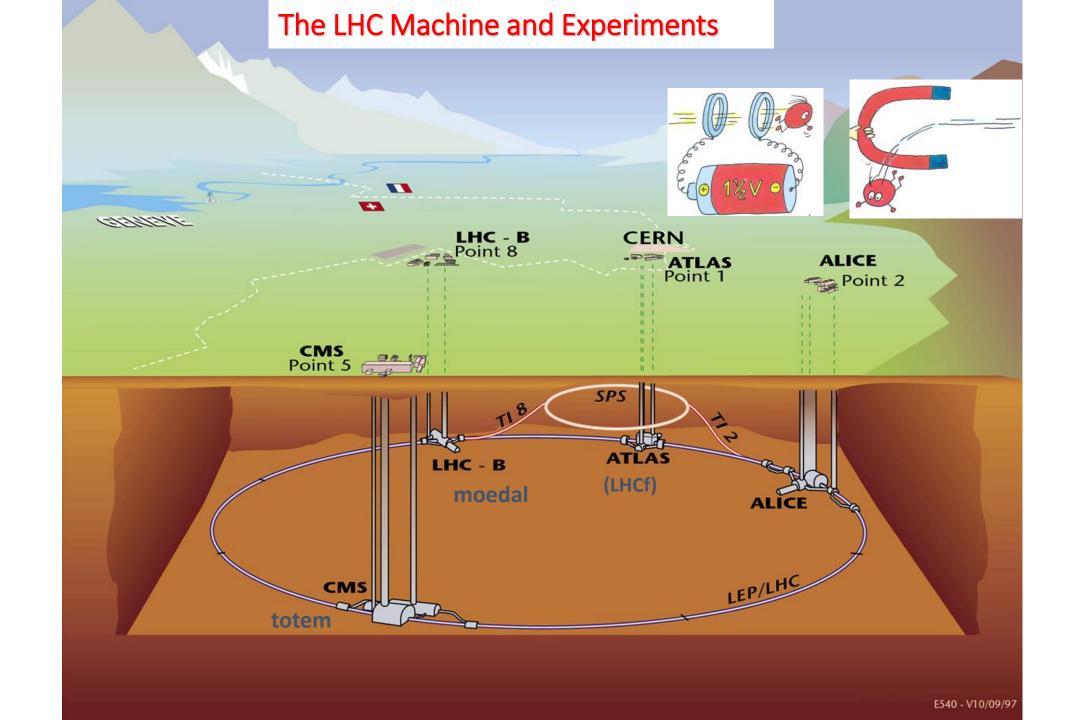
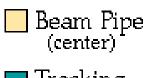
Tau Signals for Higgs Bosons in BSM theories at the CMS experiment

(experimentalist's view)

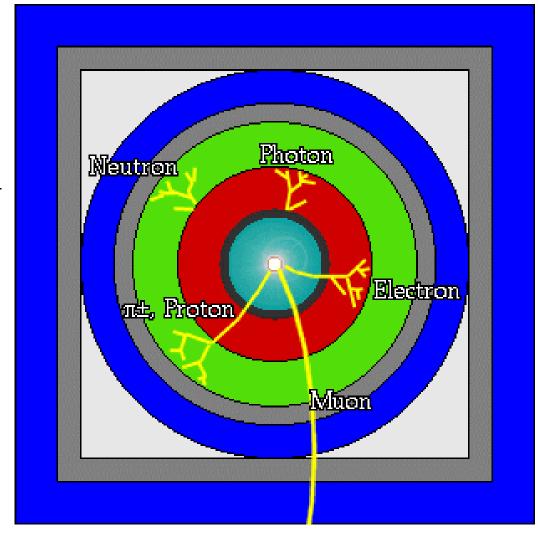

Sudeshna Banerjee

Tata Institute of Fundamental Research

Candles of Darkness


June 5, 2017

let us start at the begining



Typical Detector in a High Energy Physics Experiment Electrons, Photons, Pions (mesons), Protons are identified by energy and momentum **Absorber** Magnet **Calorimeter Includes** Material Jet shower in dense Interaction material point **Magnetised volume** tracking system Hadronic Muon layers **Detectors** Innermost **EM layers** tracking layers fine sampling use silicon

Cross Section of a Particle Detector

- Tracking Chamber
- Magnet Coil
- E-M Calorimeter
- Hadron Calorimeter
- Magnetized Iron
- Muon Chambers

Particle Data Group, Lawrence Berkeley National Laboratory

CMS DETECTOR

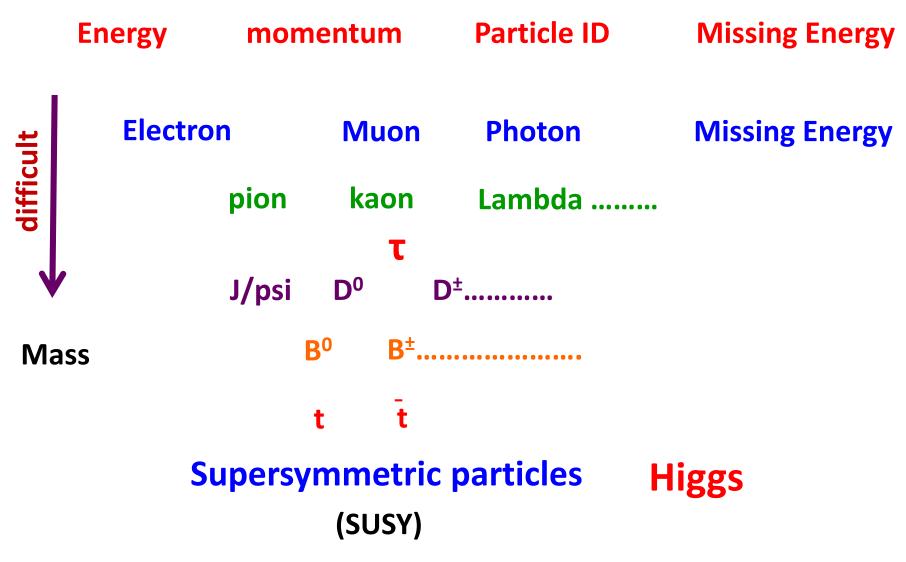
- Made of Drift Tubes, Cathode Strip Chambers and Resistive Plate Chambers.
- Coverage upto |η| < 2.4
- Muon p_{τ} resolution 1-1.5% upto $p_{\tau}^{\mu} = 1$ TeV

MAGNET

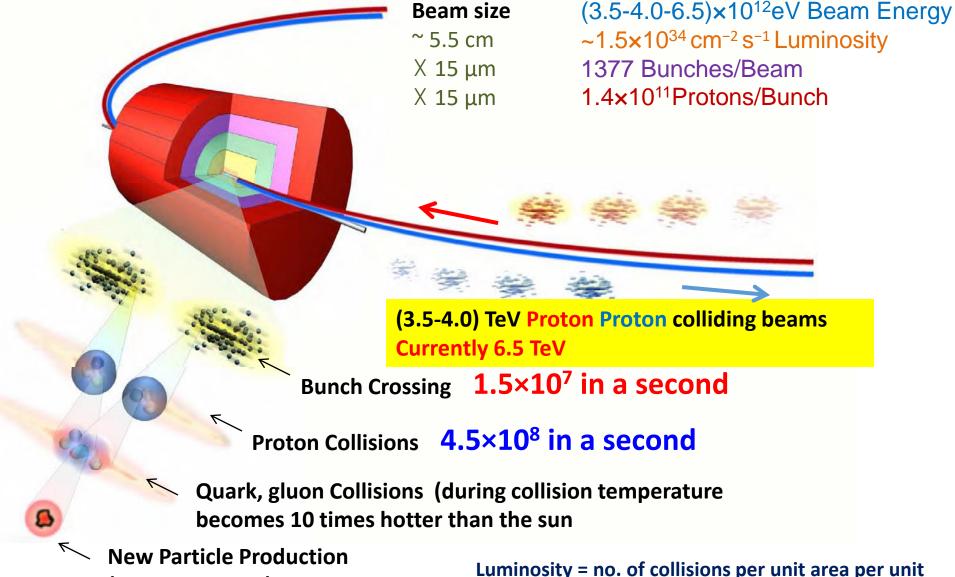
- Superconducting Nb-Ti coil, 12m long and 6m diameter.
- Design Magnetic field: 4 Tesla

HADRON CALORIMETER

- Sampling calorimeter made of alternating layers of Brass and plastic scintillator.
- WLS fibres used for collection of signal. measured by HPDs.
- Energy resolution 10% for 100 GeV pion.


SILICON TRACKER

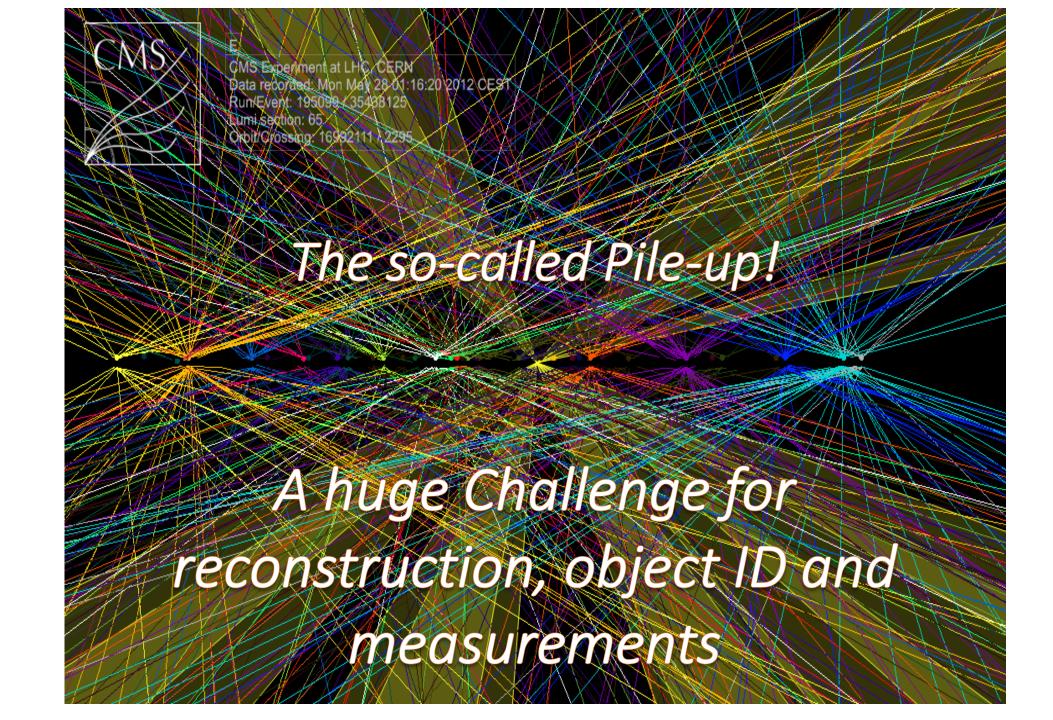
- Inner most 3/2 layers in the Barrel/Endcap comprising 100 x 150 μm² pixels (66 million channels)
- Outermost 10/12 layers in the Barrel/Endcap made of strip detectors.
- p_⊤ resolution 0.5% for 10 GeV charged track.


ELECTROMAGNETIC CALORIMETER

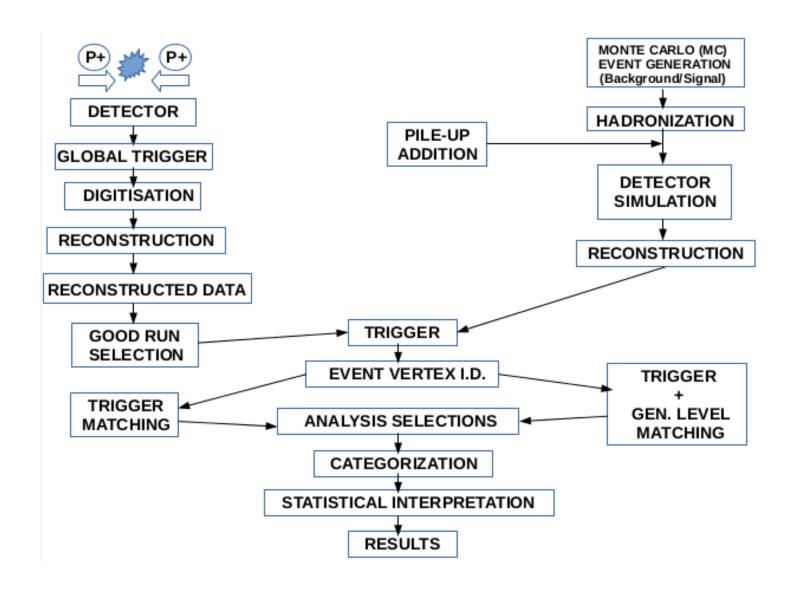
- Homogeneous calorimeter made of PbWO4 crystals.
- Signal measured by Avalanche Photo diodes.
- Energy resolution of 1% for 30 GeV e/γ.

Reconstructing Physics

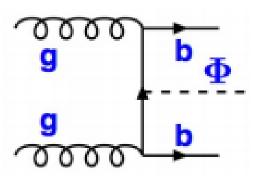
Rates:

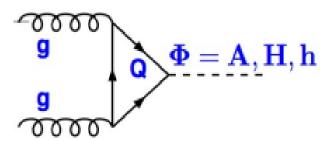


(Higgs, SUSY,)


1 in 10 seconds

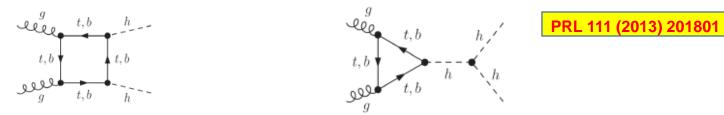
Luminosity = no. of collisions per unit area per unit time


Integrated luminosity over a period of time is expressed in picobarn⁻¹ (1/area) [1 barn = 10^{-24} cm²]

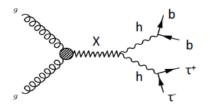


ANALYSIS STRATEGY

Production of MSSM Higgs bosons



Production of two Higgs bosons


MOTIVATION: $HH \rightarrow bb\tau_h\tau_h$ **SEARCH**

- ➤ Di-higgs production important → probe tri-linear higgs coupling.
- ➤ Low mass (125 GeV) SM Higgs gives small (Non Resonant) SM di-higgs cross section (10.16 fb @ 8TeV computed to NNLO).

Leading Order Feynman Diagrams for SM (Non Resonant) Di-Higgs production

Many BSM theories predict enhancement of di-higgs cross section (upto 1 pb) due to decay of exotic particles (e.g. Spin-0 [Radion] or Spin-2[Graviton]) to SM higgs boson pair.

Phy. Rev. Lett. 83, 4926 (1999) arXiv:0705.3844v1

Leading Order Feynman Diagrams for BSM (Resonant) Di-Higgs production

We searched for both Resonant and SM (Non Resonant) di-higgs production in the $bb\tau_h\tau_h$ channel (where τ_h denotes hadronic tau decay).

BACKGROUNDS

Z→ττ

Estimated in shape from Embedded sample comprising of Z → μμ̄ data events in which muons are replaced by taus from simulation

Yield is derived from Z→ττ̄ simulation

----- h,H,A→ττ

Observed **Z**→ττ

QCD

Electroweak

SM H(125 GeV) $\rightarrow \tau\tau$

Bkg. uncertainty MSSM m^h_{mod+} scenario m_{*}=350 GeV, tanβ=30

18.3 fb⁻¹ (8 TeV)

 $m_{\tau\tau}$ [GeV]

CMS Preliminary h,H,A→ττ

 $\tau_{\mathsf{h}} \tau_{\mathsf{h}}$

 10^{2}

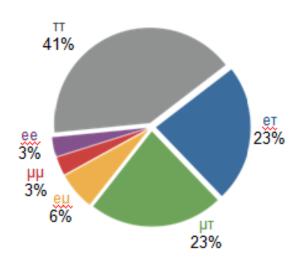
tŧ

Estimated in shape and yield from simulation which are validated in high purity regions in data from the eu channel.

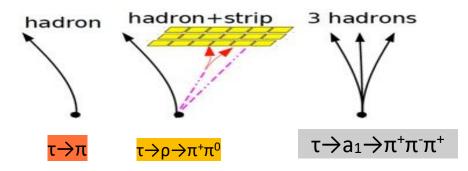
Electroweak

This comprises of the following:

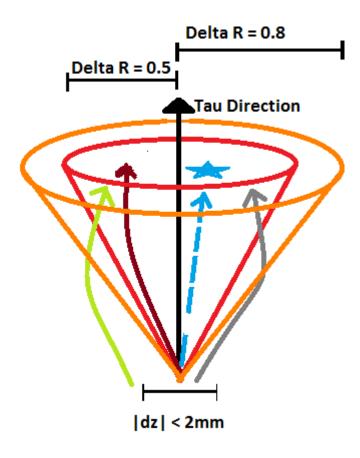
- . W+Jets: Shape from simulation, yield
- from high m_T region in data
- Di-Boson: Estimated from simulation


SM 125

Estimated from MC, it is the sum of SM Higgs (m_H =125 GeV) backgrounds: $ZH(H \rightarrow b\bar{b}), WH(H \rightarrow b\bar{b}),$ $VH(H \rightarrow \tau \bar{\tau})$, $qqH(H \rightarrow \tau \bar{\tau})$, $ggH(H \rightarrow \tau\bar{\tau})$ and $H \rightarrow b\bar{b}$.

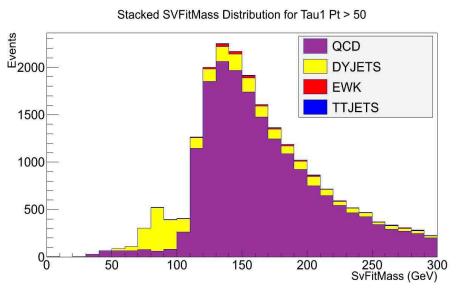

QCD

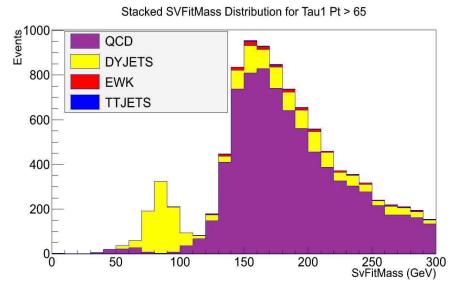
Estimated from data using sidebands defined by di-tau charge and isolation (after subtracting all other non QCD backgrounds)


HADRONIC TAUS: IDENTIFICATION & RECONSTRUCTION

- > Tau leptons: High probability of hadronic decays (~41%).
- Arr Hadronic Tau decays: 1 Prong $0\pi_0$, 1 Prong $1\pi_0$, 1 Prong $2\pi_0$ and 3 Prong. Prong charged track (π^+)
- \succ Hadron Plus Strips Algorithm (HPS): reconstructs and distinguishes decay modes, reduces Jet $\rightarrow \tau_h$ fake rate.
- > Tau ID efficiency at CMS ~ 60% (for Tau p_T 20 GeV 2 TeV) and Jet $\rightarrow \tau_h$, $e \rightarrow \tau_h$ and $\mu \rightarrow \tau_h$ fake rates around 0.1% .
- > Taus are also required to satisfy isolation criteria (absence of hadronic activity in their immediate vicinity).

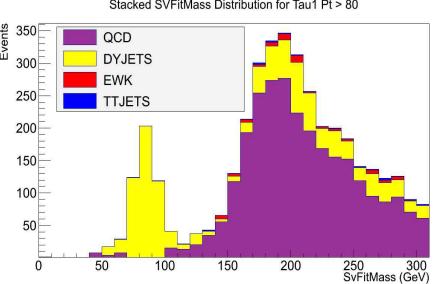
HADRONIC TAU ISOLATION: OLD

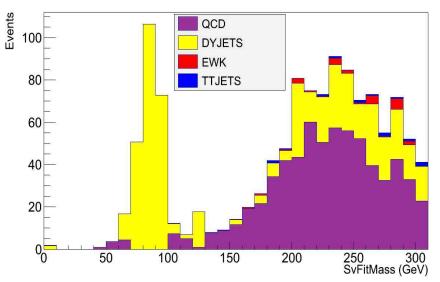

- > Tau Isolation P_T Sum Input: PFCharged Hadrons (P_T > 0.5 GeV) and PFPhotons (E_T > 0.5 GeV) within dZ < 2mm from production vertex within a cone of ΔR < 0.5.
- ightharpoonup Production vertex: Has highest probability of association with the leading (Highest P_T) track of the Tau candidate.
- PFCharged Hadrons and Photons forming the Tau candidate, excluded from the sum.
- Pile Up contribution have to be accounted for.
- Working Points: Loose (< 2GeV), Medium (< 1GeV) and Tight (< 0.8 GeV).</p>


MSSM φ→ττ SEARCH: CATEGORIES

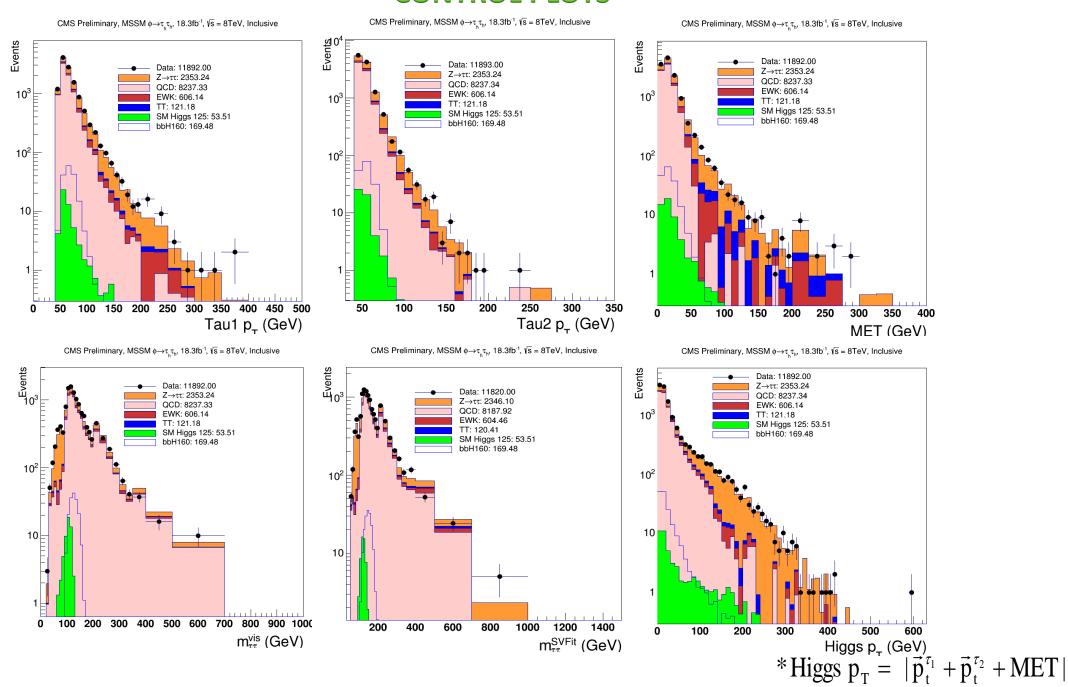
p _T (τ _h) > 45 GeV, η <2.1 (Both Taus) Opposite Sign	b-Tag Category	No b-Tag Category
	≥ 1 b-Tagged Jets (p _T > 20 GeV), < 2 Jets (p _T > 30 GeV)	No b-Tag Jets with p _T > 20 GeV
	д b	$\Phi = A, H, h$

- > To enhance analysis sensitivity, the dominant QCD multijets background must be reduced.
- \succ To achieve this, scanned Tau p_T for both leading (Tau1) and sub-leading (Tau2) taus to see the effect on sensitivity (Signal/VBackground) in both b-tag and no b-tag categories.

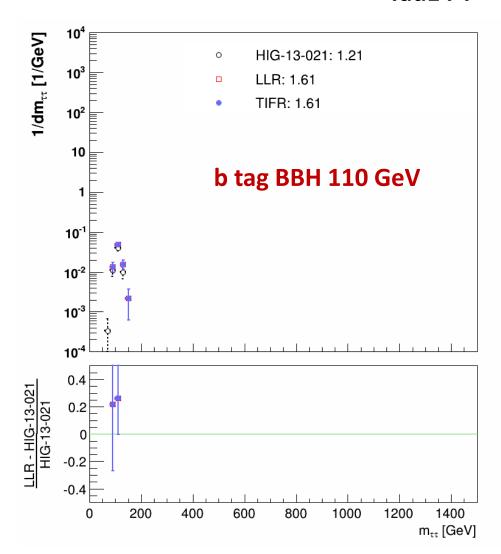

EFFECT OF TAU1 p_T CUT ON BACKGROUNDS

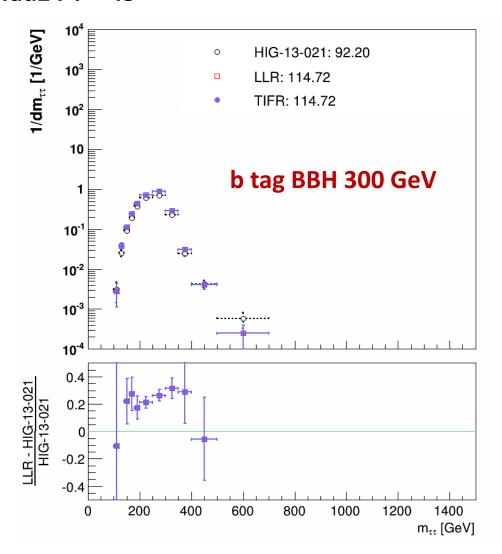


Tau Signals for Higgs Bosons in the MSSM
Stacked SVFitMass Distribution for Tau1 Pt > 80
Stacked SVFitMass

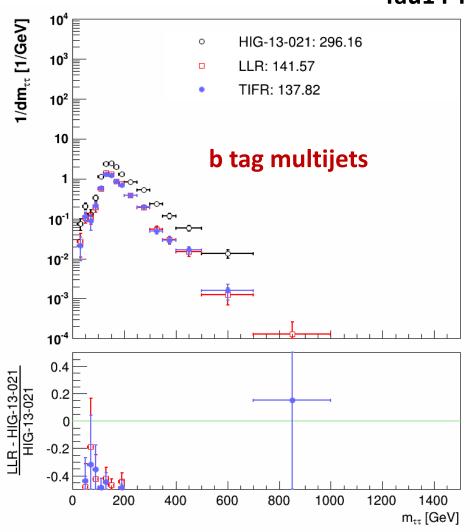


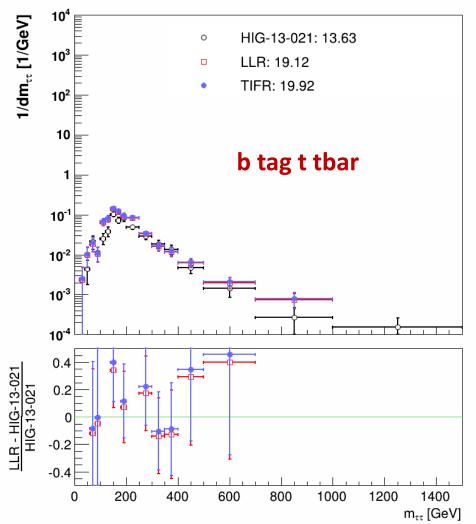
Stacked SVFitMass Distribution for Tau1 Pt > 100




CONTROL PLOTS

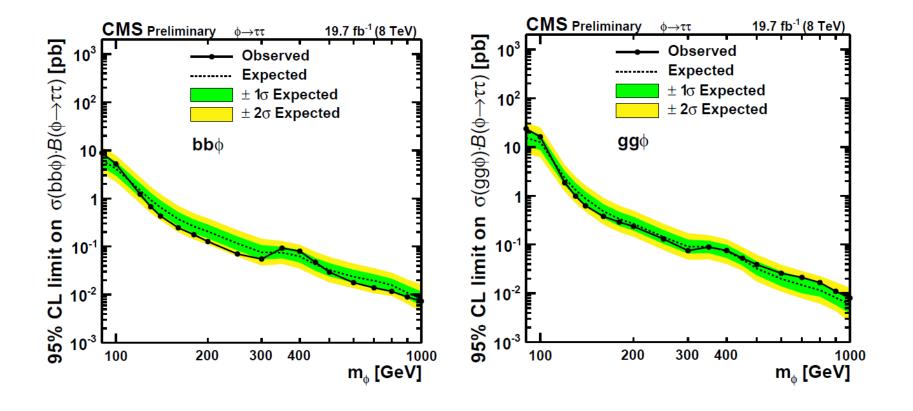
Synchronization: Higgs boson signal


Tau1 PT > 45 && Tau2 PT > 45

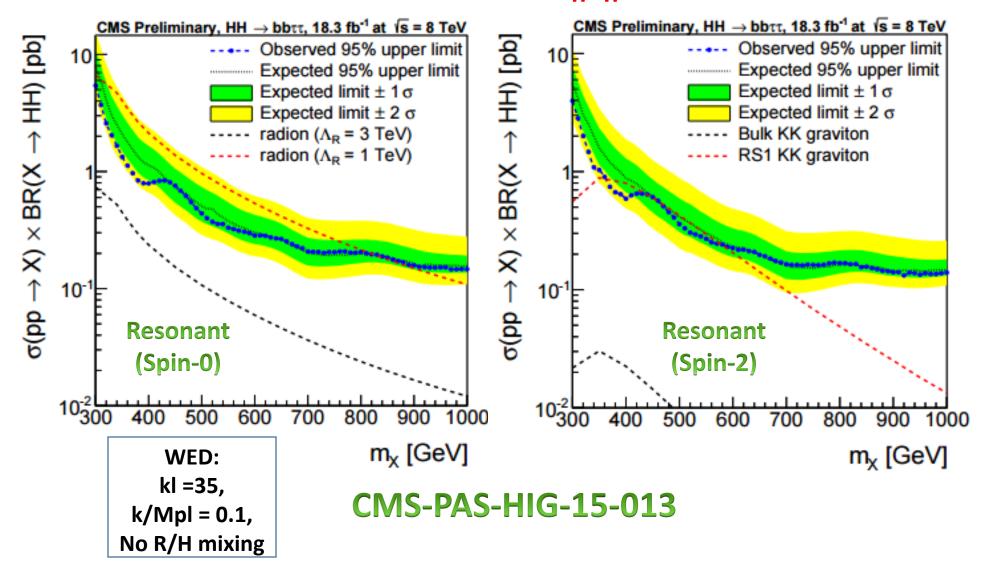


Synchronization: Background events

Tau1 PT > 45 && Tau2 PT > 45

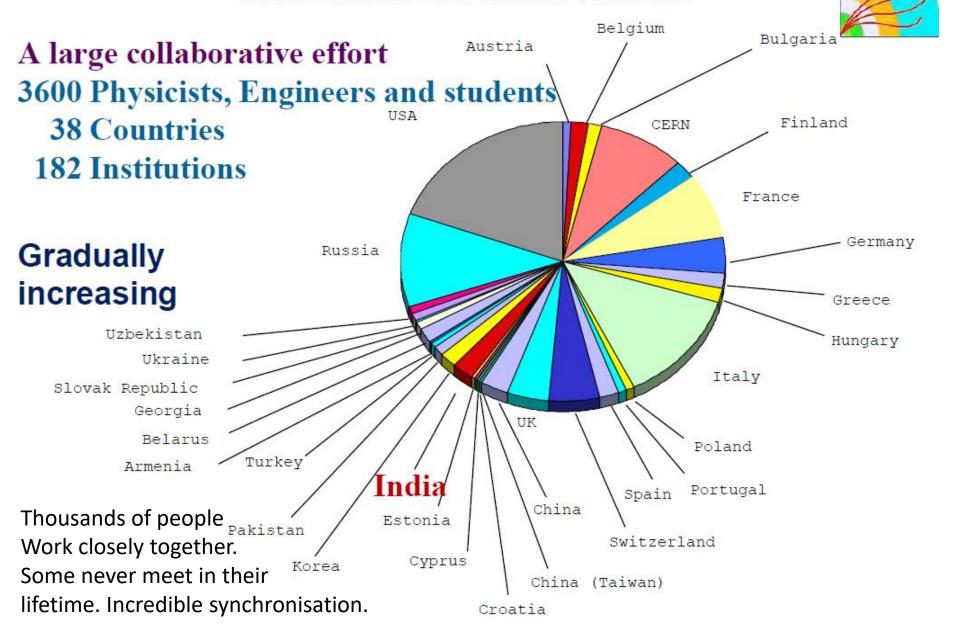

MSSM Higgs search EVENT YIELDS

$ au_{ m h} au_{ m h}$ channel $\sqrt{s}=8$ TeV			
Process	no-b-tag		
	low	medium	high
$gg o \phi, \phi o \tau \tau$	66 ± 8	23 ± 5	28 ± 3
$gg o \phi b, \phi o \tau \tau$	82 ± 8	108 ± 10	174 ± 18
$Z \rightarrow \tau \tau$	1645 ± 73	542 ± 34	193 ± 13
QCD	6982 ± 144	942 ± 52	147 ± 21
W+jets	428 ± 116	122 ± 38	28 ± 9
Z+jets (e, μ or jet faking τ)	65 ± 10	23 ± 3	5 ± 0.9
tt	23 ± 3	8 ± 1	2 ± 0.4
Di-bosons + single top	37 ± 8	16 ± 3	6 ± 1
SM Higgs	48 ± 16	8 ± 2	2 ± 0.6
Total expected	9228 ± 98	1659 ± 44	382 ± 22
Observed data	9259	1695	400


Process	b-tag		
Trocess	low	high	
$gg \rightarrow \phi, \phi \rightarrow \tau \tau$	1 ± 0.3	1 ± 0.1	
$gg \to \phi b, \phi \to \tau \tau$	18 ± 2	58 ± 8	
$Z \rightarrow \tau \tau$	35 ± 3	14 ± 2	
QCD	118 ± 11	21 ± 4	
W+jets	6 ± 2	2 ± 1	
Z+jets (e, μ or jet faking τ)	1 ± 0.2	0 ± 0.1	
tī	9 ± 2	5 ± 0.9	
Di-bosons + single top	2 ± 0.5	3 ± 0.6	
SM Higgs	1 ± 0.3	0 ± 0.1	
Total expected	172 ± 11	45 ± 5	
Observed data	172	41	

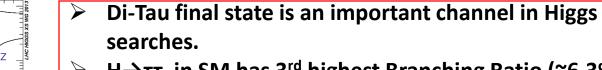
MSSM Higgs (8 TeV)

➤ SM 125 GeV higgs treated as background and exclusion limits are set at 95% CL for Gluon Fusion (b - assoc. production) while treating b - assoc. production (Gluon Fusion) as nuisance parameter in the Max. Likelihood fit (Profiling).


LIMITS (X \rightarrow hh \rightarrow bb $\tau_h \tau_h$) (8 TeV)

CMS Collaboration and the LHC Computing Grid

The CMS collaboration



Outlook

- The search for HH production in the bbττ channel has been combined with bbΥΥ and bbbb channel to produce more stringent limits at 8 TeV
- The searches for $H \rightarrow \tau \tau$ and $HH \rightarrow bb\tau \tau$ have been carried out at 13 TeV with 35.9 fb⁻¹. Results will soon be more public.

BACKUP

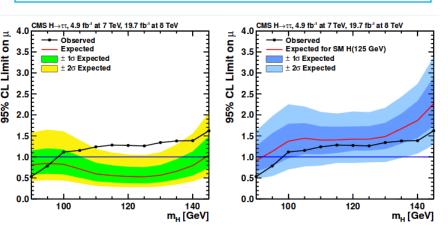
MOTIVATION-2

- → H→ττ in SM has 3rd highest Branching Ratio (~6.3% next only to bb and WW) at 125 GeV.
- ➢ Only channel that constrains well Higgs couplings to fermions (Over whelming background in H→b̄δ).

140

120

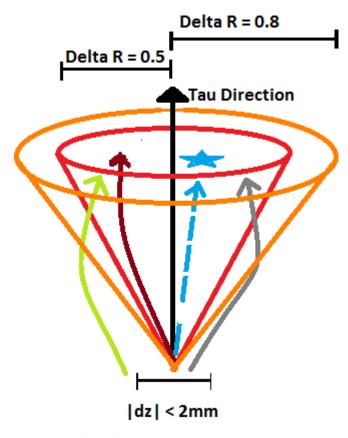
Total Uncert


Higgs BR o

10⁻³

σ x BR(ττ) is enhanced w.r.t SM values for large Tanβ due to enhanced bottom Yukawa coupling.

160


M_□ [GeV]

- > 3σ observation of SM Higgs decay to Taus http://dx.doi.org/10.1007/JHEP(2014)104
- Triggered interest in interpreting this particle in context of BSM physics scenarios (esp. SUSY).

HADRONIC TAU ISOLATION: OLD

$$I_{\tau} = \sum p_T^{charged}(\Delta z < 2mm) + max(p_T^{\gamma} - \Delta \beta, 0)$$

$$\Delta \beta = 0.4576 \cdot \sum p_T^{charged} (\Delta z > 2mm)$$

- ightharpoonup Tau Isolation P_T Sum Input: PFCharged Hadrons (P_T > 0.5 GeV) and PFPhotons (E_T > 0.5 GeV) within dZ < 2mm from production vertex within a cone of ΔR < 0.5 .
- ightharpoonup Production vertex: Has highest probability of association with the leading (Highest P_T) track of the Tau candidate.
- PFCharged Hadrons and Photons forming the Tau candidate, excluded from the sum.
- Pile Up contribution accounted for by applying Δβ corrections.
- Arr Δβ corrections: Computed by summing the P_T of PFCharged Hadrons having dZ > 2mm from production vertex within a cone of ΔR < 0.8.
- > They are scaled by a factor (0.4576) to make them insensitive to Pile Up.
- Working Points: Loose (< 2GeV), Medium (< 1GeV) and Tight (< 0.8 GeV).</p>

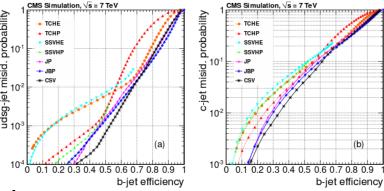
HADRONIC TAU ISOLATION: NEW

- > BDT based Isolation uses the following input variables:
 - 1. P_T and η of the reconstructed τ_h candidate and the reconstructed decay mode.
 - 2. Charged Particle Isolation P_T sum:

$$\sum P_T^{Ch \arg ed} (\Delta z < 2 \,\mathrm{mm})$$

3. Neutral Particle Isolation P_T sum:

$$\sum P_T^{\gamma}$$


- 4. Δβ corrections.
- 5. Transverse Impact parameter (d₀) of the leading track of the τ_h candidate and its significance (d₀/ σ_{d0}) for 1Prong0 π 0 and 1Prong1 π 0 decay modes.
- 6. Distance b/w τ_h production and decay vertex and its significance for 3Prong0 π 0 decay mode :

MVA trained on simulated $Φ \to ττ$, $Z \to ττ$, $Z' \to ττ$ and $W' \to τν$ "Signal" samples (~ 10⁶ events each) and QCD multijets, WJets and $Z \to II$ (I = e/μ) "background" samples covering 20 GeV to 2000 GeV in Gen Tau P_T .

b-TAGGING

Sec. Vtx. Candidate selection

- $ightharpoonup 100 \ \mu m < |d_{(Prim.Vtx-Sec.Vtx)}| < 2.5 \ cm$
- \rightarrow $|d_{(Prim.Vtx-Sec.Vtx)}/\sigma_{d(Prim.Vtx-Sec.Vtx)}| > 3$
- Invariant mass of charged particles assoc. to Sec. Vtx < 6.5 GeV</p>
- Sec. Vtx incompatible with K_s^0 decay (having 2 OS charge tracks having inv. Mass within \square 50 MeV around K_s^0 mass[497 MeV]).

Sec. Vtx. Candidate events divided into 3 categories

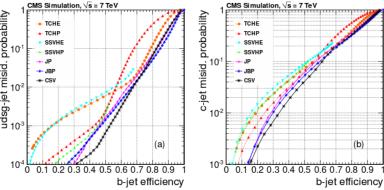
Reco. Vtx. (>1 Sec. Vtx)

- ➤ Invariant mass of charged particles of Sec. Vtx.
- > Charged particle multiplicity
- $> |d_{(Prim.Vtx-Sec.Vtx)}/\sigma_{d(Prim.Vtx-Sec.Vtx)}|$
- ► E_{Sec.Vtx Chg partcles}/E_{Jet Chg particles}
- Charged particle rapidity

Pseudo Vtx. (0 Sec. Vtx)

➤ Charged hadron tracks incompatible with Prim. Vtx.

No Vtx.


➤ Complement of other 2 categories.

All these variables are combined into 1 single discriminator using likelihood ratio

b-TAGGING

Sec. Vtx. Candidate selection

- $ightharpoonup 100 \ \mu m < |d_{(Prim.Vtx-Sec.Vtx)}| < 2.5 \ cm$
- \rightarrow $|d_{(Prim.Vtx-Sec.Vtx)}/\sigma_{d(Prim.Vtx-Sec.Vtx)}| > 3$
- Invariant mass of charged particles assoc. to Sec. Vtx < 6.5 GeV</p>
- Sec. Vtx incompatible with K_s^0 decay (having 2 OS charge tracks having inv. Mass within \square 50 MeV around K_s^0 mass[497 MeV]).

Sec. Vtx. Candidate events divided into 3 categories

Reco. Vtx. (>1 Sec. Vtx)

- ➤ Invariant mass of charged particles of Sec. Vtx.
- > Charged particle multiplicity
- $> |d_{(Prim.Vtx-Sec.Vtx)}/\sigma_{d(Prim.Vtx-Sec.Vtx)}|$
- ► E_{Sec.Vtx Chg partcles}/E_{Jet Chg particles}
- Charged particle rapidity

Pseudo Vtx. (0 Sec. Vtx)

➤ Charged hadron tracks incompatible with Prim. Vtx.

No Vtx.

➤ Complement of other 2 categories.

All these variables are combined into 1 single discriminator using likelihood ratio

"sTransverse Mass" (m_{T2}): new variable for Non Resonant Di-Higgs search

- ➤ Unlike the resonant case, search for SM non resonant di-higgs search suffers from large tt background.
- For better signal to background discrimination we use a new variable, m_{T2} called 'sTranverse mass' (arXiv:1309.6318v1).
- > Consider an event where 2 equal mass particles A and A' decay as:

A
$$\rightarrow$$
 B + C (e.g. $t \rightarrow b + W^+ \rightarrow b + \tau^+ + \nu_{\tau}$)
A' \rightarrow B'+C' (e.g. $\bar{t} \rightarrow \bar{b} + W^- \rightarrow \bar{b} + \tau^- + \bar{\nu}_{\tau}$)

where B, B' correspond to visible and C, C' correspond to invisible particles of the decays. Then m_{T2} is given by:

$$m_{\text{T2}}(m_B, m_{B'}, \vec{b}_T, \vec{b}_T, m_C, m_C') \equiv \min_{\vec{c}_T + \vec{c}_T = \sum \vec{p}_T = -MET} \{ \max(m_T, m_T') \}$$

Here, m_T is defined as,

$$m_{\rm T}(\vec{b}_{\rm T}, \vec{c}_{\rm T}, m_b, m_c) \equiv \sqrt{m_{\rm b}^2 + m_{\rm c}^2 + 2(E_b E_c - \vec{b}_T . \vec{c}_T)}$$
 where, $E_{\rm b/c} = \sqrt{m_{\rm b/c}^2 + \vec{p}_T^2}$

For $t\bar{t}$ events, m_{T2} is bounded above by top mass (in the narrow width approx. and in absence of detector related effects) but for genuine hh signal, it can be higher.

MSSM φ→ττ SEARCH: NEW CATEGORIES

Categories in the MSSM Higgs search

CATEGORY NAME	TAU2 P _T BINS (TAU1 P _T > 45 GeV)
NON B-TAG LOW	45 GeV < TAU2 P _T ≤ 60GeV
NON B-TAG MEDIUM	60 GeV < TAU2 P _T ≤ 80GeV
NON B-TAG HIGH	80 GeV < TAU2 P _T
B-TAG LOW	45 GeV < TAU2 P _T ≤ 60GeV
B-TAG HIGH	60 GeV < TAU2 P _T

LIMITED BY STATISTICS

POST FIT EVENT YIELDS

HH Production

Non-resonant analysis			
Process	2jet0tag	2jet1tag	2jet2tag
Non-resonant HH production	1 ± 0.1	5 ± 0.5	4 ± 0.5
Z ightarrow au au	120 ± 12	18 ± 3	2 ± 0.8
QCD	28 ± 3	5 ± 0.9	1 ± 0.2
W+jets	4 ± 0.9	_	_
Z+jets (e, μ or jet faking τ)	1 ± 0.2	_	_
tŧ	1 ± 0.2	3 ± 0.5	1 ± 0.2
Di-bosons + single top	6 ± 1	1 ± 0.2	0 ± 0.1
SM Higgs	4 ± 1	1 ± 0.2	0 ± 0.1
Total expected	164 ± 11	28 ± 3	5 ± 1
Observed data	165	26	1

Resonant analysis			
Process	2jet0tag	2jet1tag	2jet2tag
Radion \rightarrow HH	2 ± 0.2	6 ± 0.7	6 ± 0.8
Graviton \rightarrow HH	2 ± 0.4	8 ± 0.9	8 ± 0.9
Z ightarrow au au	131 ± 13	20 ± 3	3 ± 1
QCD	92 ± 8	13 ± 2	2 ± 0.6
W+jets	8 ± 2	1 ± 0.3	_
Z+jets (e, μ or jet faking τ)	2 ± 0.5	. \ - \	\ -
tī	2 ± 0.4	5 ± 0.7	3 ± 0.45
Di-bosons + single top	6 ± 1	2 ± 0.4	0.0 ± 0.1
SM Higgs	5 ± 2	1 ± 0.2	0.0 ± 0.1
Total expected	247 ± 14	41 ± 4	8 ± 1
Observed data	268	39	4

No evidence for signal

LIMITS (gg \rightarrow hh \rightarrow bb $\tau_h \tau_h$)

LIMIT	VALUE (pb)
+2σ	2.289 (225 x SM)
+1σ	1.439 (141 x SM)
Expected	0.876 (86 x SM)
-1σ	0.548 (54 x SM)
-2σ	0.362 (36 x SM)
Observed	0.502 (50 x SM)

Best Run-1
Non Reso.
bbττ Result
(by a factor of 2)
Phys.Rev. D.92.092004

CMS-PAS-HIG-15-013