a (k2 �G2)2



FGL =
1

2

Z
dk

1

�̃(k)
|⇢(k)|2 �B

Z
dk1dk2dk3 ⇢(k1)⇢(k2)⇢(k3)�(k1 + k2 + k3)

+ C

Z
dk1dk2dk3dk4⇢(k1)⇢(k2)⇢(k3)⇢(k4))�(k1 + k2 + k3 + k4)

Minimize FGL, order by order:

1. “Condense” on sphere k=G

⇢(k) 6= 0 |k| = G

G

2. Maximize number of triangles 
     with zero total momentum

“Should all crystals be BCC?”Alexander and McTague, PRL 41, 702 (1978)
Baym, Bethe, and Pethick, Nuc. Phys. A175, 225 (1971)



FGL =
1

2

Z
dk

1

�̃(k)
|⇢(k)|2 �B

Z
dk1dk2dk3 ⇢(k1)⇢(k2)⇢(k3)�(k1 + k2 + k3)

+ C

Z
dk1dk2dk3dk4⇢(k1)⇢(k2)⇢(k3)⇢(k4))�(k1 + k2 + k3 + k4)

Minimize FGL, order by order:

1. “Condense” on sphere k=G

⇢(k) 6= 0 |k| = G

G

23
4 1

5
6̄

5̄
6

4̄1̄
2̄ 3̄

BCC wins:

2. Maximize number of triangles 
     with zero total momentum

“Should all crystals be BCC?”Alexander and McTague, PRL 41, 702 (1978)
Baym, Bethe, and Pethick, Nuc. Phys. A175, 225 (1971)



Collective modes

Linearize Euler-Lagrange equations

6 pairs of reciprocal lattice vectors a 12 modes 

Dynamical Ginzburg-Landau: L =
1

2

Z
d3r

✓
@⇢

@t

◆2

� FGL

23
4 1

5
6̄

5̄
6

4̄1̄
2̄ 3̄

Fluctuations about mean-field:

 i(r, t) =  ⇤
�i(r, t)

⇢(r, t) =
X

i

(⇢̄i +  i(r, t))e
iGi·r



Visualizing the optical modes

d
xy

d
xz

dyz

quadrupole (t2g)

s

“breather” (a1)

dxy “quadrupolon” has vanishing z-axis spring constant a flat band



Which gapped mode is lowest?
Breather or quadruplon, depends on GL parameters:

�0.6 �0.4 �0.2 0 0.2
0

0.5

1

1.5

3⇥ T1u

3⇥ T2g

1⇥A1g

3⇥ T2u

2⇥ Eg

R

!



Neutron scattering
Dynamical structure factor:

Compute by quantizing Ginzburg-Landau action. Result:

S(G+ q,!) =
X

↵

MG,↵(q)

2!↵(q)
[(1 + nB(!↵))� (! � !↵(q))� nB(!↵)� (! + !↵(q))]

Note — sum rule is satisfied:

Hence, despite having more phonons than predicted by  
harmonic theory, the overall spectral weight remains the same. 
We have not introduced spurious degrees of freedom.

Z 1

�1
d! ! S(G+ q,!) = 1

S(q,!) = Im {h�⇢G(q,!)�⇢�G(�q,�!)i}



Comparison to experiment
L(110)
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Figure 4.6: Dispersion relation in the (100) direction with transverse polarization.
Solid black squares represent experimental points for phonons, open green
squares are for phonons calculated using PIMC [10], and the blue rectan-
gles are experimental points for the LOB excitation.

observed. A comparison with the old data by Minkiewicz [6], Markovich [8], and to

the calculation of the SCP theory [4] will be addressed later. Also, the origin of the

LOB will be discussed in the ”discussion” section. To conclude, not only a phonon

excitation was observed but another optic excitation was discovered, with very narrow

line-width and without dispersion.

4.3.2 Longitudinal polarization

In this polarization the data is not an easy to interpret as in the transverse polariza-

tion. The reasons might be that the longitudinal phonons are less intense. Certainly,

with more measurement time the ratio between signal to background was a lot bet-

ter. In addition, as will be discussed later on, the phonons and one of the optic-like

excitations interact. This interaction causes energy loss, so the scattered intensity

for certain values of energy is small. Moreover, in this direction the data is more

complex, since several excitations are found.

T(100)

Pelleg et al, PRB 73, 180301R (’06)  



Quantum Monte Carlo

Place 2000 atoms in a box with periodic BC 

Simulate using continuous space path integral QMC

AB-initio simulations

0.5 1.0 1.5 2.0 2.5 3.0

r

rm

-1.0

-0.5

0.0

0.5

1.0
V(r)

H = � 1

2m

NX

i=i

r2
i +

X

i<j

VAziz(ri � rj)
VAziz(r)

n0 = 0.02854 Å�3

T = 1.6K



Quantum Monte Carlo
2000 He4 Atoms

BCC phase  

large zero point motion

Structure factor:
S(q,!) = h⇢(q,!)⇢(�q,�!)i ⇢(q, t) =

X

n

eiq·rn(t)

QMC simulations are performed along the imaginary time axis, 
perform numerical analytical continuation to real time.



QMC results
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QMC results
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Confirms presence of optical mode (e.g. not due to crystal domains).



QMC results
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Small energy.  Difficulty with analytical continuation?  
Lowest optical mode missed by experiment?

Confirms presence of optical mode (e.g. not due to crystal domains).



* New “harmonic theory” for the optical modes

* QMC finds low energy optical mode — could it be there?

Summary:

* In Helium, harmonic theory fails due to large  
zero point motion

* Prediction: such modes should appear in other  
quantum solids (solid Helium-3, 2d and 3d CDWs, etc)


