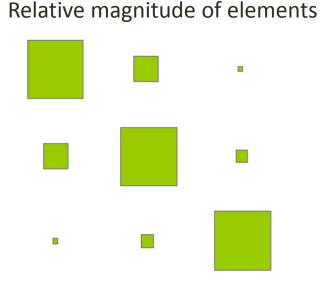


Measurements of the CKM Unitarity Triangle Angles

Jim Libby (Indian Institute of Technology, Madras)

Overview

- Introducing the triangle
- The experiments and datasets
 - BABAR/Belle
 - LHCb
- The measurements
 - Angles
 - Sides
 - Of interest but improvements largely theoretical rather than experimental
 - Omit in the interests of time
 - Other triangles
- Outlook



CPV IN THE STANDARD MODEL

CKM matrix

- $\begin{pmatrix} u & c & t \end{pmatrix} egin{array}{cccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \ \end{pmatrix} egin{array}{cccc} d \ s \ b \ \end{array}$
- Extension of Cabibbo's two by two mixing matrix
 - Kobayashi and Maskawa proposed third generation to explain observed CP violation in kaon decays
- 3 × 3 unitary complex matrix
 - 4 parameters
 - 3 mixing angle and 1 phase

Intergenerational coupling disfavoured

Responsible for Candark 20 CP violation

Wolfenstein parametrisation –

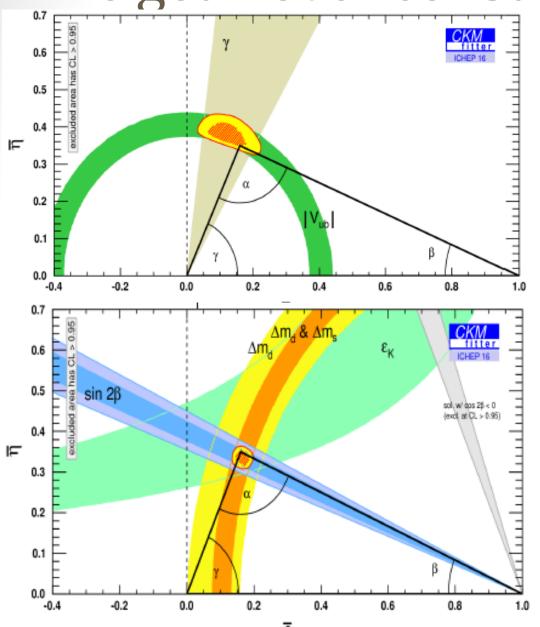
1)
$$\begin{pmatrix} 1 - \lambda^{2} / 2 & \lambda & A\lambda^{3} (\rho - i\eta) \\ -\lambda & 1 - \lambda^{2} / 2 & A\lambda^{2} \\ A\lambda^{3} [1 - (\rho + i\eta)] & -A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4})$$

$$\lambda = \sin \theta_{C}$$

2) Exploit unitarity (1st and 3rd col.)

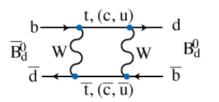
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

3)
$$V_{ud}V_{ub}^{*} \qquad \phi_{2} \qquad V_{td}V_{tb}^{*}$$


$$= \alpha \qquad \qquad \delta \equiv \phi_{1}$$

$$V_{cd}V_{cb}^{*}$$

$$\phi_{1} = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right)$$


$$\simeq \arg\left(\frac{1}{1-\rho-i\eta}\right)$$

The goal: over constraint

Tree level only

Loop-level only

NP at O(>TeV)?

The context of flavour

- Overconstraint of Unitarity Triangle is an important indirect test of the SM
- This is an intensity frontier pursuits
- Complements searches at the energy frontier......

The context of flavour

- Overconstraint of Unitarity Triangle is an important test of the SM
- This is an intensity frontier pursuits
- Complements searches at the energy frontier......
- "Accurate and minute measurement seems to the nonscientific imagination, a less lofty and dignified work than looking for something new. But [many of] the grandest discoveries of science have been but the rewards of accurate measurement and patient long-continued labour in the minute sifting of numerical results", Lord Kelvin, 1872

EXPERIMENTS AND DATASETS

 $> 1 ab^{-1}$

On resonance: Y(5S): 121 fb

 $Y(4S): 711 \text{ fb}^{-1}$

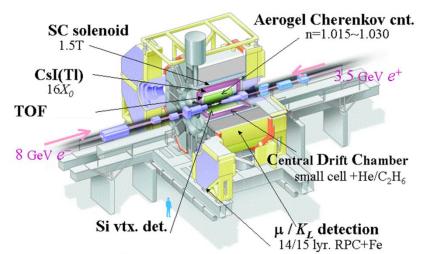
 $Y(2S): 25 \text{ fb}^{-1}$ $Y(1S): 6 \text{ fb}^{-1}$

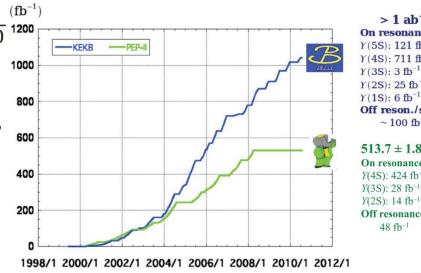
Off reson./scan:

 $\sim 100 \text{ fb}^{-1}$

 $513.7 \pm 1.8 \text{ fb}^{-1}$ On resonance:

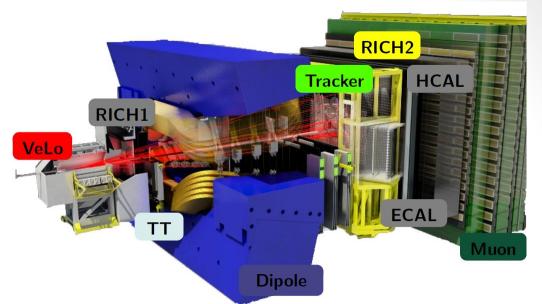
Y(4S): 424 fb⁻¹, 471 M

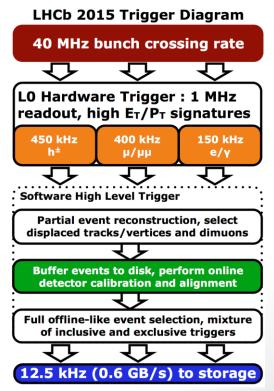

Y(3S): 28 fb⁻¹, 122 M Y(2S): 14 fb⁻¹, 99 M


Off resonance: 48 fb-1

e⁺e⁻ B-factories

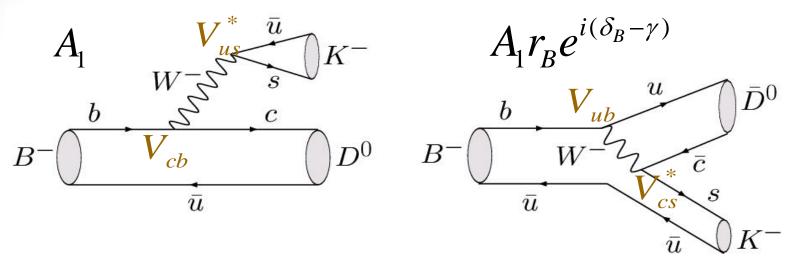
- Operation from 1999 to 2009 (BABAR)/2010 (Belle)
- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ for **CKM** measurements
- Asymmetric energy to allow time-dependent measurements
- Coherent production of $B^0\overline{B^0}$
- Low multiplicity
- Detectors with good tracking, PID and calorimetry
 - plus hermeticity for full event reconstruction/tagging


Belle Detector



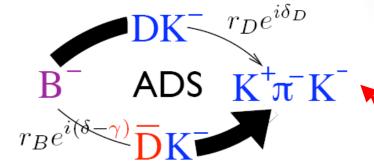
• Exploits large cross section for $b\overline{b}$ production in the forward region of pp collisions

- All b-hadrons produces with large boost i.e. ${\rm B_s}$ and $\Lambda_{\rm h}$
- Warm dipole which can be reversed in polarity
 - Excellent tracking and vertexing
- PID over a large range of momenta
- Two stage trigger: 12.5 kHz rate to tape
- Run 1 and 2 data sets
 - 1 fb⁻¹ @ 7 TeV
 - 2 fb⁻¹ @ 8 TeV
 - 2 fb $^{-1}$ so far @ 13 TeV


Roman Candle

Tree-level determination γ

- Same final state for D and $\overline{D} \Rightarrow$ interference \Rightarrow the possibility of DCPV
- Four types of D final states generally used
 - CP-eigenstates [GLW]
 - Gronau & London, PLB 253, 483 (1991), Gronau, & Wyler, PLB 265, 172 (1991)
 - K+X- (X-= π -, π π 0, π - π π +) CF and DCS [ADS]
 - Atwood, Dunietz & Soni, PRD 63, 036005 (2001)
 - Self-conjugate multibody states: K_sh⁺h⁻ [Dalitz/GGSZ]
 - Giri, Grossman, Soffer and Zupan, PRD 68, 054018 (2003); Bondar (unpublished)
 - None of the above (SCS): $K_SK^+\pi^-$ [GLS]
 - Grossman, Ligeti and Soffer, Phys. Rev. D67 071301 (2003)


Atwood-Dunietz-Soni (ADS) Method

PRL 78, 3257 (1997)

f(D) = non-CP Eigenstate (e.g. $K^+\pi^-$)

$$\frac{\langle D^0 \longrightarrow K^+ \pi^- \rangle}{\langle \overline{D}^0 \longrightarrow K^+ \pi^- \rangle} = r_D e^{i\delta_D}$$

$$\sim 0.06$$

$$\Gamma(B^- \to (K^- \pi^+)_D K^-) \propto 1 + (r_B r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cdot \cos(\delta_B - \delta_D^{K\pi} - \gamma)$$
 (1)

$$\Gamma(\mathrm{B}^- \to (\mathrm{K}^+\pi^-)_{\mathrm{D}}\mathrm{K}^-) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cdot \cos(\delta_B + \delta_D^{K\pi} - \gamma)$$
 (2)

$$\Gamma(\mathrm{B}^{+} \to (\mathrm{K}^{+}\pi^{-})_{\mathrm{D}}\mathrm{K}^{+}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cdot \cos(\delta_{B} - \delta_{D}^{K\pi} + \gamma)$$
 (3)

$$\Gamma(B^+ \to (K^- \pi^+)_D K^+) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cdot \cos(\delta_B + \delta_D^{K\pi}) + \gamma)$$
 (4)

- From counting these 4 rates, together with those from CP eigenstates $(KK,\pi\pi)$, a determination of γ can be made
- Can determine δ_D from rates but **external constraints improve precision considerably**

LHCb y combination

arXiV: 1611.03076 [hep-ex] accepted by JHEP

- $B^+ \to DK^+$, $D \to h^+h^-$, GLW/ADS, 3 fb⁻¹
- $B^+ \to DK^+$, $D \to h^+\pi^-\pi^+\pi^-$, quasi-GLW/ADS, 3 fb⁻¹
- $B^+ \to DK^+$, $D \to h^+h^-\pi^0$, quasi-GLW/ADS, $3 \, \text{fb}^{-1}$
- $B^+ \to DK^+$, $D \to K_s^0 h^+ h^-$, model-independent GGSZ, 3 fb⁻¹
- $B^+ \to DK^+$, $D \to K_s^0 K^+ \pi^-$, GLS, $3 \, \text{fb}^{-1}$
- $B^0 \to DK^+\pi^-$, $D \to h^+h^-$, GLW-Dalitz, 3 fb⁻¹
- $B^0 \to DK^{*0}$, $D \to K^+\pi^-$, ADS, 3 fb⁻¹
- $B^0 \to DK^{*0}$, $D \to K_s^0 \pi^+ \pi^-$, model-dependent GGSZ, 3 fb⁻¹
- $B^+ \to DK^+\pi^+\pi^-$, $D \to h^+h^-$, GLW/ADS, 3 fb⁻¹
- $B_s^0 \to D_s^{\mp} K^{\pm}$, time-dependent, 1 fb⁻¹

LHCb y combination

arXiV: 1611.03076 [hep-ex] accepted by JHEP

•
$$B^+ \to DK^+$$
, $D \to h^+h^-$, GLW/ADS, $3 \, \text{fb}^{-1}$

•
$$B^+ \to DK^+$$
, $D \to h^+\pi^-\pi^+\pi^-$, quasi-GLW/ADS, 3 fb⁻¹

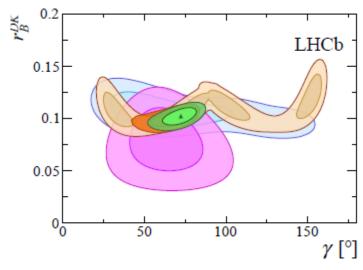
•
$$B^+ \to DK^+$$
, $D \to h^+h^-\pi^0$, quasi-GLW/ADS, $3 \, \text{fb}^{-1}$

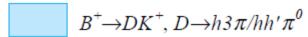
•
$$B^+ \to DK^+$$
, $D \to K_s^0 h^+ h^-$, model-independent GGSZ, 3 fb⁻¹

•
$$B^+ \to DK^+, D \to K_s^0 K^+ \pi^-, GLS, 3 \, \text{fb}^{-1}$$

•
$$B^0 \to DK^+\pi^-$$
, $D \to h^+h^-$, GLW-Dalitz, 3 fb⁻¹

•
$$B^0 \to DK^{*0}$$
, $D \to K^+\pi^-$, ADS, 3 fb⁻¹


•
$$B^0 \to DK^{*0}$$
, $D \to K_s^0 \pi^+ \pi^-$, model-dependent GGSZ, 3 fb⁻¹


•
$$B^+ \to DK^+\pi^+\pi^-$$
, $D \to h^+h^-$, GLW/ADS, 3 fb⁻¹

•
$$B_s^0 \to D_s^{\mp} K^{\pm}$$
, time-dependent, 1 fb⁻¹

$$\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$$

Most precise single experiment determination ...but still a long way to go
Other loop based measures predict to 1 deg.

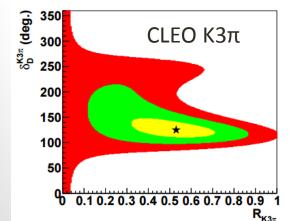
$$B^+ \rightarrow DK^+, D \rightarrow K_S^0 hh$$

$$B^+ \rightarrow DK^+, D \rightarrow KK/K\pi/\pi\pi$$

All
$$B^+$$
 modes

Charm inputs to determine y

Decay	Parameters	Source
D^0 – \overline{D}^0 -mixing	x_D, y_D	HFAG
$D \to K^+\pi^-$	$r_D^{K\pi}, \delta_D^{K\pi}$	HFAG
$D \to h^+ h^-$	$A_{KK}^{ m dir},A_{\pi\pi}^{ m dir}$	$_{ m HFAG}$
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$\delta_D^{K3\pi},\kappa_D^{K3\pi},r_D^{K3\pi}$	CLEO+LHCb
$D\to\pi^+\pi^-\pi^+\pi^-$	$F_{\pi\pi\pi\pi}$	CLEO
$D \to K^{\pm} \pi^{\mp} \pi^0$	$\delta_D^{K2\pi},\kappa_D^{K2\pi},r_D^{K2\pi}$	CLEO+LHCb
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}, F_{KK\pi^0}$	CLEO
$D o K_{ m s}^0 K^- \pi^+$	$\delta_D^{K_SK\pi},\kappa_D^{K_SK\pi},r_D^{K_SK\pi}$	CLEO
$D o K_{\mathrm{s}}^0 K^- \pi^+$	$r_D^{K_SK\pi}$	LHCb


Without these measurements LHCb combination has double the uncertainty!

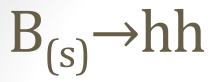
Strong phase differences between \overline{D} and D vary over phase space but can be determined in quantum correlated $\psi(3770)$ decay

Measurements made with 0.8 fb⁻¹ CLEO-c data

BES III already has 2.9 fb⁻¹ and will collect 10-20 fb⁻¹

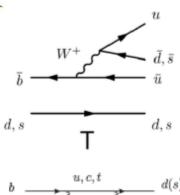

Key ingredient of a future 1 deg. measurement of γ

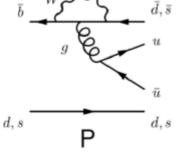
Evans et al Phys.Lett. **B757** (2016) 520

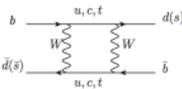

17

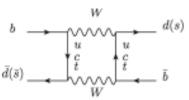
Kowolski: Physics Coordinator

Skipper: Spokesman

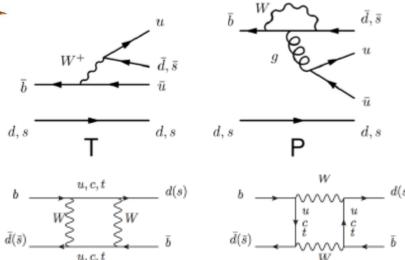




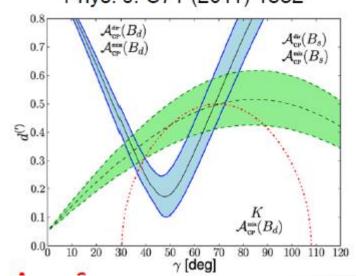



LHCb-CONF-2016-018 (Run 1 3 fb⁻¹)

 Sensitivity to γ but potential for new physics contributions with presence of the penguin (P) diagram



$B_{(s)} \rightarrow hh$



LHCb-CONF-2016-018 (Run 1 3 fb⁻¹)

- Sensitivity to γ but potential for new physics contributions with presence of the penguin (P) diagram
- Combine $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ measurements to reduce QCD uncertainties – U-spin
- CP violation comes directly but also from the interference between mixing and decay – time-dependent measurement

Phys. J. C71 (2011) 1532

Observables

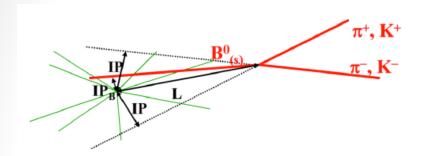
Observables are the time-dependent asymmetries of the $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

$$\mathcal{A}(t) = \frac{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \underbrace{\frac{-C_{f} \cos\left(\Delta m_{d(s)}t\right) + S_{f} \sin\left(\Delta m_{d(s)}t\right)}{\cosh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right) + A_{f}^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right)}_{\text{cosh}}$$

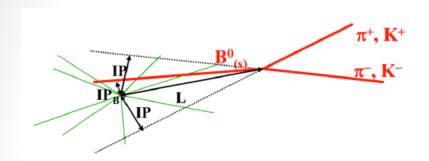
CPV from mixing/decay interference

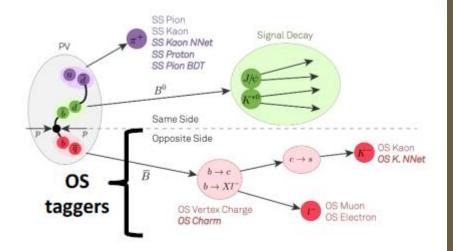
$$S_f = \frac{2\mathrm{Im}\lambda_f}{|\lambda_f|^2 + 1}$$

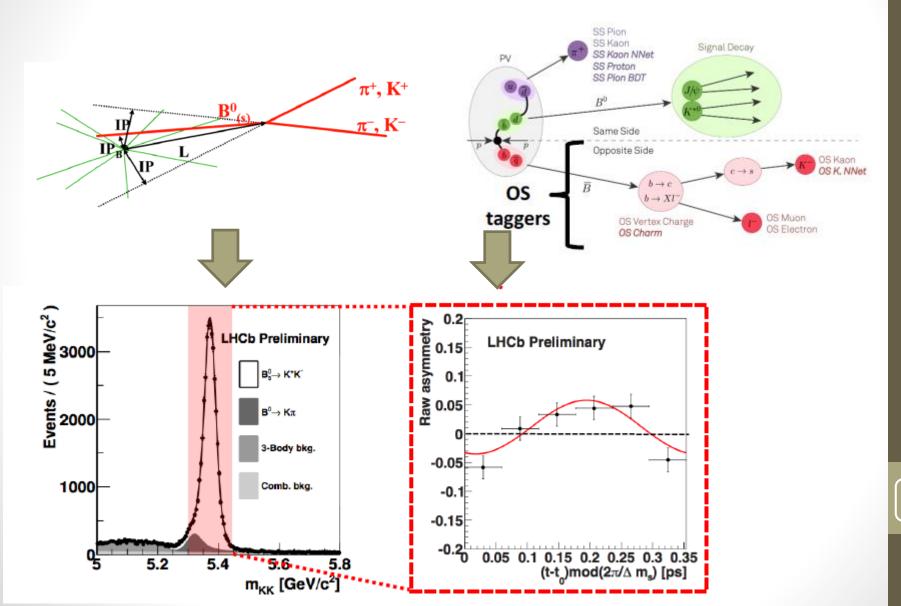
CPV in the decay

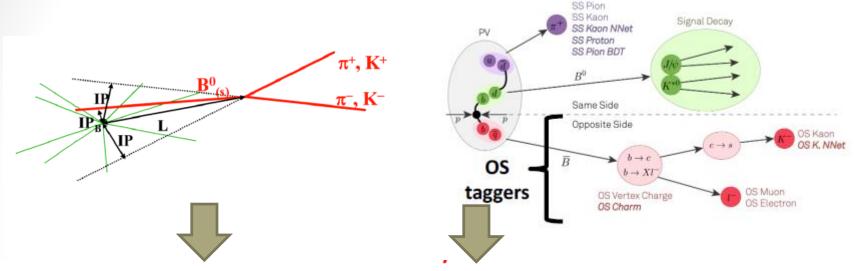

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$$

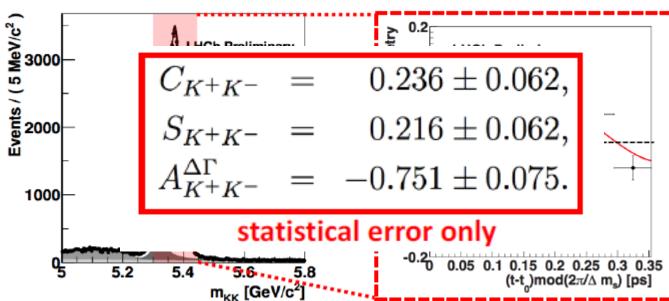
$$\left|C_f\right|^2 + \left|S_f\right|^2 + \left|A_f^{\Delta\Gamma}\right|^2 = 1$$


$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f}$$


- $\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f} \quad {\rm `q/p~is~related~to~the~neutral~B~mixing} \\ {\rm `A_f/\overline{A}_f~is~the~ratio~between~the~CP} \\ {\rm conjugate~decay~amplitudes}$



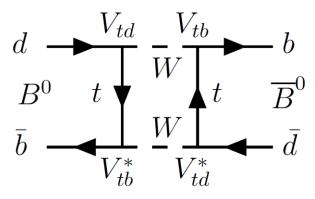


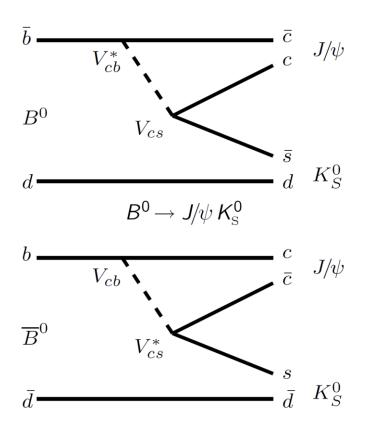


 5.3σ significance for time-dependent CP violation in B_s

First observation!

Interpretation for γ to follow


β – the golden mode


The Golden Mode

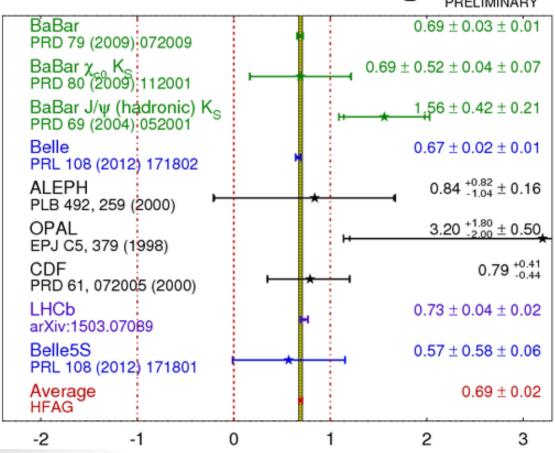
 $B^0 \rightarrow J/\psi K_S^0$ sensitive to

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

CP violation in the 'interference of mixing and decay amplitudes'

$$A_{CP}(\Delta t) = \frac{\Gamma[\bar{B}^{0}(\Delta t) \to f] - \Gamma[B^{0}(\Delta t) \to f]}{\Gamma[\bar{B}^{0}(\Delta t) \to f] + \Gamma[B^{0}(\Delta t) \to f]} = S_{f} \sin(\Delta m_{d} \Delta t) - C_{f} \cos(\Delta m_{d} \Delta t)$$

In SM $S_f = \eta_f \sin 2\beta$ and $C_f = 0$ when no CPV in f

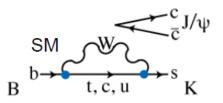

 $\eta_f = CP$ eigenvalue of f

27

Comparison of measurements

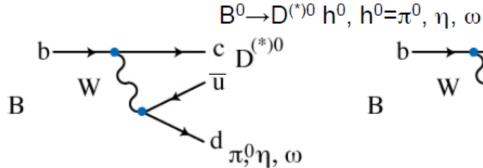
 $\sin(2\beta) \equiv \sin(2\phi_1)$

Consistency amongst the measurements

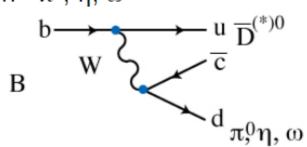

Systematics largely derived from data control samples

The SM prediction excluding this measurements is

$$\sin 2\beta = 0.771^{+0.034}_{-0.032}$$


[CKMFitter]

Control of loop/penguin contribution important



Tree level measurement

• Another avenue is to measure $\sin 2\beta$ with a tree-level only final state

Leading : Tree
No complex phase
in decay amplitude

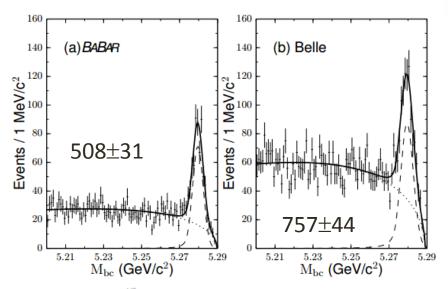
Sub-Leading : also Tree V_{ub} has complex phase, but it is within the SM, to be under control.

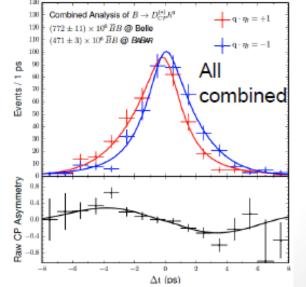
- $D^0/\overline{D^0}$ to a CP eigenstate i.e. K+K⁻ or self-conjugate final state such as K $^0_S\pi^+\pi^-$
- Branching fraction is limiting factor

Combined B factory analysis

- First analysis of combined Babar and Belle data sets corresponding to 1.2 billion $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
- Reconstruct:

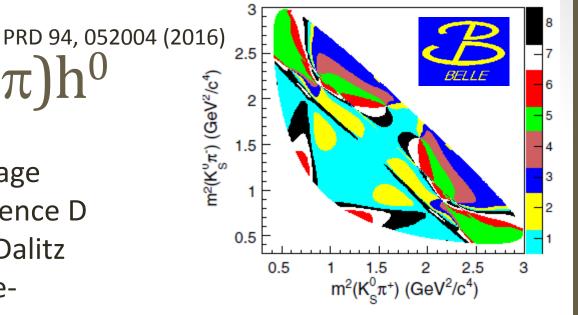
$$B^{0} \to D^{(*)}h^{0}, h^{0} = \pi^{0}, \eta, \omega$$

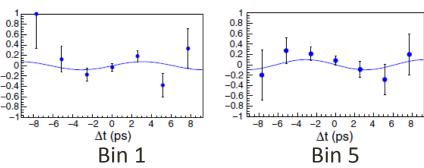

$$D \to K_{S}^{0}\pi^{0}, K_{S}^{0}\omega, K^{+}K^{-}$$

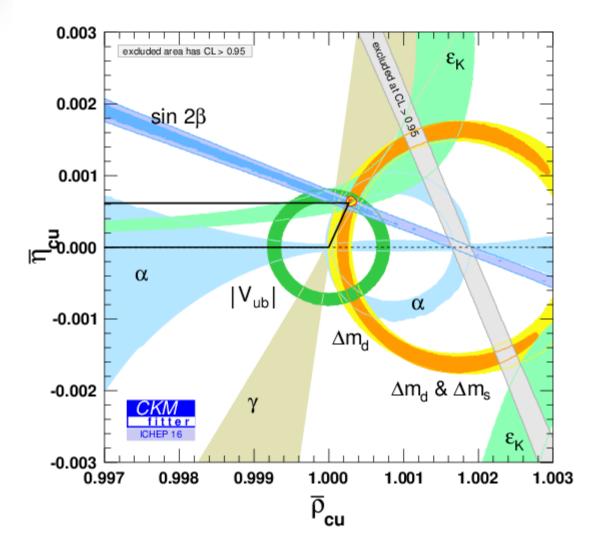

$$D^{*} \to D(K_{S}^{0}\pi^{0})\pi^{0}$$

• > 5σ significance of CP violation

$$\sin 2\beta = 0.66 \pm 0.10 \pm 0.06$$


 Very interesting measurement for Belle II σ≈0.02




$B^0 \rightarrow D(K_S \pi \pi) h^0$

- Knowledge of average strong phase difference D to D̄ in bins of the Dalitz space allows a timedependent fit to extract both cos 2β and sin 2β
 - Measurements from CLEO-c to be improved by BES III
- ~1000 events from the full Belle sample
- Not as precise as CP states but unambiguous determination of β≡φ₁

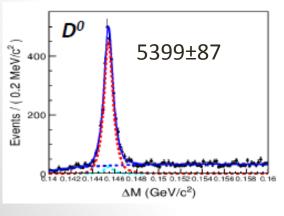
$$\sin 2\varphi_1 = 0.43 \pm 0.27(\text{stat}) \pm 0.08(\text{syst})$$

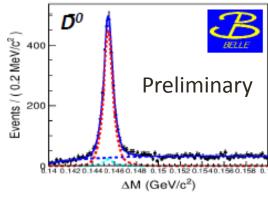
 $\cos 2\varphi_1 = 1.06 \pm 0.33(\text{stat})^{+0.21}_{-0.15}(\text{syst}),$
 $\varphi_1 = 11.7^{\circ} \pm 7.8^{\circ}(\text{stat}) \pm 2.1^{\circ}(\text{syst})$

OTHER TRIANGLES: CHARM DECAYS

Charm physics

- Unique arena to study up type dynamics
- Tiny expectations for CP violation and FCNC


$$\begin{pmatrix}
1 - \frac{1}{2}\lambda^{2} - \frac{1}{8}\lambda^{4} & \lambda & A\lambda^{3}(\rho - i\eta) \\
-\lambda + A^{2}\lambda^{5}(\frac{1}{2} - \rho - i\eta) & 1 - \frac{1}{2}\lambda^{2} - \frac{1}{8}\lambda^{4}(1 + 4A^{2}) & A\lambda^{2} \\
A\lambda^{3}\left[1 - \left(1 - \frac{1}{2}\lambda^{2}\right)(\rho + i\eta)\right] & -A\lambda^{2} + \frac{1}{2}A\lambda^{4}\left[1 - 2(\rho + i\eta)\right] & 1 - 1/2A^{2}\lambda^{4}
\end{pmatrix} + O(\lambda^{6})$$


- Expected to appear in Cabibbo suppressed decays or via mixing $O(10^{-3})$
- But general idea is to look everywhere as any anomaly a signature of new physics
- B factories and LHCb are also D factories
- Will focus on a couple of examples of direct CP violation searches at Belle and LHCb
 - For mixing and mixing-induced CP violation
 - see Gobel, Bhardwaj, Maguire and Martinelli at CKM 2016

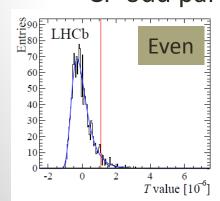
$$D^0 \rightarrow K_S^0 K_S^0$$

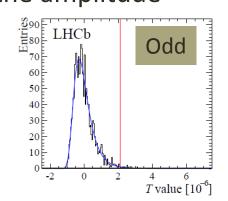
- Due to cancellations among the diagrams involved
 - Standard model prediction A_{CP} ≤ 1.1%
 - Nierste & Schach Phys. Rev. D92, 054036 (2015)
- No vertex ideal for the B factories
- Select $D^{*+} \to D^0(K_S^0 K_S^0) \pi^+$ events so that charge of pion tags the flavour of the D
- Also $\Delta M = M(D^*) M(D)$ excellent signal and background discrimination

$$A_{CP} = (-0.02 \pm 1.53 \pm 0.17)\%$$

Three times more precise than previous

Excellent Belle 2 prospects

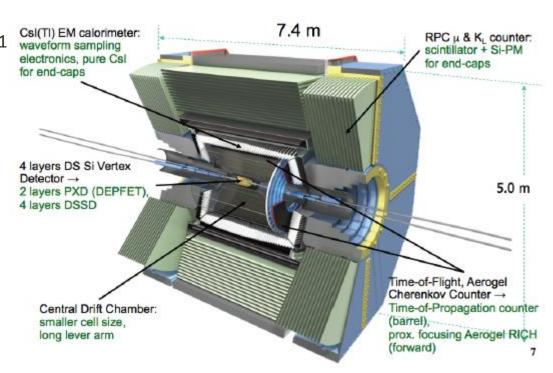

$$D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$$


- Huge sample O(10⁶) collected by LHCb
- Look for variations over the 5D phase space using an energy test for n D events and \overline{n} \overline{D} events with a test metric of phase space separation ψ_{ij}

$$T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\overline{n}} \frac{\psi_{ij}}{\overline{n}(\overline{n}-1)} - \sum_{i,j}^{n,\overline{n}} \frac{\psi_{ij}}{n\overline{n}}$$

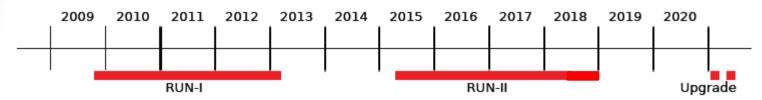
$$D \leftrightarrow D \qquad \overline{D} \leftrightarrow \overline{D}$$

 T=0 in the absence of CPV – two tests that probe CP even and CP odd part of the amplitude


- p-value from comparing to no CPV pseudo experiments
- Even: p-value = 4.3%
- Odd: p-value = 0.6%

FUTURE PROSPECTS

Belle II


- Goal to produce a 50 ab⁻¹ dataset
- KEKB and Belle detector significant upgrades
- Time of Propagation PID
- Pixel vertexing
- Waveform sampling electromagnetic calorimetry
- Better precision on all measurements discussed and many more

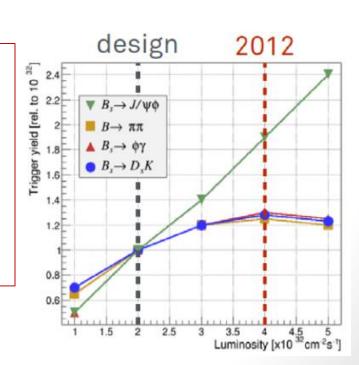
- 2016 first turns
- 2018 first collisions
- 2024 end 50 ab⁻¹

LHCb run 2 and upgrade

Run I: 3 fb⁻¹ at 7 and 8 TeV - 5 kHz to tape

Run II: 5 fb⁻¹ at 13 TeV - 1.6 x the cross section - 12.5 kHz to tape

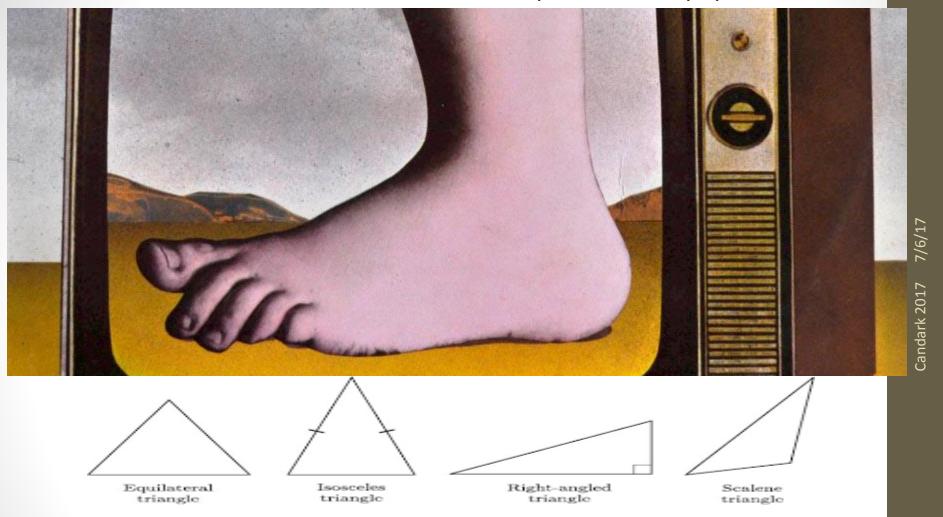
Upgrade: 50 fb⁻¹ - 5 x instantaneous luminosity – no 1 MHz hardware trigger


New tracker, new vertex, ECAL, and all new frontend electronics

Upgrade II: 300 fb⁻¹

"New experiment" to exploit – LHC hi-lumi running to 2035

Expression of Interest CERN-LHCC-2017-003



Summary

- Flavour physics is probing the SM indirectly in complementary way to other approaches: energy, v, cosmological
- Many measurements not discussed apologies
- Indicates the rich range of observables available strong interplay between experiment and theory in their interpretation
- More data required to go to the next level of precision
 - Belle II to start in 2018
 - LHCb Run II until then
 - LHCb upgrades from 2020

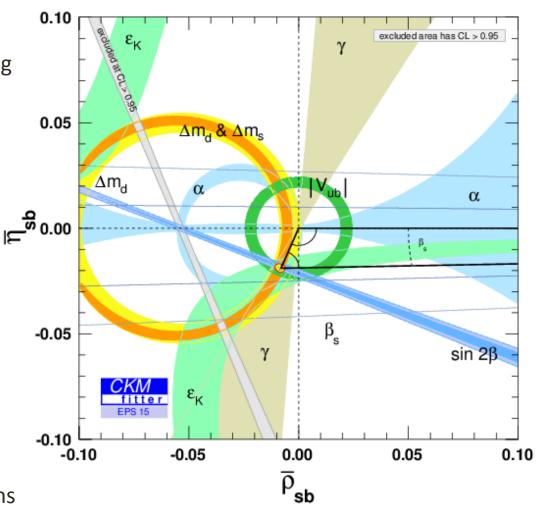
BACKUP

Terry Gilliam, Monty Python credits

 ϕ_S : A SQUASHED TRIANGLE

41

ϕ_s introduction


- This is the phase of B_s mixing
- It is related to the small opening angle of another squashed unitarity triangle
- Predicted from other CKM measurements

$$\phi_s \equiv -2\beta_s$$

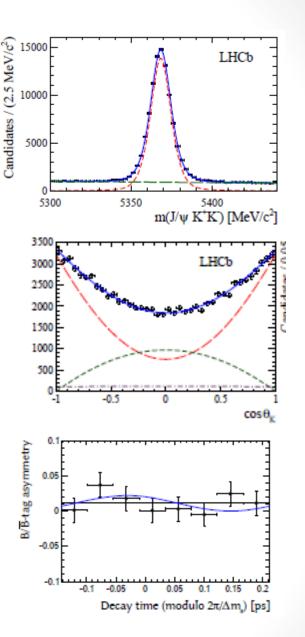
$$= -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

$$= -\left(36.3_{-1.2}^{+1.4}\right) \operatorname{mrad}$$

- Preserve of the LHC:
 - B_s production with large boost to resolve oscillations

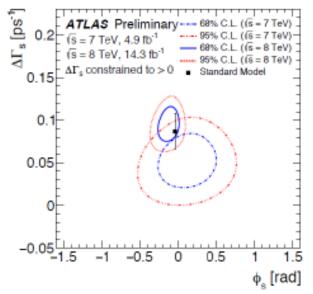
Different loops potential new physics contribution

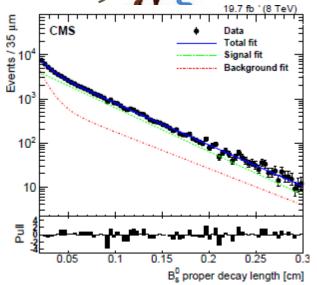
LHCb: $B_S \rightarrow J/\psi K^+K^-$


 Full angular analysis of KK invariant mass spectra required to resolve different helicity components and non-VV component

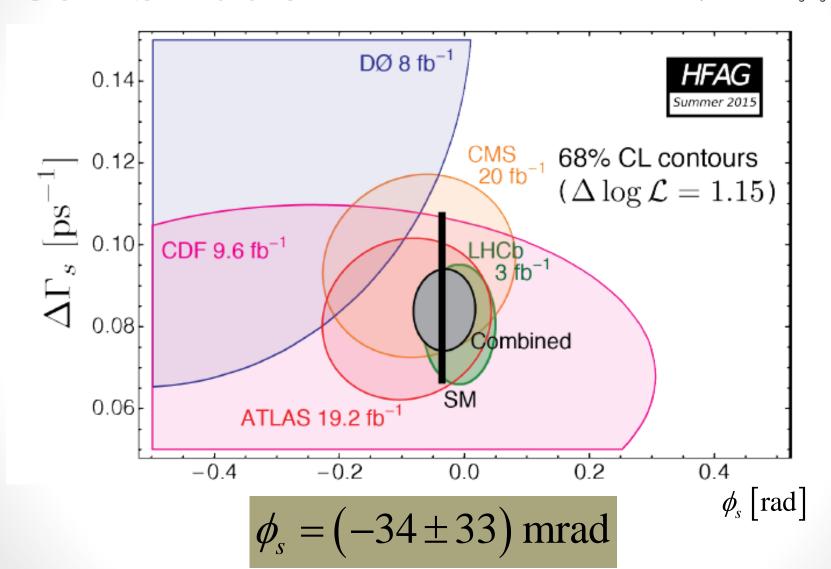
- Tagging power of 3.7%
 - Same side kaon better than pion

$$\varphi_s = -0.058 \pm 0.049 \pm 0.006 \,\mathrm{rad},$$


 Also determine the lifetime difference between the different mass eigenstates of the Bs


$$\Delta\Gamma_s = 0.0805 \pm 0.0091 \pm 0.0033 \,\mathrm{ps}^{-1}$$

GPDs: $B_S \rightarrow J/\psi \phi (K^+K^-)$



	ATLAS	CMS
Luminosity (fb ⁻¹)	19.2	19.7
Tagging power (%)	1.49	1.31
ϕ_s (mrad)	-94±63±33	-75±97±31
$\Delta\Gamma_{ m s}$ (ps $^{-1}$)	0.082±0.011±0.007	0.095±0.013±0.007

Combination

Additional modes from LHCb: J/ $\psi\pi\pi$ and D_sD_s

