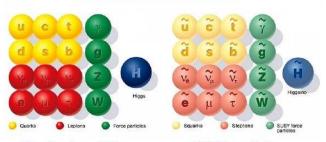
#### Signatures of heavier electroweakinos at LHC

Nabanita Ganguly

University of Calcutta


June 9, 2017

CanDark 2017, ICTS



## MSSM at a glance

#### **SUPERSYMMETRY**



Standard particles

**SUSY** particles

## Charginos and Neutralinos

 $\bullet \ \, \mathsf{Charginos} : \, \widetilde{\chi}_1^{\pm} \mathsf{,} \, \, \widetilde{\chi}_2^{\pm} \\$ 

 $\bullet \ \ \mathsf{Neutralinos} : \ \widetilde{\chi}^0_1, \ \widetilde{\chi}^0_2, \ \widetilde{\chi}^0_3, \ \widetilde{\chi}^0_4$ 

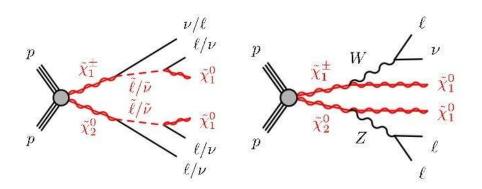
ullet  $\widetilde{\chi}^0_1$  is the <u>Lightest Supersymmetric Particle</u> (LSP)

#### Search for SUSY

• Extensively searched at LHC - but so far there is no signal

Stringent bounds on strongly interacting sparticles

 Electroweak sparticles may be the only way to probe SUSY in near future

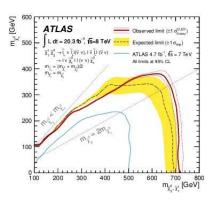

# Looking for $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ at LHC Run-I through $3I + \not\!\! E_T$ channel

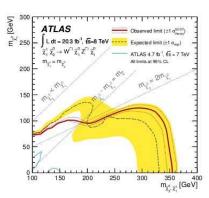
 $\bullet$  Production of  $\widetilde{\chi}_1^\pm$  and  $\widetilde{\chi}_2^0$  is considered

• Larger no. of leptons in final states  $\longrightarrow$  reduced SM noise  $\longrightarrow$  **BETTER SIGNAL** !!

•  $\widetilde{\chi}_1^0$  is the carrier of  $\not\!\!E_T$ 

# $3I + \not\!\!E_T$ signal





JHEP 1404 (2014) 169 G. Aad et al. [ATLAS Collaboration]

## Simplified Models considered by ATLAS

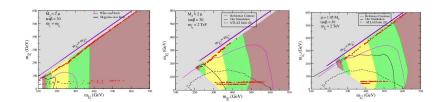
- $\widetilde{\chi}_1^0$  : Bino-like
- ullet  $\widetilde{\chi}_1^{\pm},\widetilde{\chi}_2^0$  : Wino-like
- ullet  $\widetilde{\chi}_2^{\pm},\widetilde{\chi}_3^0,\widetilde{\chi}_4^0$  : Higgsino-like
- $\widetilde{I_L^\pm}$  midway between  $\widetilde{\chi}_1^\pm$  and  $\widetilde{\chi}_1^0$  or heavier than  $\widetilde{\chi}_1^\pm$
- All heavier eweakinos are decoupled
- Observation is so far in agreement with SM expectation

#### Exclusion limits from ATLAS





JHEP 1404 (2014) 169 G. Aad et al. [ATLAS Collaboration]


# Looking beyond simplified model

• Higgsino model :  $M_1 < \mu < M_2$ 

• Mixed model :  $M_1 < \mu \sim M_2$ 

ullet Compressed model :  $M_1 \sim \mu < M_2$ 

## Looking beyond simplified model



JHEP 1511 (2015) 050

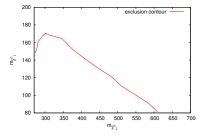
M. Chakraborti, U. Chattopadhyay, A. Choudhury,

A. Datta and S. Poddar

#### What about the heavier eweakinos ??

• There is no compelling reason for assuming them to be decoupled

• Can contribute to signal significantly


Leading to stronger bounds on lighter eweakino masses

• New bounds on masses of  $\widetilde{\chi}_2^{\pm},\widetilde{\chi}_4^0$ 

#### New Mass Bounds

| Parameters/                  | Benchmark Points |          |          |           |  |
|------------------------------|------------------|----------|----------|-----------|--|
| Masses                       | BP1              | BP2      | BP3      | BP4       |  |
|                              | (Comp)           | (LHHS)   | (LHLS)   | (LMLS)    |  |
| $M_1$                        | 191              | 105      | 175      | 296       |  |
| $\mu$                        | $\simeq M_1$     | -        | -        | $1.05M_2$ |  |
| $M_2$                        | -                | $1.5\mu$ | $1.5\mu$ | 566       |  |
| $m_{\widetilde{\chi}_1^0}$   | 152              | 100      | 170      | 290       |  |
| $m_{\widetilde{\chi}_1^\pm}$ | 178              | > 250    | > 400    | > 540     |  |
| $m_{\widetilde{\chi}_2^\pm}$ | > 370            | -        | -        | -         |  |

## Exclusion contour in Compressed scenario



# Collider Search at $\sqrt{S} = 13$ TeV

- We focus on different multilepton signals associated with ₱<sub>T</sub> at LHC RUN-II :
  - 3 leptons
  - 4 leptons
  - 3 Same Sign and 1 Opposite Sign leptons (SS3OS1)
  - 5 leptons

We consider all possible production of electroweakinos :

$$pp \longrightarrow \widetilde{\chi}_i^0 \widetilde{\chi}_j^0, \widetilde{\chi}_i^+ \widetilde{\chi}_j^-, \widetilde{\chi}_i^0 \widetilde{\chi}_j^\pm$$

 Event generation, showering and hadronisation performed using PYTHIA



## Standard Model Background

- Backgrounds coming from SM considered in the analysis :
  - \* ZZ

⋆ WZZ

\* WWZ

\* ZZZ

∗ t*t*Z

#### Basic selection cuts

Primary selection cuts on final state particles for both signal and background :

ullet Leptons (e and  $\mu$ ) with  $P_T > 10$  GeV and  $|\eta| < 2.5$ 

• Jets with  $P_T >$  20 GeV and  $|\eta| < 2.5$ 

Isolation cuts on leptons following ATLAS

# 3 Leptons $+ \not\!\!E_T$ analysis

• C1: Events with 3 isolated leptons are selected

• C2: 81.2 GeV  $< m_{SFOS} < 101.2$  GeV

• C3: *E*<sub>T</sub> > 200 GeV

# 4 Leptons $+ \not\!\!E_T$ analysis

• C1: Events with 4 isolated leptons are selected

• C2: 81.2 GeV  $< m_{SFOS} < 101.2$  GeV

• C3: *E*<sub>T</sub> > 80 GeV

# SS3OS1 Leptons $+ \not\!\!E_T$ analysis

• C1: Events with 4 isolated leptons are selected

• C2: Total charge of final state leptons are non-zero

• C3: *E*<sub>T</sub> > 80 GeV

#### 5 Leptons $+ \not\!\!E_T$ analysis

• C1: Events with 5 isolated leptons are selected

• C2: *E*<sub>T</sub> > 80 GeV

## Sample Benchmark points

| Parameters/                    | Benchmark Points |        |        |        |  |
|--------------------------------|------------------|--------|--------|--------|--|
| Masses                         | BP1              | BP4    | BP6    | BP7    |  |
|                                | (Comp)           | (LHHS) | (LHLS) | (LMLS) |  |
| $M_1$                          | 186              | 105    | 249    | 321    |  |
| $\mu$                          | 190              | 270    | 300    | 401    |  |
| $M_2$                          | 350              | 405    | 450    | 382    |  |
| $m_{\widetilde{\chi}_1^0}$     | 150              | 100    | 230    | 305    |  |
| $m_{\widetilde{\chi}_1^\pm}$   | 180              | 260    | 290    | 350    |  |
| $m_{\widetilde{\chi}^{\pm}_2}$ | 390              | 450    | 490    | 465    |  |

## Multi-Lepton Signals

| Types of       | Benchmark Points |        |        |        |
|----------------|------------------|--------|--------|--------|
| Signal         | BP1              | BP4    | BP6    | BP7    |
|                | (Comp)           | (LHHS) | (LHLS) | (LMLS) |
| $S/\sqrt{B}$   | 14.3             | 13.6   | 26.9   | 11.3   |
|                | (3.4)            | (3.1)  | (4.2)  | (5.9)  |
| 4 leptons      | 61.5             | 16.4   | 19.6   | 10.2   |
|                | (0.69)           | (0.62) | (2.1)  | (-)    |
| SS3OS1 leptons | 29.9             | 7.2    | 5.1    | 1.6    |
|                | (0.69)           | (-)    | (0.17) | (-)    |
| 5 leptons      | 8.46             | 6.1    | 4.14   | 0.78   |
|                | (-)              | (-)    | (-)    | (-)    |

$$L=100 fb^{-1}$$



#### Conclusion

- Various SUSY scenarios in MSSM framework are considered with non-decoupled heavier eweakinos
- ullet New bounds on  $m_{\widetilde{\chi}^\pm_2}, m_{\widetilde{\chi}^0_4}$  are obtained
- $\bullet$  Stronger bounds on masses of lighter eweakinos are calculated for non-decoupled  $\widetilde{\chi}_2^\pm,\widetilde{\chi}_4^0$
- Inclusion of heavier eweakinos gives better signal strength

The work is done in collaboration with A. Datta and S. Poddar Phys. Lett. B763, 213-217 (2016)

THANK YOU!