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Preliminaries 1: Phases and phase transitions

Familiar example of solid, liquid and gas as phases of matter.
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Figure: The Pressure-Temperature plane: There is a unique equilibrium
state for each value of (P,T ), except at phase boundaries.

Phases are defined by answers to yes/no questions.

As we vary a parameter ( e.g. temprature), if the answer changes,
that defines a phase transition.
More generally, a non-analytic response to a small perturbation is
sometimes used as a characteristic signal of a phase transition.
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Preliminaries 2: general theory of phase transitions

I To a good approximation, molecules interact by pair-wise
additive, Lennard-Jones-type interaction

I If you put a large number of molecules in a box, at long times
there is a unique equilibrium state.

I In the equilibrium state,
Prob({~Ri , ~Pi}) = Const. exp[−βH({~Ri , ~Pi})]

I This prescription gives different phases and sharp phase
transitions, for the same H, just by varying T and P, for large
number of particles. [ R. B. Peierls (1936); Lee and Yang
(1952)]
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Preliminaries 3: Need for simpler models

I Exact theoretical calculation using Lenard-Jones interactions
is not possible.

I But one can check by computer simulations using O(103)
particles.

I To understand better, study simpler models, with
easier-to-handle interactions, that show similar behavior.

I The singular behavior of physical quantities near phase
transitions is characterized by critical exponents.
According to the Universality Hypothesis, different systems in
the same universality class show exactly the same exponents.

Critical exponents are not all there is to know. But, for detailed
study, one should select a tractable representative of the
phenomena under investigation.
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The hard sphere model

One of the oldest models studied: Molecules approximated as hard
spheres
Boltzmann, Maxwell (1870’s), Adler and Wainwright (1957).

Interestingly, it shows the melting transition, from a crystalline
phase to a gas-like phase.

A purely geometric phase transition.

Figure: A schematic representation of loss of crystalline order on
expansion of a hard-sphere solid.
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Fluid-solid transition in hard sphere systems

Figure: (a) Starting configuration used in the series of direct simulations
in the constant pressure ensemble. (b) and (c) are the final
configurations at p = 11.70 (above the melting point) and p = 11.45
(below the melting point), respectively. From Noya et al, J. Chem. Phys.
128 (2008) 154507.
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Figure: Phase diagram of the hard-sphere system in the pressure-density
plane from Monte Carlo simulations. The solid lines correspond to
approximate analytical equation of state, as proposed by Carnahan and
Starling (fluid branch) and by Hall (solid branch). The Co-existence is for
pressure 11.576, and in the density interval [.492, .545]. From
Zykova-Timan et al, J. Chem. Phys. 133 (2010) 014705.

Deepak Dhar Phase transitions in hard-core systems



Entropy of Melting: A back-of-the envelop calculation

Consider N molecules in a volume V .

In a gas-like phase, total phase space volume = Γg ∼ VN/N!

If each atom is localized to its own volume V /N,

Total volume of phase space = Γs ∼
[

V
N

]N
Then change in entropy per particle on melting
∆S = (kB/N) log(Γg/Γs) ≈ kB

This seems approximately satisfied for most simple solids.
Entropy of melting measured in experiments has other
contributions from increase of volume on melting, and change in
internal energy.
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Melting entropy of some selected materials

Material Entropy in kB/ Molecule

Aluminum 1.45
Copper 1.17

Gold 1.17
Platinum 1.27

Silicon 0.32
Water 2.65

Data taken from internet
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The melting transition in hard spheres model
I For the hard-spheres case, all configurations of

non-overlapping spheres are equally likely.

I The equation of state simplifies to P = kBT f (ρ).

I There is no liquid-gas transition, but there is a solid-fluid
transition as density is decreased.

I The solid phase has periodic density pattern in space. Hence
sharp Bragg spots in x-ray diffraction.

I In 3 dimensions, there is a density discontinuity as a function
of pressure.

Exact equation of state is not known still.
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The melting/ crystallization transition in hard spheres

Figure: Confocal microscopy pictures of a system of colloidal particles
undergoing crystallization. Here density is 0.54 of close packing density.
Panels (a-d) are for time = 600 s, 4500 s, 7200 s, 81900 s. the bar is
10µm. From Tafts et al, Soft Matter 2013, 9, 297.
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Other shapes
One can study assemblies of hard objects of other shapes:
triangles, squares, hexagons, octahedra, cubes, long rods,
rectangles

The strucure of dense-packed state depends on the shape, and so
does the nature of transition.

Consider centers of molecules can only lie on a grid : lattice
models.
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Figure: Configurations of hard rods and hard squares: Figure from B C
Barnes et al, Langmuir (2009) 25, p 6702.
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Figure: Tetramino fluids: Molecules with Z,L and T shapes. Simulations
Barnes et al, op. cit.
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Phase transitions in a system of long rods

Long history

Onsager (1949) used second order virial coefficient calculation to
argue that a system of long needle-shaped molecules in solution,
will become orientationally ordered if concentration is large enough.

Actually realized with Tobacco-mozaic virus particles in water.

Molecules are orientaionally ordered, but not positionally.

Now called Nematic liquids.

First of many meso-phases: between solids and liquids. Liquid
crystals.
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Nematic order in Tobacco-Mozaic virus suspension

Figure: Bulk phase separation seen between isotropic and nematic phases
of TMV suspension. The right panel is seen in cross polarized light.
Figure taken from Z. Dogic and S. Fraden, in ‘ Soft matter: complex
colloidal suspensions’, Eds. Gompper and Schick, Wiley (2005).

Deepak Dhar Phase transitions in hard-core systems



Lattice model of long rods
Long straight rods of length k
k = 2, 3, ....12

Only hard-core interaction
Ordering transition as a function of density?
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In Lattice models
No phase transition for k = 2 Heilmann, Lieb (1972)

k = 3, 4 [Ghosh, DD, Jacobsen (2007)]

” It is not quite certain that such a lattice model, even for large p,
will lead to a transition”
in The Physics of Liquid Crystals, De Gennes and Prost (1995)
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Earlier work

No ordering possible at close packing density

No. of configurations ≥ 2N/k2
.

More complicated tilings possible.
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Earlier work

There are two phase transitions, at critical densities ρc1 and ρc2.
[Ghosh and Dhar, 2007]

(a) (b) (c)

Figure: Typical configurations of the system in equilibrium at densities
(a) ρ ≈ 0.66 (b) ρ ≈ 0.89, and (c) ρ ≈ 0.96 on a square lattice. Here,
k = 7 and L = 98.
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Figure: A typical configuration of the system in equilibrium at density
ρ ≈ 0.96 (µ = 7.60) on a triangular lattice. Here, k = 7 and L = 98.
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Phase transitions: hard rods in 2-d

First transition at ρc1 from isotropic to nematic phase is studied
well by simulations by Matos Fernandez et al (2008), Fischer and
Vink(2009).
Ising Universality class on the square lattice.
q = 3 Potts model universality class on the triangular lattice.

Second transition is hard to study because standard Monte Carlo
dynamics involving diffusion and evaporation/ deposition becomes
very slow due to jamming.

We shall call the three phases isotropic, nematic, and high-density
disordered (HDD) phase.
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Monte Carlo Algorithm
I Begin with any configuration of rods.

I Choose a row or column at random

I Remove all the rods lying on this row/ column.

I Reoccupy empty intervals on this row/column, with correct
1-d line grand-canonical weights.

I Repeat

This is a non-local algorithm, satisfies detailed balance.

It can be parallelized. Empty all horizontal rows together. These
can be occupied independently.
Then do the same with vertical columns.
We were able to simulate lattices of linear size ∼ 2500, and
densities up to 0.995
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(a)

(b)

(c)

Figure: The Monte Carlo algorithm. The three panels show the
configuration at differents stages of the evolution. (a) initial
configuration (b) evaporation (c) deposition.
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Properties of the HDD phase:

Consider high density phase, with a few rods removed.

Each rod removed creates k vacant sites.

If we allow the nearby rods to slide into vacancies, these vacancies
undergo a diffusive motion.

There are k vacancies per rod removed. Each has a different
colour. It keeps it colour when it diffuses.

Figure: Break-up into k sublattices. Here k = 4
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Consider removing only one rod. Then, we allow the k-mers to
diffuse.
The k different-colored vacancies may form a bound molecule, or
be in an unbound state.

Then, at small densities, a system will be in a molecular state, and
on increasing density go to a ‘plasma state’.

Figure: The binding-unbinding transition of colored vacancies on
increasing density
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Aside, an exercise for students:

Hydrogen gas at low densities, becomes more ionized as you
decrease the density, as explained by Meghnad Saha. But in
Quark-Gluon Plasma, it is the opposite. Why?
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Let Prob(r1, r2, ..rk ) be the probability that the vacancies are found
at r1, r2, ...
This is like the ”wavefunction” of the bound state.
By symmetry, we would expect Prob(r1, r2, ..rk ) ∼

∏
i 6=j

1
(rij )x

The value of x depends on k . Only known exact value for k = 2.
Numerical estimates for k = 3, 4.

Perhaps the bound state exists only for k ≥ 7, and this explains
why HDD phase exists only for k > 7.
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Let dij = average distance of vacancy of color i from nearest
neighbor of colorj

If bound state of defects, dsamecolour � ddifferentcolour .
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Figure: The average distances dii and dij , on the square lattice, between a
vacancy on sublattice i and the nearest vacancy on sublattice j as a
function of density ρ. The i 6= j data are averaged over all j 6= i . The
solid lines show the functions K (1− ρ)−1/2, for K = 1.36 and 1.12. Data
is for k = 7 and L = 168.
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Properties of the HDD phase...

I Finite orientational order-parameter susceptibility, hence not
too-slow decay of orientational correlations

I stacks have an exponential distribution of sizes

I Ordered phase can not be considered as bound state of
vacancies
The analogy discussed earlier, is interesting, suggestive, but
incorrect in detail

Critical exponents of the second transition have been estimated
from simulations: ν ≈ o.90; α/ν ≈ 0.22, β/ν ≈ 0.22
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Properties of the HDD phase: Stacks

(a) (b)

Figure: A picture of stacks in the HDD phase, shown here as wiggly lines,
for (a) square lattice and (b) triangular lattice. The snapshots are for
µ = 7.60. Rods of different orientations are shown in different colors.
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Distribution of stack sizes
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Figure: Stack distribution in the LDD phase (µ = 0.200), intermediate
density nematic phase (µ = 3.476), HDD phase (µ = 7.600), and at two
critical points (µ = 1.3863, 5.570) are shown. Data are for L = 280,
k = 7, and the square lattice.
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Critical exponents at the second transition:
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Figure: The variation of the order parameter Q with chemical potential µ
for different systems sizes of a square lattice. Inset: Data collapse for
square lattices when scaled Q is plotted against εL1/ν with ν = 0.90,
β/ν = 0.22 and ε = (µ− µc )/µc .
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Critical exponents at the second transition:

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5  5.2  5.4  5.6  5.8  6

χ
L

-γ
/ν

µ

L=154

L=210

L=336

L=448

L=952

µ=5.57

 0

 2

 4

 6

-30 -20 -10  0  10  20  30

χ
 L

-γ
/ν

ε L
1/ν

L=154

L=210

L=336

L=448

L=952

Figure: The variation of χ, the mean of the square of the order
parameter, with chemical potential µ for different system sizes of a
square lattice. The curves cross at µc when χ is scaled by L−γ/ν , with
γ/ν = 1.56. Inset: Data collapse for square lattices when χL−γ/ν is
plotted against εL1/ν with ν = 0.90, and ε = (µ− µc )/µc .
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Critical exponents at the second transition:
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Figure: The variation of compressibility κ with chemical potential µ for
different system sizes of a square lattice. Inset: Data collapse for square
lattices when the scaled κ is plotted against εL1/ν with ν = 0.90,
α/ν = 0.22, and ε = (µ− µc )/µc .
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Summary and concluding remarks
I models with purely hard core interactions are interesting

I Hard spheres gives a simple model of melting.

I More complicated shapes can describe other mesophases.

I In particular, long rods on a lattice undergo two phase
transitions.

I Nature of the high-density disordered phase, and phase
transition not fully understood.
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Thank You
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