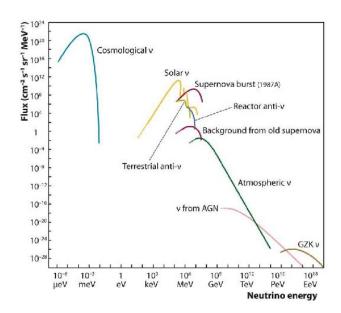
An overview of neutrino physics A biased sampling

Amol Dighe

Department of Theoretical Physics
Tata Institute of Fundamental Research


Candles of Darkness, ICTS-TIFR, Bengaluru, Jun 8th, 2017

Omnipresent neutrinos

Where do Neutrinos Appear in Nature?

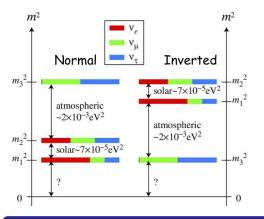
Energy spectra of neutrino sources

Neutrinos as candles of darkness

- Component (albeit small) of the Dark Matter.
- Masses necessarily imply physics beyond the SM
- Natural candidates for interactions with high scale physics
- Role in matter-antimatter asymmetry, supernova explosions, structure formation, ...

An overview of Neutrino Physics

- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big-bang relic neutrinos: (E ~ meV)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - ◆ High energy astrophysical neutrinos (≥ TeV)


Neutrino physics: a biased sampling

- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big–bang relic neutrinos: (E ~ meV)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - ullet High energy astrophysical neutrinos ($\gtrsim \,\, {
 m TeV})$

Neutrino physics: a biased sampling

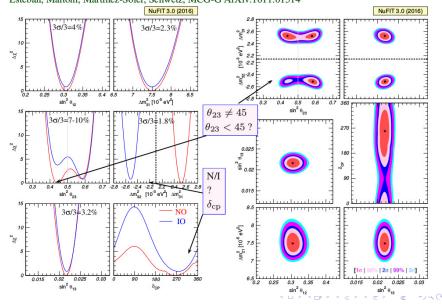
- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big–bang relic neutrinos: (E ~ meV)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - ullet High energy astrophysical neutrinos ($\gtrsim \,\, {
 m TeV})$

The broad picture

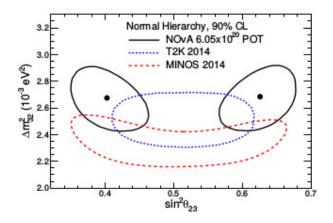
- $\bullet \ \Delta \textit{m}_{\textrm{atm}}^2 \approx \\ 2.4 \times 10^{-3} \ \textrm{eV}^2$
- $\theta_{\rm atm} \approx 45^{\circ}$
- \bullet $\theta_{\odot} \approx 32^{\circ}$
- $\theta_{\rm reactor} \approx 9^{\circ}$

What we want to find

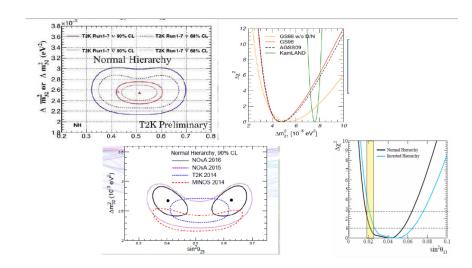
- Mass ordering, θ_{23} octant, CP violation
- Absolute values of masses
- New physics hidden in the data


Neutrino parameter fit 2017

Capozz	i et al	1 17	13 0	4471


Parameter	Ordering	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2$	NO, IO, Any	7.37	7.21 - 7.54	7.07 - 7.73	6.93 - 7.96
$\sin^2 \theta_{12}/10^{-1}$	NO, IO, Any	2.97	2.81 - 3.14	2.65 - 3.34	2.50 - 3.54
$ \Delta m^2 /10^{-3}~\mathrm{eV^2}$	NO	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
	IO	2.505	2.473 - 2.539	2.430 - 2.582	2.390 - 2.624
	Any	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
$\sin^2\theta_{13}/10^{-2}$	NO	2.15	2.08 - 2.22	1.99 - 2.31	1.90 - 2.40
	IO	2.16	2.07 - 2.24	1.98 - 2.33	1.90 - 2.42
	Any	2.15	2.08 - 2.22	1.99 - 2.31	1.90 - 2.40
$\sin^2 \theta_{23}/10^{-1}$	NO	4.25	4.10 - 4.46	3.95 - 4.70	3.81 - 6.15
	IO	5.89	$4.17 - 4.48 \oplus 5.67 - 6.05$	$3.99 - 4.83 \oplus 5.33 - 6.21$	3.84 - 6.36
	Any	4.25	4.10 - 4.46	$3.95 - 4.70 \oplus 5.75 - 6.00$	3.81 - 6.26
δ/π	NO	1.38	1.18 - 1.61	1.00 - 1.90	$0 - 0.17 \oplus 0.76 - 2$
	IO	1.31	1.12 - 1.62	0.92 - 1.88	$0 - 0.15 \oplus 0.69 - 2$
	Any	1.38	1.18 - 1.61	1.00 - 1.90	$0 - 0.17 \oplus 0.76 - 2$

Neutrino parameter fit 2016


Global 6-parameter fit http://www.nu-fit.org Esteban, Maltoni, Martinez-Soler, Schwetz, MCG-G ArXiv:1611:01514

New: indication of θ_{23} non-maximality ??

Tensions among experiments

Accelerator / reactor Experiments

Current Generation Superbeam Experiments

T2K: Tokai to Kamioka, 295 km. 0.76 GeV, 0.75 MW, Detector: SuperK

NOvA: FNAL to Ash River, 810 km, 1.7 GeV, 0.7 MW, 14 kt TASD detector

Next generation Superbeam experiments

T2HK: JPARC to Kamioka, detector: HyperK, 1.6 Mw

DUNE: FNAL-LEAD, 1300km, 0.7 MW, Detector: 10 (34) kt LiqArTPC

ESS: European Spallation source Linac, configurations under study, 540 km, 2 GeV

Pion decay at rest experiments

DAE δ **DALUS**: low energy, low distance (50 MeV, 20 km)

Reactor Experiments

JUNO (China), RENO50 (Korea), reactor neutrinos, 50 km

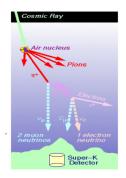
Degeneracy issues

$$P_{\mu\mu} = 1 - \sin^2 2\theta_{23} \sin^2 \Delta + \text{ subleading terms}$$

$$\begin{split} P_{\mu e} & \simeq & \sin^2\theta_{23} \text{sin}^2 \, 2\theta_{13} \frac{\sin^2(\hat{A}-1)\Delta}{(\hat{A}-1)^2} + \\ & \qquad \qquad \alpha \text{sin} \, 2\theta_{13} \sin 2\theta_{12} \cos(\Delta + \delta_{CP}) \frac{\sin(\hat{A}-1)\Delta}{(\hat{A}-1)} \frac{\sin\hat{A}\Delta}{\hat{A}} \\ \Delta & = \Delta m_{31}^2 L/4E, \alpha = \Delta m_{21}^2/\Delta m_{31}^2, \hat{A} = \pm 2\sqrt{2} G_F n_e E/\Delta m_{31}^2 \end{split}$$

Intrinsic octant degeneracy

$$P_{\mu\mu}(heta_{23}) = P_{\mu\mu}(\pi/2 - heta_{23})$$


Octant – δ_{CP} degeneracy

$$P_{\mu e}(\theta_{23}, \delta_{\mathrm{CP}}) = P_{\mu e}(\theta_{23}', \delta_{\mathrm{CP}}')$$

Hierarchy (ordering) – δ_{CP} degeneracy

$$P_{\mu e}(\Delta, \delta_{CP}) = P_{\mu e}(-\Delta, \delta_{CP}')$$

Future atmospheric neutrino experiments

Atmospheric neutrinos Provide a broad L/E band

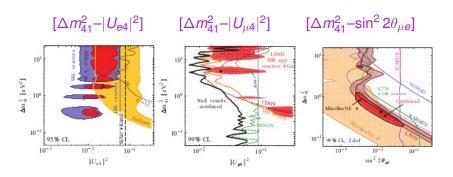
Magnetized iron detector

- ➤ Volume : 50 100 kton
- > Excellent muon energy and direction reconstruction > Charge identification
- Can determine the neutrino energy through hadron shower reconstruction
- ➤ Example : INO

Cerenkov Detectors

- >Sensitive to both muon and electron events
- ➤ No charge id
- ➤ Mega ton Water detector (HyperKamiokade)
- ➤ Multi Megaton ice detector (PINGU of ICECUBE)
- ➤ Multi Megaton under water detector (ORCA)

These will be long-term workhorses!


Neutrino physics: a biased sampling

- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big–bang relic neutrinos: (E ~ meV)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - High energy astrophysical neutrinos (≥ TeV)

Sterile neutrinos: motivations

- $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ conversions reported at LSND and MiniBoone
- Reactor neutrinos: recalculated reactor fluxes are 3.5% more than earlier calculations
- $ho \sim$ 10 eV sterile neutrinos would help r-process nucleosynthesis
- ullet keV neutrinos as warm dark matter candidates in uMSM
- Superlight sterile neutrinos ($\Delta m^2 \lesssim 10^{-4} \; {\rm eV^2}$) can explain the lack of upturn in solar P_{ee} at low energies

Sterile neutrinos: bounds from terrestrial expts

Kopp, Schwetz et al

- Appearance ⊕ reactor data indicate eV sterile neutrinos
- Disappearance data (ν_{μ}) do not support ν_{s} hypothesis

Jury still out

Non-standard interactions (NSI) of neutrinos

Help in mitigating some of the tensions among experiments

• Standard NC interaction:

$$\nu_{\alpha} + f \rightarrow \nu_{\alpha} + f$$

• Non-standard NC interaction

$$\begin{split} \nu_{\alpha} + f &\to \nu_{\beta} + f \\ \mathcal{L} &= -G^{\alpha\beta} \epsilon_{\alpha\beta}^f \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \bar{f} \gamma_{\mu} f \\ \epsilon_{\alpha\beta} &= \sum_{f=e,u,d} \frac{N_f}{N_e} \epsilon_{\alpha\beta}^f \end{split}$$

$$H = \frac{1}{2E} \left[U \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U^{\dagger} + V \right] ,$$

 $V\Rightarrow$ matter potential in presence of NSI,

$$V = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix}.$$

Here, $A\equiv 2\sqrt{2}G_FN_eE$ and $\epsilon_{\alpha\beta}e^{i\phi_{\alpha\beta}}\equiv\sum\limits_{f\in C}\epsilon^{fC}_{\alpha\beta}\frac{N_f}{N_e}$

$$H \rightarrow -H^*$$
 under

$$\theta_{12} \rightarrow \pi/2 - \theta_{12}, \ \delta \rightarrow \pi - \delta$$

$$\Delta m_{31}^2 \rightarrow -\Delta m_{31}^2 + \Delta m_{21}^2$$

$$V \rightarrow -S.V.S$$

$$S = Diag(1, -1, -1)$$

Coloma, Schwetz, 1604.05772 P. Bakhti, Y Farzan 1403.0744

Bounds on NSI parameters

Model-independent bounds (oscillation data):

$$|\epsilon_{\alpha\beta}| \sim \left(\begin{array}{ccc} |\epsilon_{ee}| < 4.2 & |\epsilon_{e\mu}| < 0.33 & |\epsilon_{e\tau}| < 3.0 \\ |\epsilon_{\mu\mu}| < 0.068 & |\epsilon_{\mu\tau}| < 0.33 \\ |\epsilon_{\tau\tau}| < 21 \end{array} \right)$$

Some model-dependent bounds (oscillation data):

$$|\epsilon_{\alpha\beta}| \sim \left(\begin{array}{ccc} -0.9 < \epsilon_{\text{ee}} < 0.75 & |\epsilon_{\text{e}\mu}| < 3.8 \times 10^{-4} & |\epsilon_{\text{e}\tau}| \lesssim 0.25 \\ -0.05 < \epsilon_{\mu\mu} < 0.08 & |\epsilon_{\mu\tau}| \lesssim 0.25 \\ |\epsilon_{\tau\tau}| \lesssim 0.4 \end{array} \right)$$

Bounds on non-standard self-interactions:

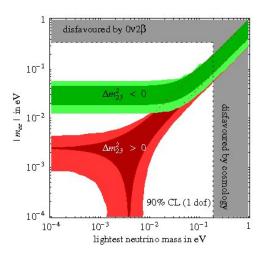
 $|\epsilon_{lphaeta}|\lesssim$ 1 (Invisible Z decay)

Absolute mass bounds

Tritium beta decay:

$$\langle \textit{m}_{\textrm{e}} \rangle \equiv \sqrt{\textit{c}_{13}^2 \textit{c}_{12}^2 \textit{m}_{1}^2 + \textit{c}_{13}^2 \textit{s}_{12}^2 \textit{m}_{2}^2 + \textit{s}_{13}^2 \textit{m}_{3}^2} \lesssim 2~\textrm{eV}$$

Neutrinoless double beta decay:


$$\langle m_{ee} \rangle \equiv \left| c_{13}^2 c_{12}^2 m_1 e^{2i\alpha} + c_{13}^2 s_{12}^2 e^{2i\beta} m_2 + s_{13}^2 e^{-2i\delta} m_3 \right| \lesssim 1 \text{ eV}$$

Cosmology:

$$\sum_i m_{\nu_i} \lesssim 0.2 \; \mathrm{eV}$$

Absolute mass constraints

Will hierarchy be identified here first?

Neutrino physics: a biased sampling

- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big–bang relic neutrinos: (E ~ meV)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - ullet High energy astrophysical neutrinos ($\gtrsim \,\, {
 m TeV})$

Seesaw mechanisms and testability

Type-I seesaw: singlet fermion N

- If N is heavy, cannot be produced in the lab
- If N is light, $y_D \ll 1 \Rightarrow$ cannot be produced in the lab

Type-III seesaw: SU(2) triplet Σ

ullet can be produced at LHC through gauge interactions

Type-II seesaw: SU(2) triplet Higgs Δ

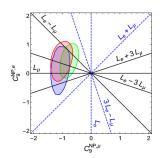
- $\langle \Delta_0 \rangle$ also affects M_W and M_Z
- Measurements of $\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = \frac{1 + 2(\langle \Delta_0 \rangle / \langle \Phi_0 \rangle)^2}{1 + 4(\langle \Delta_0 \rangle / \langle \Phi_0 \rangle)^2}$ restricts $\langle \Delta_0 \rangle / \langle \Phi_0 \rangle < 0.07$

More possible connections to high scale physics

- Radiative mass models
- GUT-based models: SU(5), SO(10), ...
- Spontaneous B-L violation...
- Supersymmetric models (RPV)...
- Left-right symmetric models...

Talk by Sourov Roy, M. K. Parida at this meeting...

Any singlet fermion X allows $\overline{L}_L \Phi X$



Discrete symmetries for the neutrino mixing pattern

- Popular symmetries of last decade: S₄, A₄
- Texture zeroes in neutrino mass matrices
- Models with scaling symmetries

Talk by Probir Roy at this meeting...

Symmetries that connect quarks and leptons

Discrete symmetries that give rise to the required *lepton flavour non-universality* to explain R_K and R_{K^*} (low q^2)

Bhatia, Chakraborty, AD, JHEP 2017

Neutrino physics: a biased sampling

- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big–bang relic neutrinos: (E ~ meV)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - ullet High energy astrophysical neutrinos ($\gtrsim \ {
 m TeV})$

Neutrino physics: a biased sampling

- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big-bang relic neutrinos: (E ~ meV)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - High energy astrophysical neutrinos (≥ TeV)

Source: abundance and temperature

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 16.7 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}({
 m SM}) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_{
u}/\Omega_{
m baryon}=0.5\left(\sum m_{
u}/{
m eV}\right)$$

Looking really far back:

	Time	Temp	Z
Relic neutrinos	0.18 s	\sim 2 MeV	$\sim 10^{10}$
CMB photons	$\sim 4 \times 10^5 \text{ years}$	0.26 eV	1100

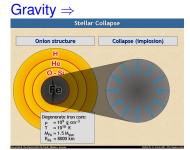
Lazauskas, Vogel, Volpe, 2008

The inverse beta reaction

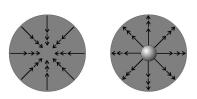
- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

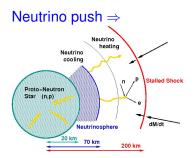
$$u_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^-$$

End-point region ($E > M_{N_1} - M_{N_2}$) background-free. Energy resolution crucial.


Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009

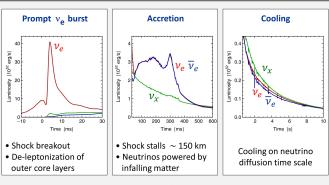
- Possible at ³H experiments with 100 g of pure tritium but atomic tritium is needed to avoid molecular energy levels
- ¹⁸⁷Re at MARE also suggested, but a lot more material will be needed


Neutrino physics: a biased sampling


- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big-bang relic neutrinos: ($E \sim \text{meV}$)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - High energy astrophysical neutrinos (
 \gamma TeV)

The death of a star: role of different forces

Nuclear forces ⇒



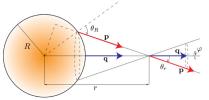
Neutrino fluxes: $\sim 10^{58}$ neutrinos in 10 sec

- Spherically symmetric model (10.8 M_{\odot}) with Boltzmann neutrino transport
- Explosion manually triggered by enhanced CC interaction rate
 Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Georg Raffelt, MPI Physics, Munich

ITN Invisibles, Training Lectures, GGI Florence, June 2012

• Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$


Non-linearity from neutrino-neutrino interactions

• Effective Hamiltonian: $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$H_{Vac}(\vec{p}) = M^{2}/(2p)$$

$$H_{MSW} = \sqrt{2}G_{F}n_{e^{-}}diag(1,0,0)$$

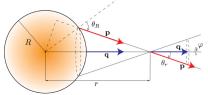
$$H_{\nu\nu}(\vec{p}) = \sqrt{2}G_{F}\int \frac{d^{3}q}{(2\pi)^{3}}(1-\cos\theta_{pq})(\rho(\vec{q})-\bar{\rho}(\vec{q}))$$

Duan, Fuller, Carlson, Qian, PRD 2006

Equation of motion:

$$\frac{d\rho}{dt} = i \left[H(\rho), \rho \right]$$

• Dimension of ρ matrix: $(3 \times N_{E-bins} \times N_{\theta-bins})$


Non-linearity from neutrino-neutrino interactions

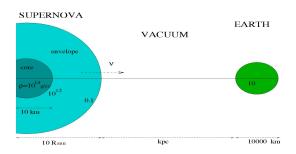
• Effective Hamiltonian: $H = H_{vac} + H_{MSW} + H_{vv}$

$$H_{vac}(\vec{p}) = M^{2}/(2p)$$

$$H_{MSW} = \sqrt{2}G_{F}n_{e^{-}}diag(1,0,0)$$

$$H_{\nu\nu}(\vec{p}) = \sqrt{2}G_{F}\int \frac{d^{3}q}{(2\pi)^{3}}(1-\cos\theta_{pq})(\rho(\vec{q})-\bar{\rho}(\vec{q}))$$

Duan, Fuller, Carlson, Qian, PRD 2006


• Equation of motion:

$$\frac{d\rho}{dt} = i \left[H(\rho), \rho \right]$$

• Dimension of ρ matrix: $(3 \times N_{E-bins} \times N_{\theta-bins})$

Neutrino oscillations in matter of varying density

Inside the SN: flavour conversion

Non-linear "collective" effects and resonant matter effects

Between the SN and Earth: no flavour conversion

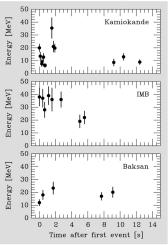
Neutrino mass eigenstates travel independently

Inside the Earth: flavour oscillations

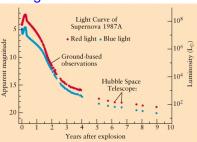
Resonant matter effects (if detector is shadowed by the Earth)

Can neutrino conversions affect SN explosions?

- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
 ⊕ electron neutrino cross section higher
 ⇒ After conversion, greater push to the shock wave
- Deeper the conversions, greater the neutrino push
- MSW resonances: 1000 km, Neutrino-neutrino collective effects: 100 km
- "Fast conversions": 10 km [Angular anisotropies needed, but quite naturally possible]


Can neutrino conversions affect SN explosions?

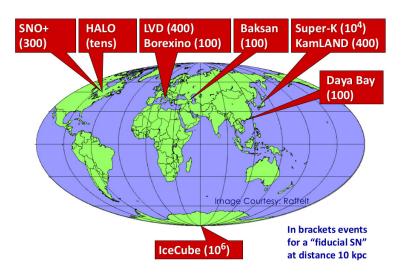
- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
 electron neutrino cross section higher
 - \Rightarrow After conversion, greater push to the shock wave
- Deeper the conversions, greater the neutrino push
- MSW resonances: 1000 km, Neutrino-neutrino collective effects: 100 km
- "Fast conversions": 10 km [Angular anisotropies needed, but quite naturally possible]



SN1987A: neutrinos and light

Neutrinos: Feb 23, 1987

Light curve: 1987-1997


SN1987A: what did we learn?

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained
- Strong constraints on new physics models obtained (neutrino decay, Majorans, axions, extra dimensions, ...)

Supernova neutrino detectors

What a galactic SN can tell us

On neutrino masses and mixing

- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: disappears if I
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities.
- Identification of O-Ne-Mg supernovae
- Hints on heavy element nucleosynthesis (r-process)

What a galactic SN can tell us

On neutrino masses and mixing

- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: disappears if I
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities.
- Identification of O-Ne-Mg supernovae
- Hints on heavy element nucleosynthesis (r-process)

Neutrino physics: a biased sampling

- Neutrino oscillation phenomenology
 - Three-neutrino oscillations
 - Beyond three-neutrino mixing
- Neutrino mass generation
- Neutrino astrophysics
 - Big-bang relic neutrinos: ($E \sim \text{meV}$)
 - Neutrinos from a core collapse supernova (5-50 MeV)
 - ullet High energy astrophysical neutrinos ($\gtrsim \ {
 m TeV})$

Sources of HE/UHE neutrinos

Secondaries of cosmic rays

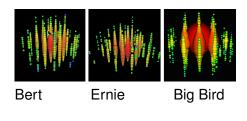
Primary protons interacting within the source or with CMB photons $\Rightarrow \pi^{\pm} \Rightarrow \mbox{Decay to } \nu$

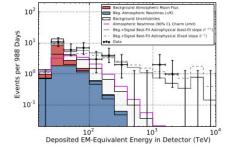
Theoretical bounds on fluxes

- At GZK energies, secondary neutrino flux comparable to the primary cosmic ray flux (Waxman-Bahcall bound)
 E²dN/dE ≤ (10 - 50) eV cm⁻² sr⁻¹ s⁻¹
- π^{\pm} produced $\Rightarrow \pi^0$ produced $\Rightarrow \gamma$ that shower. Observation of gamma rays near \sim 100 GeV \Rightarrow $E^2 dN/dE \lesssim 100 \text{ eV cm}^{-2} \text{ sr}^{-1} \text{ s}^{-1}$

Detection of HE neutrinos: water/ice Cherenkov

- Thresholds of ~ 100 GeV, controlled by the distance between optical modules
- Track for ν_{μ}
- Cascade for ν_e , hadrons, ν_τ
- Double-bang for ν_{τ} ?


Up-going / down-going thresholds

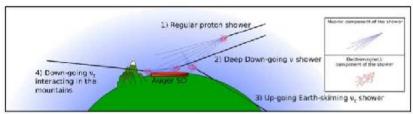

- $E \lesssim 10^{16}$ eV: only up-going ν useful since prohibitive background from atmospheric muons
- $E \gtrsim 10^{16-17}$ eV: only down-going neutrinos available since more energetic neutrinos get absorbed in the Earth

G. Sigl, 1202.0466

The three PeV events at Icecube

- Three events at ~ 1, 1.1, 2.2 PeV energies found
- Cosmogenic ? X
 Glashow
 resonance? X
 atmospheric ?

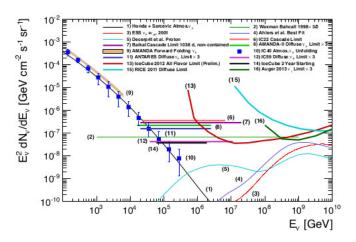
Roulet et al 2013 ++ many


- IceCube analyzing 54 events from 30 TeV to 10 PeV
- Constraints on Lorentz violation: $\delta(v^2-1) \leq \mathcal{O}(10^{-18})$

Borriello, Chakraborty, Mirizzi, 2013

Detection of UHE neutrinos: cosmic ray showers

- Neutrinos with $E \gtrsim 10^{17}$ eV can induce giant air showers (probability $\lesssim 10^{-4}$)
- Deep down-going muon showers
- Deep-going ν_{τ} interacting in the mountains
- Up-going Earth-skimming $\nu_{ au}$ shower


Detection through radio waves: ANITA

- Charged particle shower ⇒
 Radio Askaryan: charged clouds
 emit coherent radio waves
 through interactions with B_{Earth}
 or Cherenkov
- Detectable for E ≥ 10¹⁷ eV at balloon experiments like ANITA

Limits on UHE neutrino fluxes

Waxman-Bahcall, AMANDA, Antares, RICE, Auger, IceCube Also expect complementary info from: ANITA, NEMO, NESTOR, KM3NET ...

Flavor information from UHE neutrinos

Flavor ratios $\nu_{e}: \nu_{\mu}: \nu_{\tau}$ at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (πS): 1 : 2 : 0,
- Muon-absorbing sources (μ DS): 0 : 1 : 0

Flavor ratios at detectors

- Neutron source: \approx 5 : 2 : 2
- Pion source: ≈ 1 : 1 : 1
- Muon-absorbing sources : \approx 4 : 7 : 7

New physics effects

- Decaying neutrinos can skew the flavor ratio even further:
 as extreme as 6:1:1 or 0:1:1
 - Ratio measurement \Rightarrow improved limits on neutrino lifetimes

Flavor information from UHE neutrinos

Flavor ratios ν_{e} : ν_{μ} : ν_{τ} at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (πS): 1 : 2 : 0,
- Muon-absorbing sources (μDS): 0 : 1 : 0

Flavor ratios at detectors

- Neutron source: ≈ 5 : 2 : 2
- Pion source: ≈ 1 : 1 : 1
- Muon-absorbing sources : ≈ 4 : 7 : 7

New physics effects

- Decaying neutrinos can skew the flavor ratio even further: as extreme as 6:1:1 or 0:1:1
 - Ratio measurement \Rightarrow improved limits on neutrino lifetimes

Flavor information from UHE neutrinos

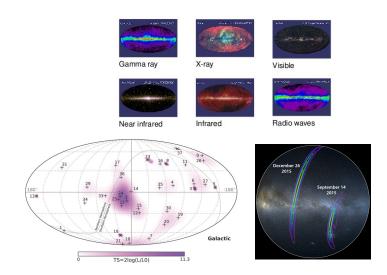
Flavor ratios ν_{e} : $\overline{\nu_{\mu}}$: ν_{τ} at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (πS): 1 : 2 : 0,
- Muon-absorbing sources (μDS): 0 : 1 : 0

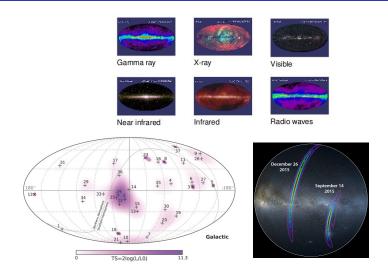
Flavor ratios at detectors

- Neutron source: ≈ 5 : 2 : 2
- Pion source: ≈ 1 : 1 : 1
- Muon-absorbing sources : ≈ 4 : 7 : 7

New physics effects


Decaying neutrinos can skew the flavor ratio even further:
 as extreme as 6:1:1 or 0:1:1

Ratio measurement ⇒ improved limits on neutrino lifetimes


Astrophysical neutrinos as messengers

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot reach us.
- Early warning of a galactic SN (SNEWS network)
- Signals of shock propagation, QCD phase transition, SASI instabilities, BH formation...
- Simultaneous neutrino detection with EM-observed events

Multi-messenger astronomy

Multi-messenger astronomy

... candles that will keep on probing darkness...

