Supersymmetry

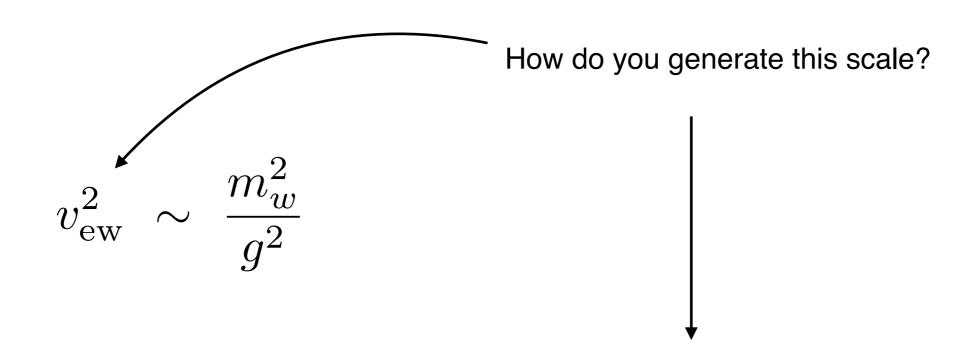
the high energy story

Tuhin S. Roy

Tata Institute of Fundamental Research

Outline

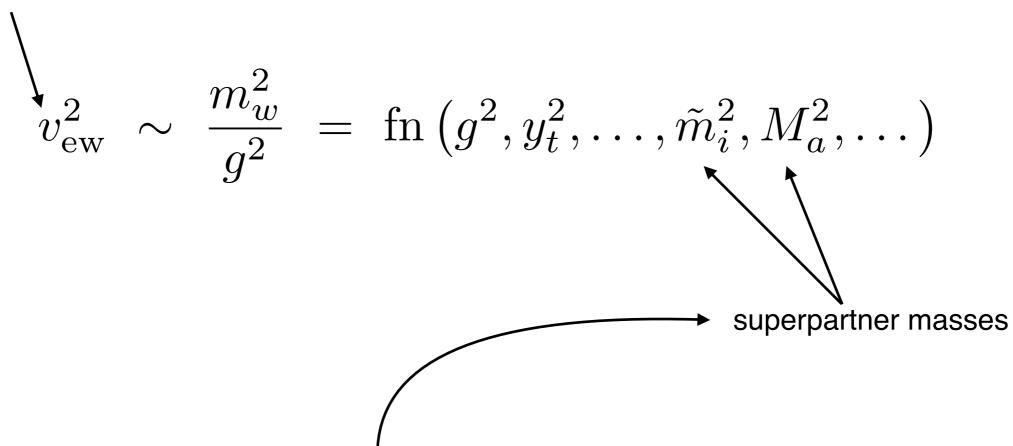
- Understanding electroweak scale
- Models of Supersymmetry in a nut-shell
- Physics of soft masses:
 - mediation mechanisms
 - renormalization
 - Dynamical supersymmetry breaking
- D-type susy breaking
 - the μ -problem



Even after you generate this

—
how do you make it radiatively stable?

mass scale we need to control

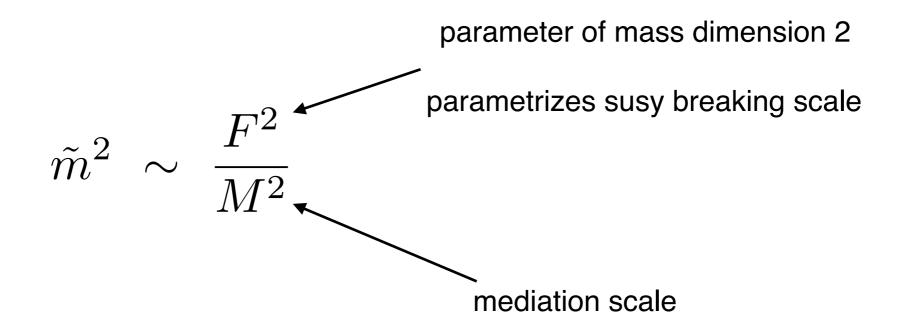


In electroweak scale supersymmetry, you control electroweak scale by controlling superpartner masses

Control superpartner masses

SUSY rotates chirality into scalar sector — gives full control of radiative corrections on superpartner masses

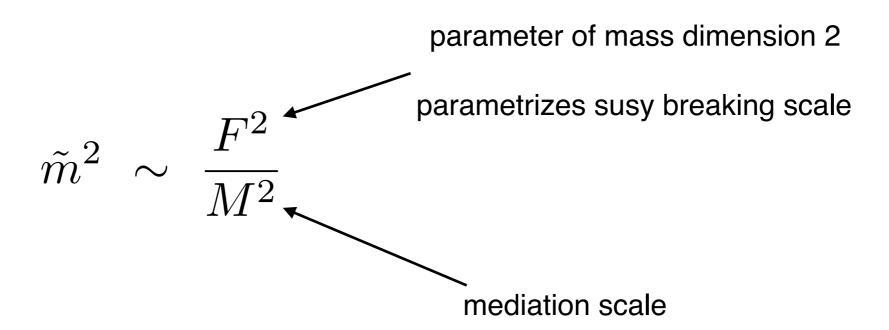
How do we generate small (electroweak scale) superpartner masses?



$$M = M_{\rm Pl}$$

For Planck mediation:

$$F \sim 10^{10-11} \; {\rm GeV}$$



Smallness of electroweak scale or smallness of superpartner masses raises the question

how do you generate

$$\sqrt{F} \ll M$$
 if $M \sim M_{
m Pl}$ $\sqrt{F}, M \ll M_{
m Pl}$ if $M \ll M_{
m Pl}$

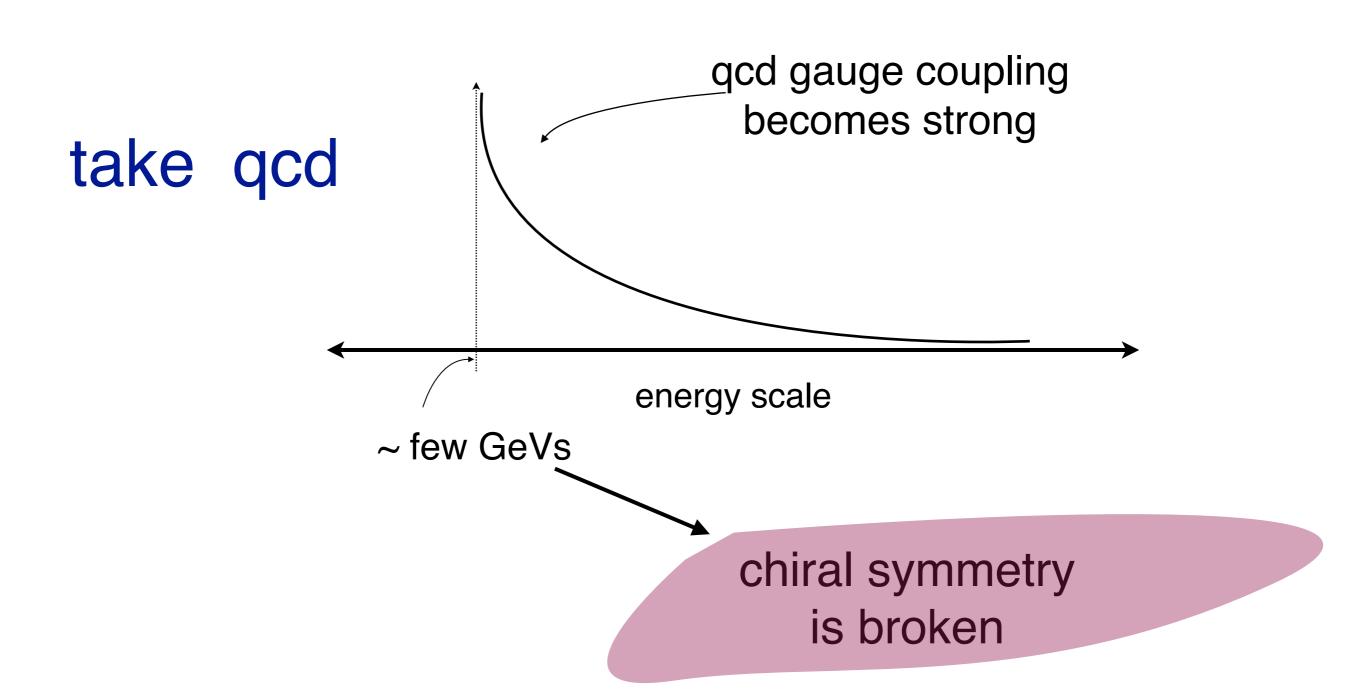
Smallness of electroweak scale or smallness of superpartner masses raises the question

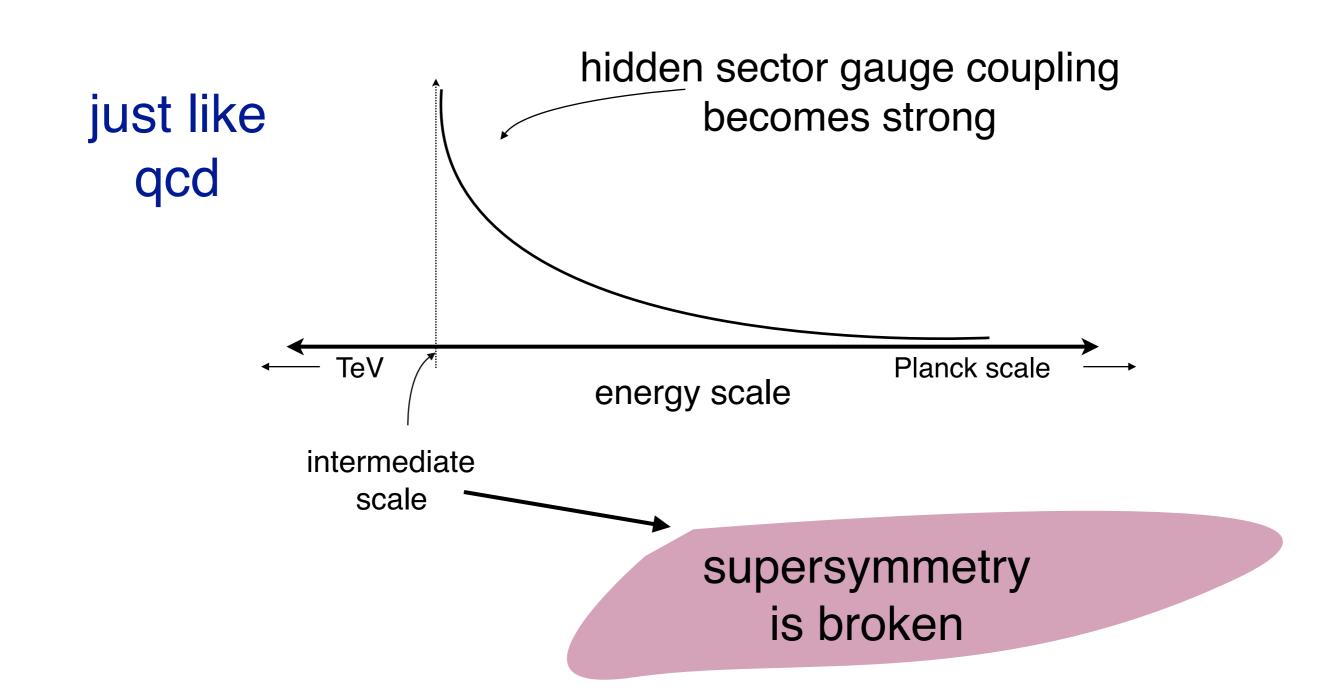
how do you generate

$$\frac{\sqrt{F}}{M_{\rm Pl}} \ll 1$$

We know how nature does it with QCD

$$e^{-\frac{8\pi^2}{g^2}} \ll 1$$



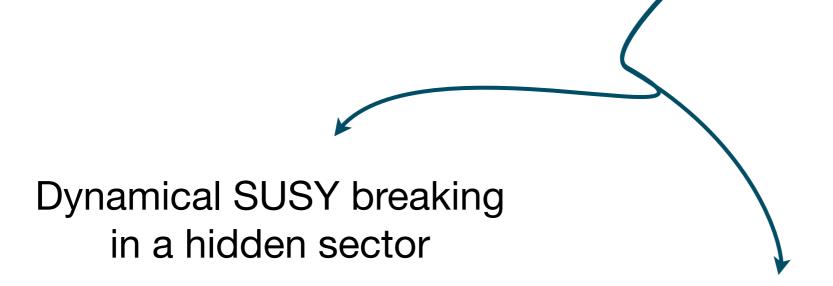


Outline

- Understanding electroweak scale
- Models of Supersymmetry in a nut-shell
- Physics of soft masses:
 - mediation mechanisms
 - renormalization
 - Dynamical supersymmetry breaking
- D-type susy breaking
 - the μ -problem

SUSY model in a nut-shell

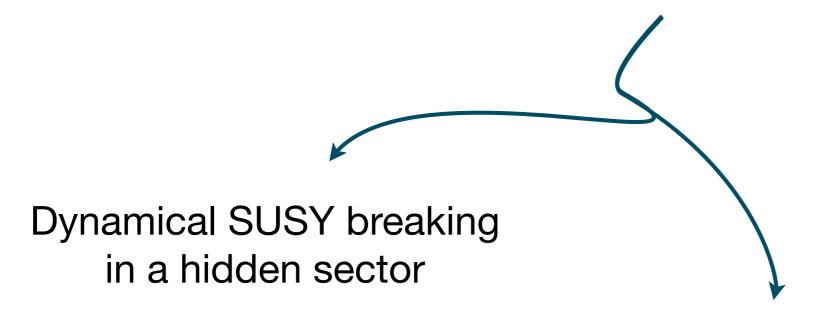
Skeleton of a complete SUSY model



messenger mechanism gravity, gauge, gaugino, anomaly etc etc

SUSY model in a nut-shell

Skeleton of a complete SUSY model



messenger mechanism gravity, gauge, gaugino, anomaly etc etc

flavor problem $\mu - B_{\mu}$ problem

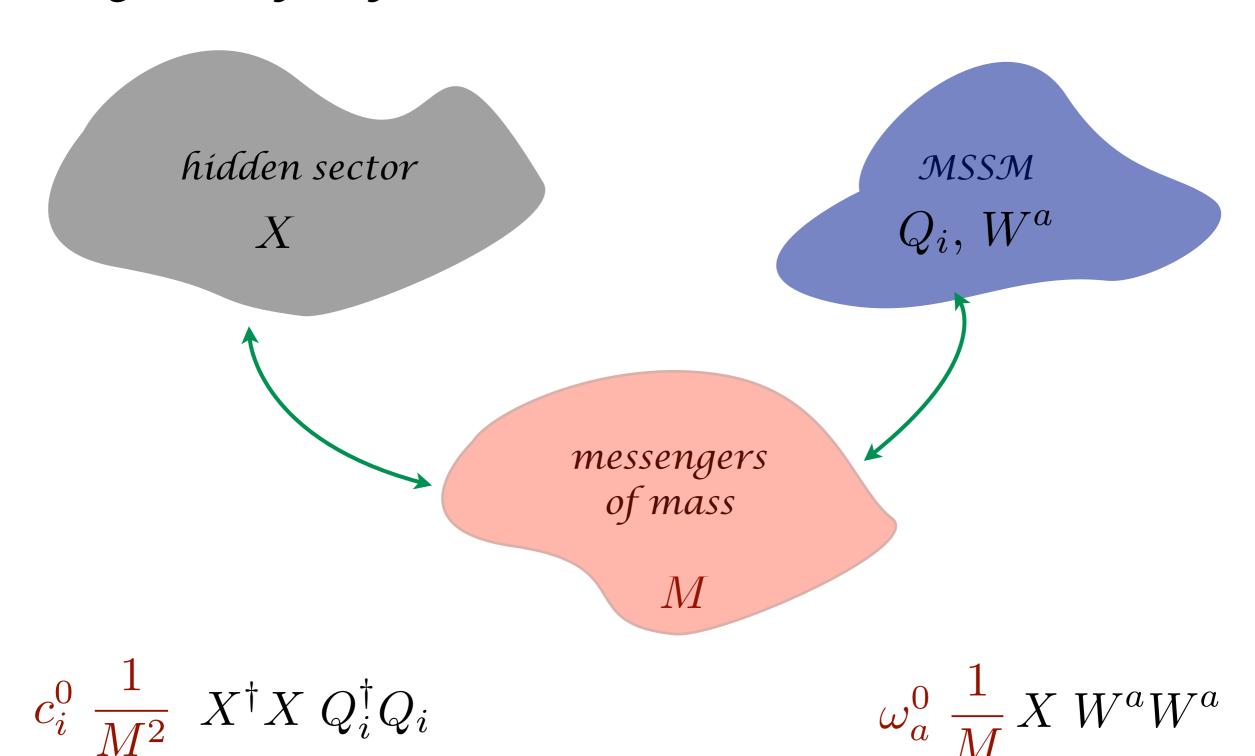
tachyonic sleptons

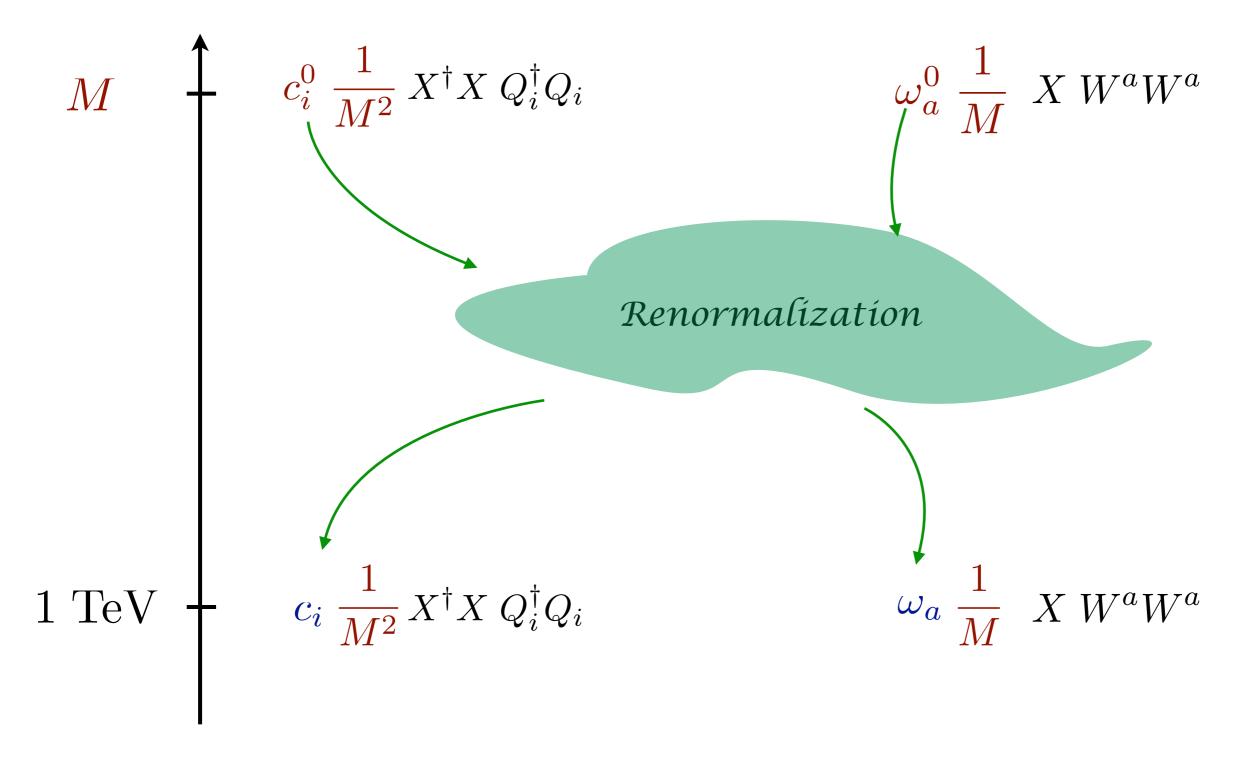
SUSY model in a nut-shell

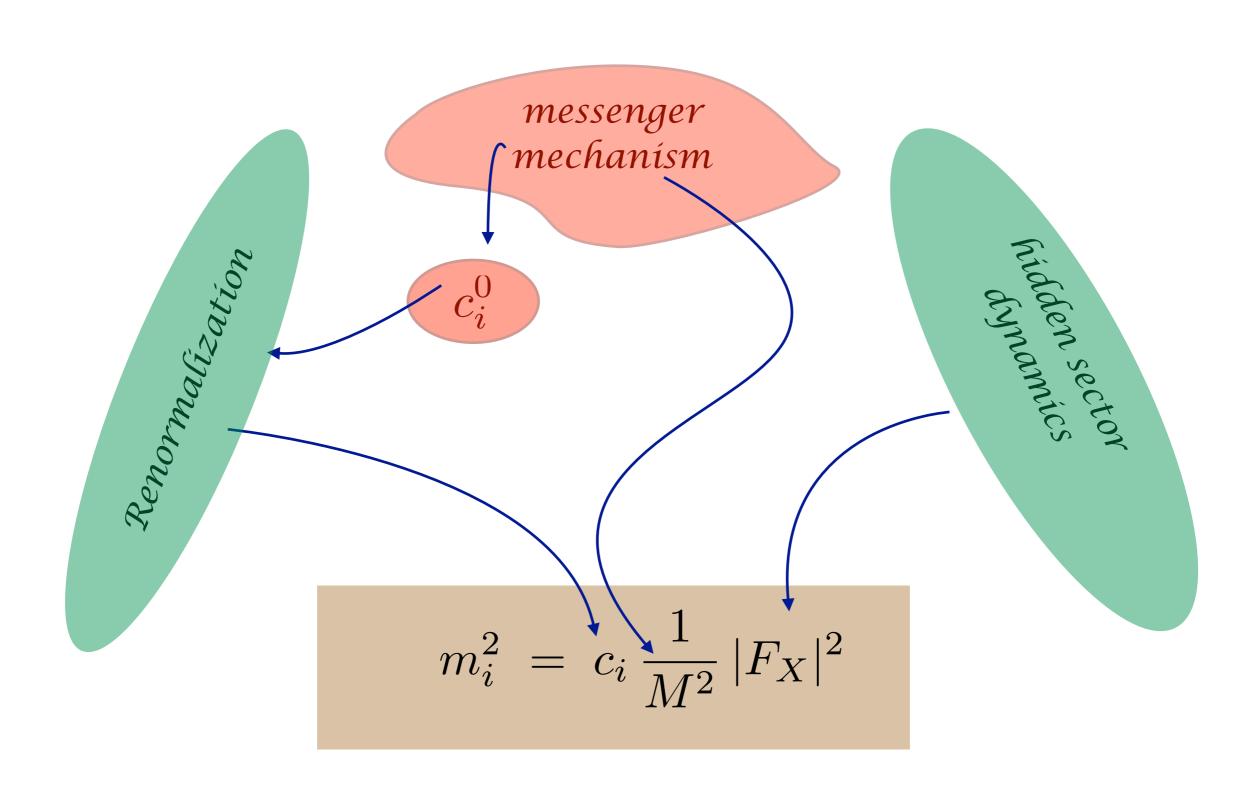
Skeleton of a complete SUSY model

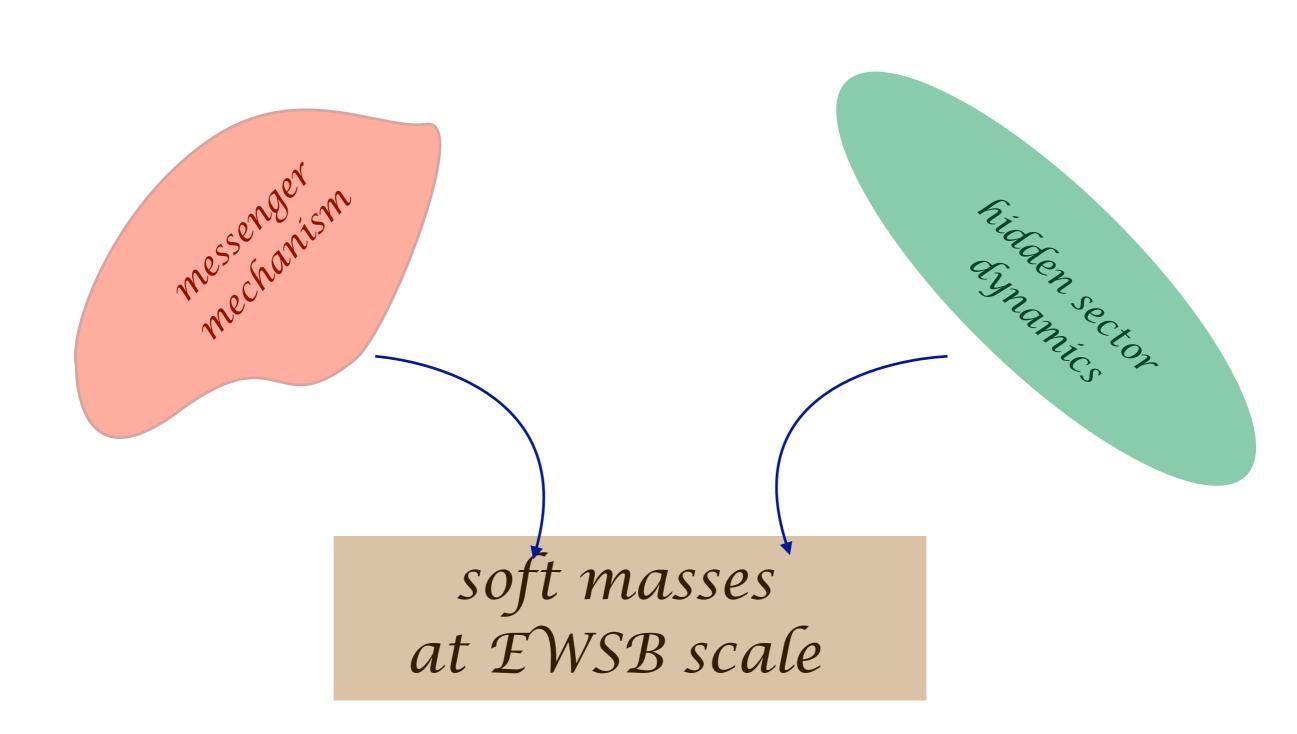
messenger mechanism gravity, gauge, gaugino, anomaly etc etc

Exploring various susy models and their nuances is a semester long course — can't do justice in 45 minutes

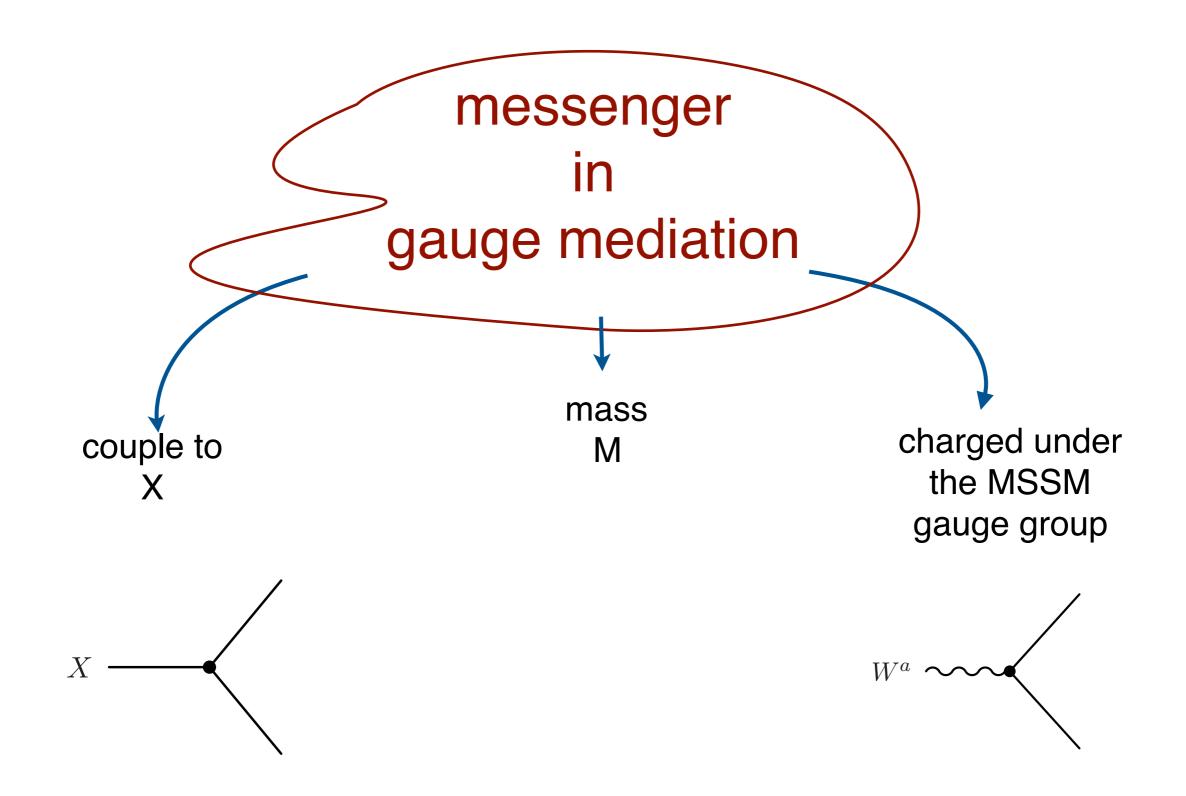




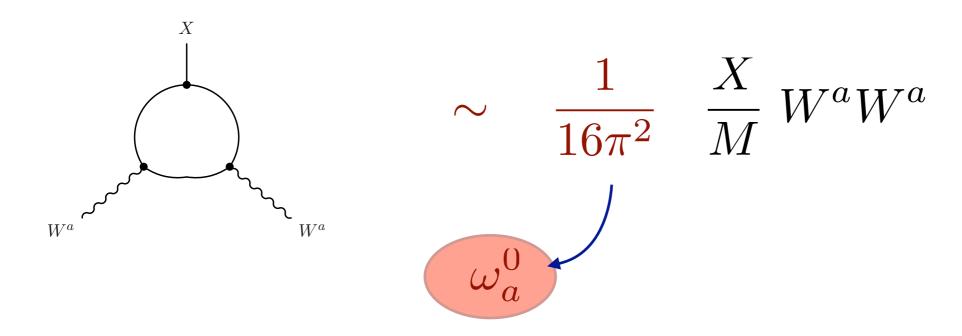


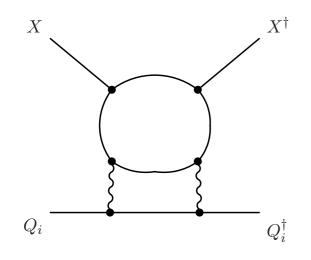


example: gauge mediation



example: gauge mediation





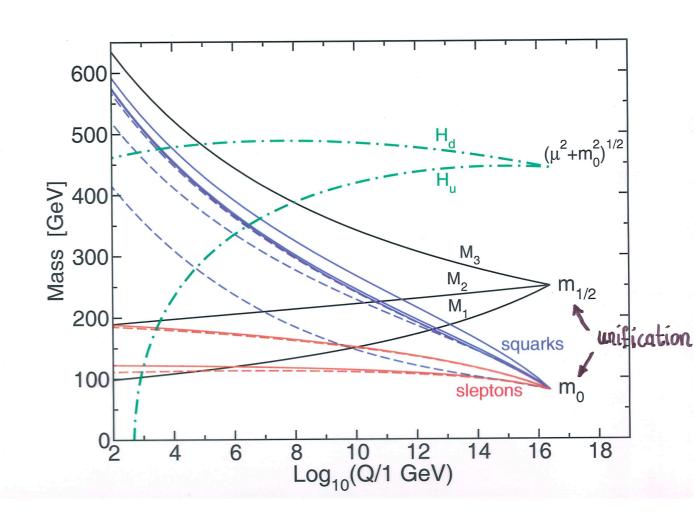
$$\sim q_i \frac{g_i^4}{(16\pi^2)^2} \frac{X^{\dagger}X}{M^2} Q_i^{\dagger} Q_i$$

Renormalization

for example: take superpartner mass running in SO(10)

State of the art MSSM running

- 2 loop running
- 1 loop matching at 1 TeV and at GUT
- automated
 - Isajet
 - Softsusy
 - Suspect
 - .
 - _

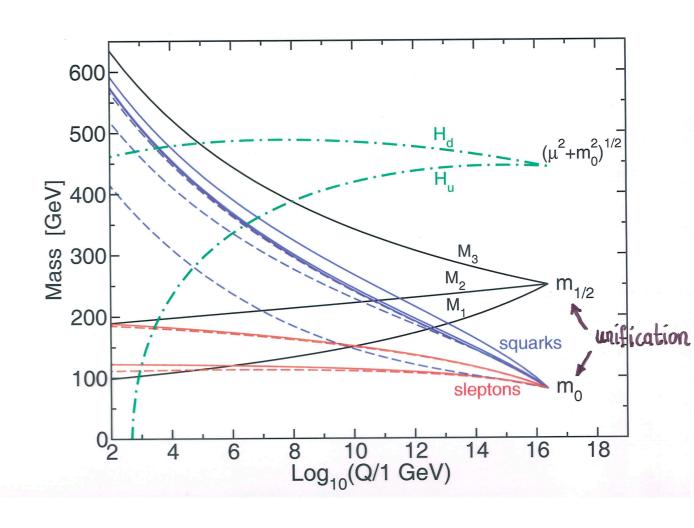


Renormalization

for example: take superpartner mass running in SO(10)

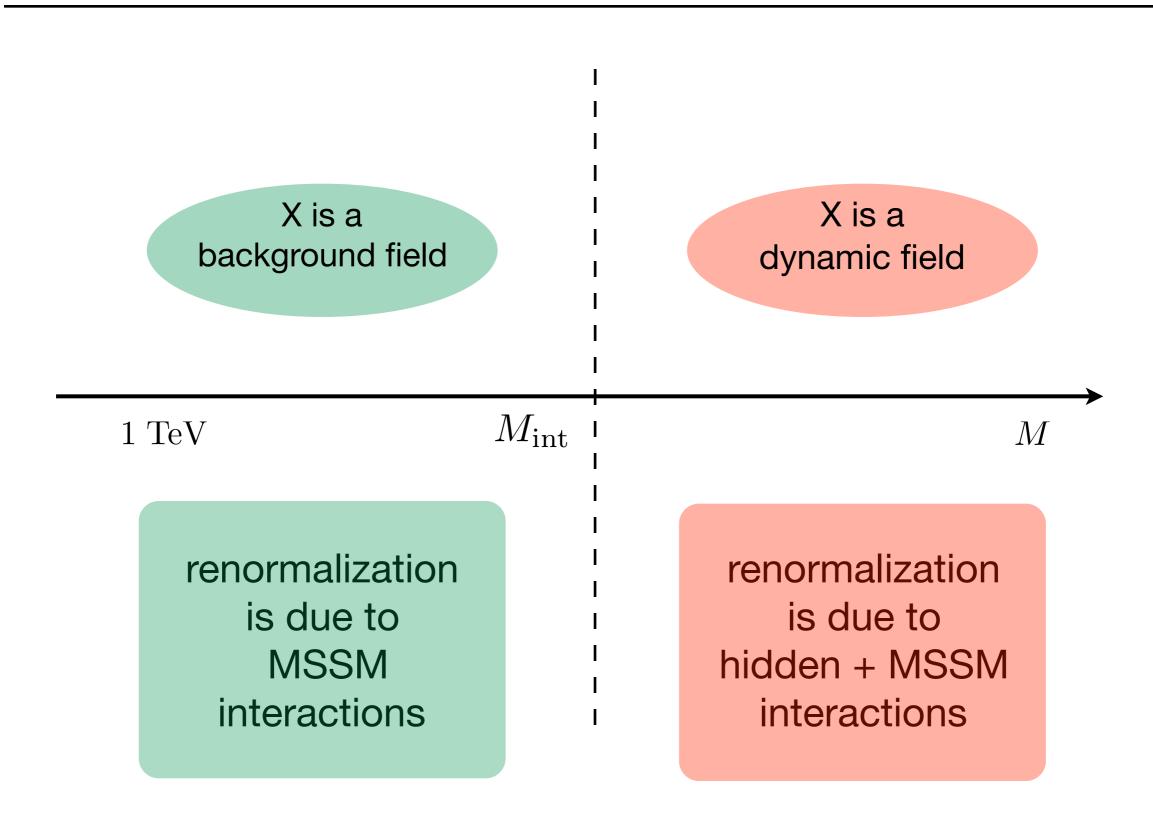
State of the art MSSM running

- 2 loop running
- 1 loop matching at 1 TeV and at GUT
- automated
 - Isajet
 - Softsusy
 - Suspect
 - •
 - _



zillions of papers have used/still use this renormalization — all wrong!

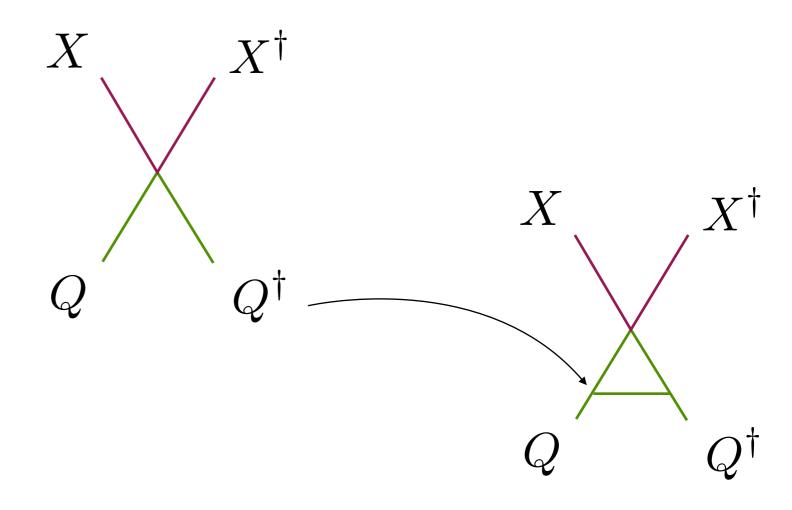
Scales in renormalization



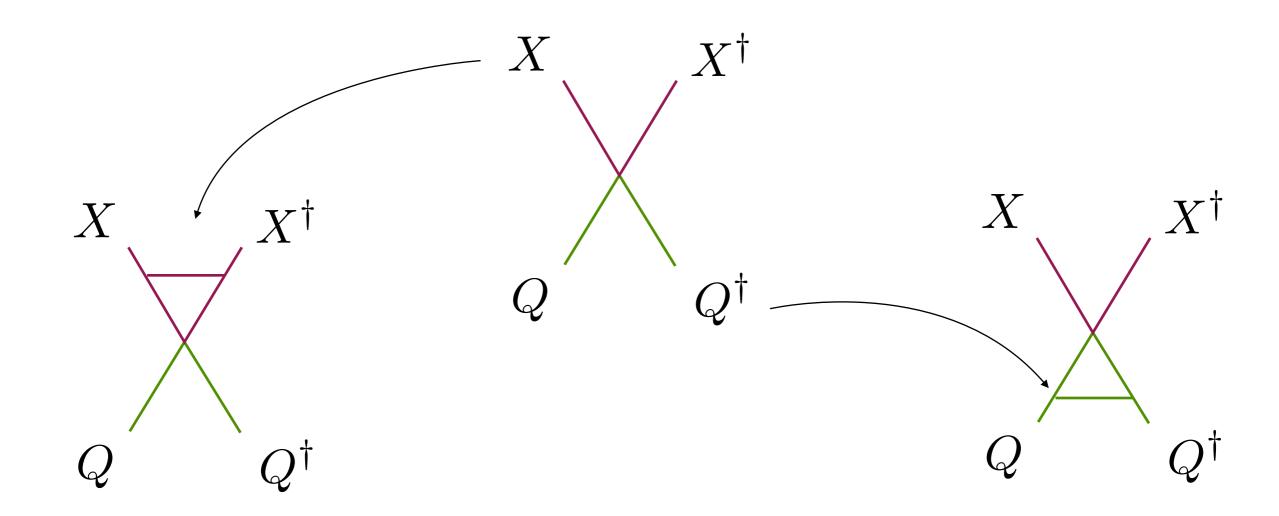
RGE of the operator



RGE of the operator



RGE of the operator



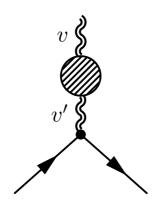
Cohen, Roy, Schmaltz

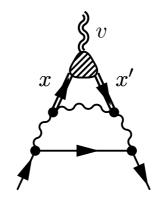
A general hidden sector

Operators:

$$\int d^4\theta \, k_{vi} \, \frac{V_v}{M^2} \Phi_i^{\dagger} \Phi_i + \int d^2\theta \, w_{xn} \frac{X_x}{M} W_n W_n$$

Diagrams:





$$\frac{d}{dt}k_i = \gamma k_i - \frac{1}{16\pi^2} \sum_{n} 8 C_2^n(R_i) g_n^6 G_n$$

with MSSM interactions only

$$\frac{d}{dt}\tilde{m}_{Q}^{2} = \frac{1}{16\pi^{2}} \sum_{a=1}^{3} q_{a} g_{a}^{2} M_{a}^{2}$$

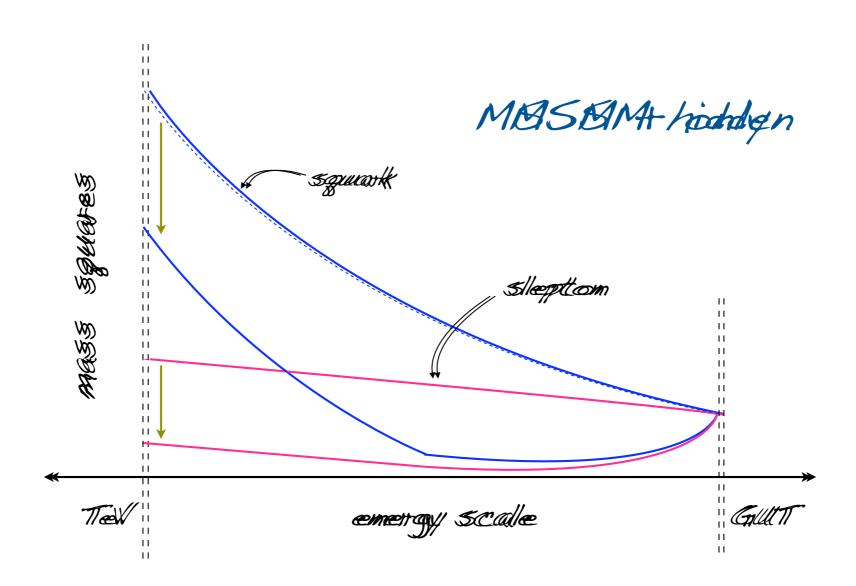
$$q_{a} \equiv \{\frac{32}{3}, 6, \frac{2}{5}\}$$

$$\widetilde{m}_Q^2 = \widetilde{m}_0^2 \, + \, 4.5 \, M_{1/2}^2$$
 2 unknowns

with MSSM + hidden interactions

$$\frac{d}{dt}\tilde{m}_{Q}^{2} = \frac{1}{16\pi^{2}} \sum_{a=1}^{3} q_{a} g_{a}^{2} M_{a}^{2} G + \gamma \tilde{m}_{Q}^{2}$$

$$\widetilde{m}_Q^2 = N_0 + \sum_{a=1}^3 q_a \, N_a$$
 4 unknowns



$$m_{\widetilde{Q}}^2 - 2m_{\widetilde{U}}^2 + m_{\widetilde{D}}^2 - m_{\widetilde{L}}^2 + m_{\widetilde{E}}^2 = 0$$

holds for unification, MSUGRA, gauge mediation, gaugino mediation

$$3\left(\widetilde{m}_U^2 - \widetilde{m}_D^2\right) + \widetilde{m}_E^2 = 0$$

holds for gauge mediation, gaugino mediation

$$2\widetilde{m}_{Q_3}^2 - \widetilde{m}_{U_3}^2 - \widetilde{m}_{D_3}^2 = 2\widetilde{m}_{Q_1}^2 - \widetilde{m}_{U_1}^2 - \widetilde{m}_{D_1}^2$$

$$2\tilde{m}_{L_3}^2 - \tilde{m}_{E_3}^2 = 2\tilde{m}_{L_1}^2 - \tilde{m}_{E_1}^2$$

$$2\widetilde{m}_{L_3}^2 - \widetilde{m}_{E_3}^2 \neq 2\widetilde{m}_{L_1}^2 - \widetilde{m}_{E_1}^2$$
 right handed neutrinos with large Yukawa coupling

$$2\widetilde{m}_{Q_3}^2 - \widetilde{m}_{U_3}^2 = 2\widetilde{m}_{Q_1}^2 - \widetilde{m}_{U_1}^2$$
$$\widetilde{m}_{E_3}^2 = \widetilde{m}_{E_1}^2$$

all flavor universal models e.g. MSUGRA, gauge/gaugino mediation

$$2\widetilde{m}_{Q_3}^2 - \widetilde{m}_{U_3}^2 \neq 2\widetilde{m}_{Q_1}^2 - \widetilde{m}_{U_1}^2$$

$$\widetilde{m}_{E_3}^2 \neq \widetilde{m}_{E_1}^2$$

large tan β

all flavor universal models e.g. MSUGRA, gauge/gaugino mediation

$$3\widetilde{m}_{D_3}^2 + \widetilde{m}_{E_3}^2 - 2m_{\bar{H}}^2 = 3\widetilde{m}_{D_1}^2 + \widetilde{m}_{E_1}^2 - 2\widetilde{m}_{L_1}^2$$

$$3\widetilde{m}_{U_3}^2 - 3\widetilde{m}_{D_3}^2 + 2\widetilde{m}_{L_3}^2 - 2\widetilde{m}_{E_3}^2 + 2m_{\bar{H}}^2 = 3\widetilde{m}_{U_1}^2 - 3\widetilde{m}_{D_1}^2 + 2\widetilde{m}_{L_1}^2 - 2\widetilde{m}_{E_1}^2 + 2m_{\bar{H}}^2$$

all flavor universal models e.g. MSUGRA, gauge/gaugino mediation

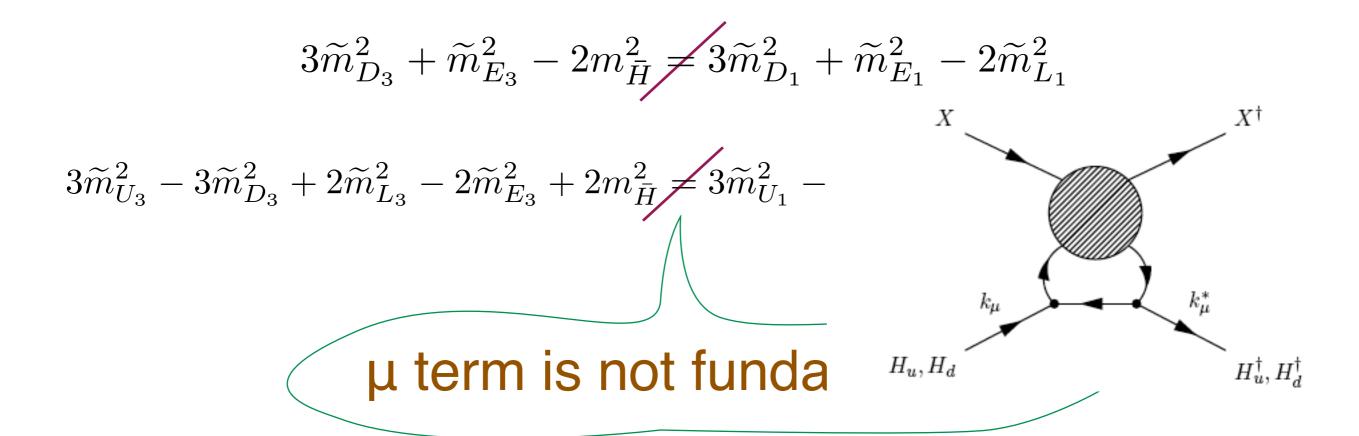
$$3\tilde{m}_{D_3}^2 + \tilde{m}_{E_3}^2 - 2m_{\bar{H}}^2 \neq 3\tilde{m}_{D_1}^2 + \tilde{m}_{E_1}^2 - 2\tilde{m}_{L_1}^2$$

$$3\widetilde{m}_{U_3}^2 - 3\widetilde{m}_{D_3}^2 + 2\widetilde{m}_{L_3}^2 - 2\widetilde{m}_{E_3}^2 + 2m_{\bar{H}}^2 \neq 3\widetilde{m}_{U_1}^2 - 3\widetilde{m}_{D_1}^2 + 2\widetilde{m}_{L_1}^2 - 2\widetilde{m}_{E_1}^2 + 2m_H^2$$

μ term is not fundamental

all flavor universal models

e.g. MSUGRA, gauge/gaugino mediation



Example of DSB

 $W = \lambda S^{ij} Q_i Q_j$ $\frac{\partial W}{\partial S^{ij}} = \lambda Q_i Q_j$ $Pf(QQ) = \Lambda_2^4$

$$SU(2)$$
 $SU(4)$ Q \square \square \square \square

Take the limit of large field value (λ S)

$$W_{\rm eff} = 2 \Lambda_2^2 \lambda S$$

Example of DSB

We can provide many more examples of DSB all share the same feature

there is no elementary singlet field in the UV

gaugino masses are naturally suppressed wrt scalar masses

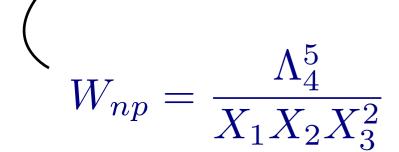
Example of DSB

SU(4) X U(1)

$$X_1$$
 \square -3 X_2 \square -1 (Dine, Nelson, Nir, Shirman, '95) X_3 \square 2 X_4 1 4

$$g_4 \gg \lambda \gg g_1$$

$$W = \lambda X_1 X_2 X_4$$



susy breaking vev at

$$D_1 = 1.4 \, F_{X_4} \neq 0$$

Superpartner masses from D-term

$$\mathbf{W}_{\mathrm{eff}}\supset w_{a}rac{X}{M_{\mathrm{Pl}}}\;W_{a}W_{a}+\sqrt{2}\;\Omega_{a}rac{W'}{M_{\mathrm{Pl}}}W_{a}\Phi_{a}$$
 Dirac mass

Superpartner masses from D-term

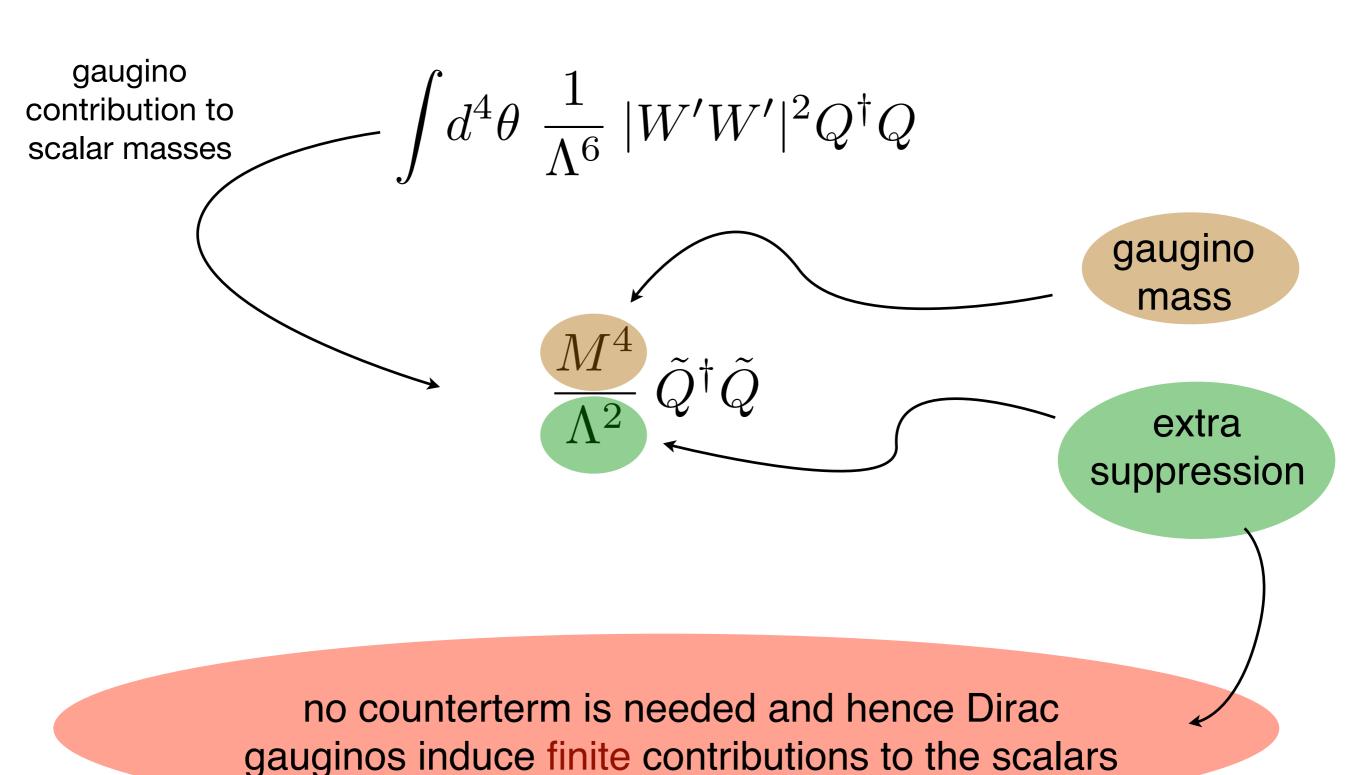
$$\mathbf{W}_{\mathrm{eff}}\supset w_a \frac{X}{M_{\mathrm{Pl}}} W_a W_a + \sqrt{2} \; \Omega_a \frac{W'}{M_{\mathrm{Pl}}} W_a \Phi_a$$
 Dirac mass

These interactions preserve an
$$U(1)_R \qquad \qquad R[Q_i] = 1$$

$$R[W_a] = 1$$

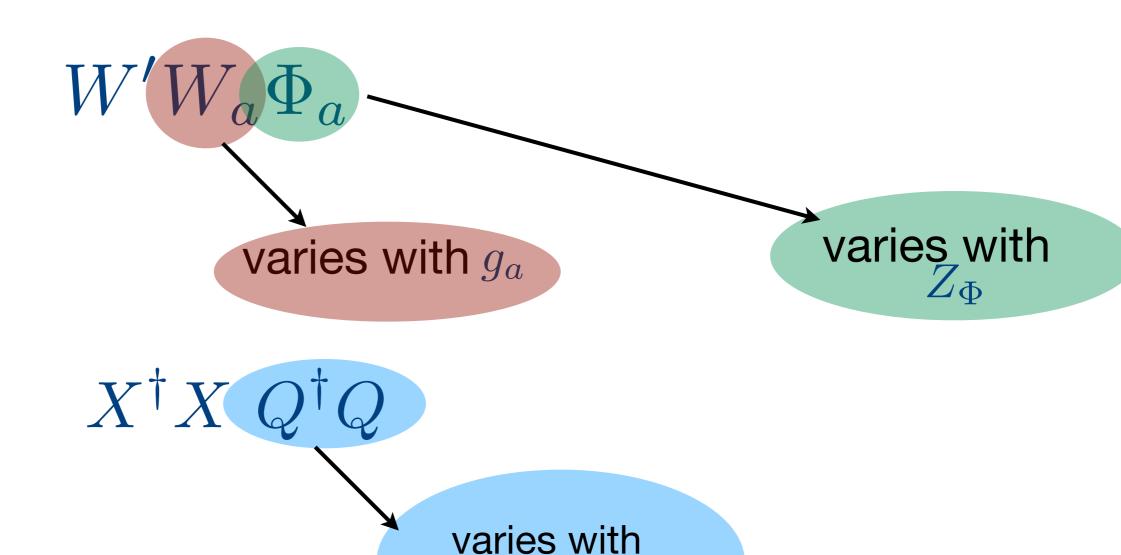
$$R[\Phi_a] = 0$$

Dirac Gaugino Masses



A sample point

RGE evolution



Yukawa

A sample point

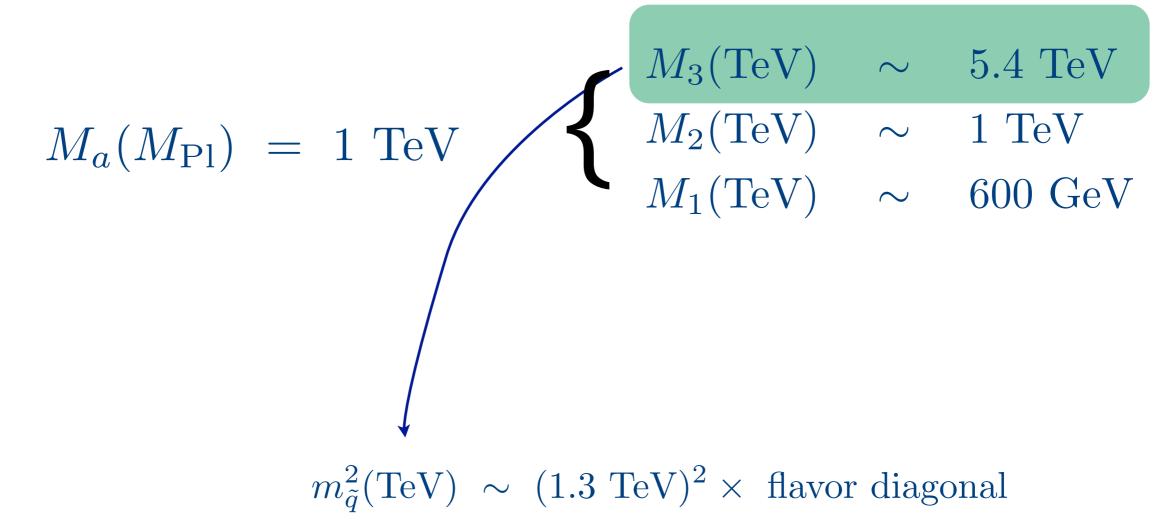
TeV scale outputs

$$M_a(M_{\rm Pl}) = 1 \, {
m TeV}$$

$$\begin{cases} M_3({
m TeV}) & \sim 5.4 \, {
m TeV} \\ M_2({
m TeV}) & \sim 1 \, {
m TeV} \\ M_1({
m TeV}) & \sim 600 \, {
m GeV} \end{cases}$$

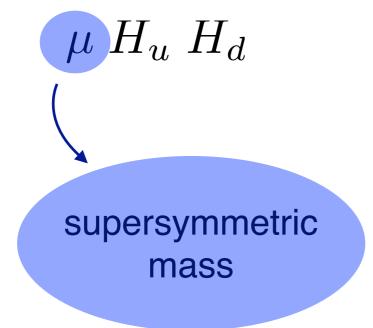
A sample point

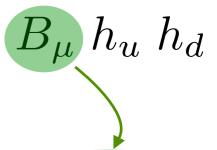
TeV scale outputs



$$H_u \equiv H_u(h_u, \psi_{H_u}, F_{H_u})$$

$$H_d \equiv H_d(h_d, \psi_{H_d}, F_{H_d})$$

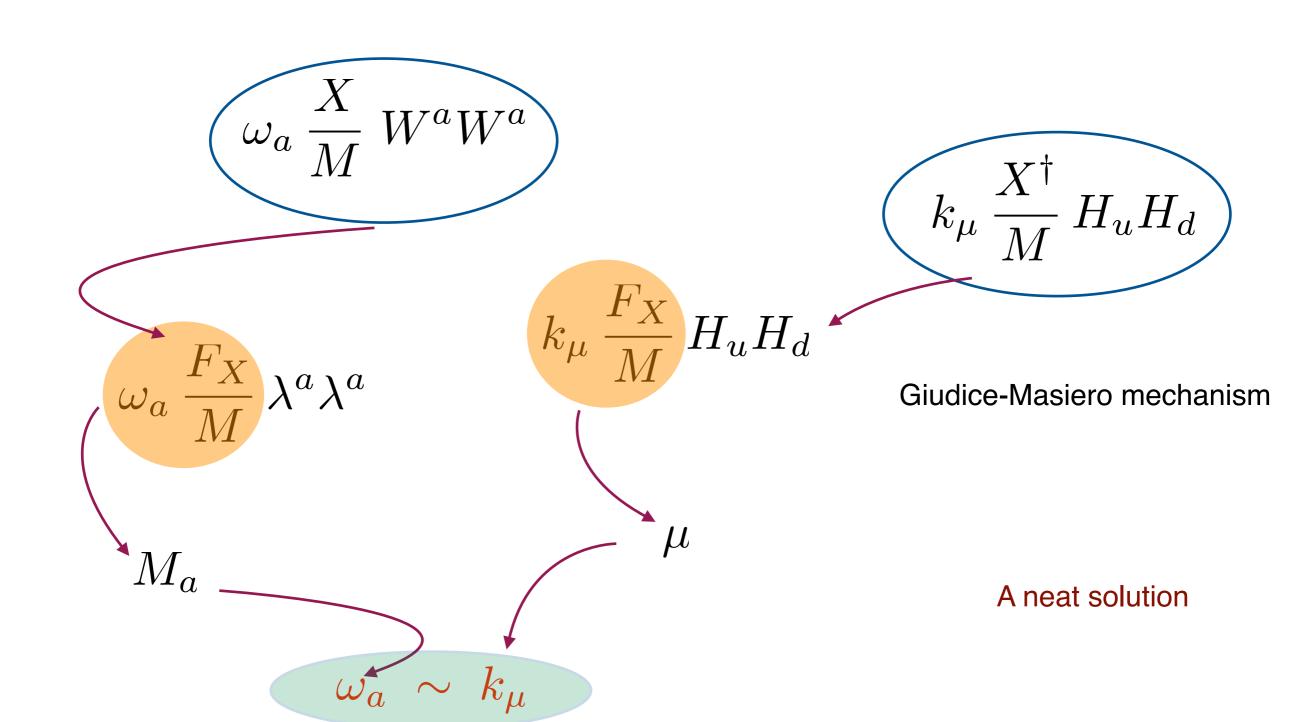




supersymmetry breaking mass

Natural electroweak symmetry breaking requires

$$\mu \sim M_a$$
 μ problem $B_{\mu} \sim |\mu|^2$



Nelson-Roy

We need a slightly more complicated operator for D-term susy breaking

Operator:

$$\int d^2\theta \frac{1}{4} w_{2,\Phi_1,\Phi_2} \frac{\bar{D}^2(D^{\alpha}V'D_{\alpha}\Phi_1)}{M_m} \Phi_2.$$

$$\frac{\mu_{\Phi_2}}{2}(\widetilde{\phi}_1\widetilde{\phi}_2 - 2F_{\phi_1}\phi_2) \to \frac{\mu_{\phi_2}}{2}\widetilde{\phi}_1\widetilde{\phi}_2 + |\mu_{\phi_2}|^2|\phi_2|^2,$$

where

$$\mu_{\phi_2} = 2w_{2,\Phi_1,\Phi_2} \frac{\mathcal{D}}{M_m}.$$

1

Let's not conclude — since another SUSY talk is approaching