Assignment: Preparatory Lectures

BSSP 2018

1. Consider the sum

$$S = \sum_{i=1}^{N^p} \exp(N\xi_i),$$

where N > 0, p > 0 and ξ_i takes values within $0 < \xi \le \xi_{max}$. Find the following limit

$$\lim_{N \to \infty} \frac{\ln S}{N} = ?$$

2. Use saddle point approximation to derive Stirling's formula: $n! \approx \sqrt{2\pi n} \ e^{n \log(n) - n}$.

3. Consider a particle with equation of motion given by $\dot{x} = f(x)$. The equation describing the evolution of the probability density $\rho(x,t)$ is given by $\partial_t \rho(x,t) + \partial_x f(x) \rho(x,t) = 0$. Derive this continuity equation from the condition for conservation of particles which is $\rho(x,t)dx = \rho(x',t')dx'$ where t'=t+dt and x'=x(t+dt).

4. The moment generating function corresponding to a probability distribution P(x) is defined as $Z(\lambda) = \langle e^{\lambda X} \rangle$. The cumulant generating function is defined as $\mu(\lambda) = \ln[Z(\lambda)]$. Use the Taylor series expansion of these generating functions to relate the first three cumulants C_1, C_2, C_3 to the first three moments M_1, M_2, M_3 .

5. (a) Let P_n be the probability that a discrete random variable X takes a particular integer value n. Find out the corresponding moment generating function and cumulant generating function, if P_n is a

i) Bernoulli distribution. Pmf: $P(k,p) = p^k(1-p)^{1-k}, k=0,1$

ii) Binomial distribution. Pmf: $P_N(n,p) = {}^N C_n p^n (1-p)^{N-n}, \ n=0,(1),N$ iii) Poisson distribution. Pmf: $P_{\lambda}(n) = \frac{\lambda^n}{n!} e^{-\lambda}$

Use them to evaluate the mean, variance, skewness and kurtosis of each of the distributions.

(b) Let P(x) be the probability density function for a continuous random variable x. Deduce expression for moment generating function and cumulant generating function if P(x) is a

i) Gaussian distribution. Pdf: $P_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$ ii) Cauchy distribution. Pdf: $P_{\gamma}(x) = \frac{\gamma/\pi}{x^2 + \gamma^2}$

iii) Levy stable distribution. Pdf : $P_{\alpha}(x) = \sqrt{\frac{\alpha}{2\pi}} \frac{e^{-\frac{\alpha}{2x}}}{x^{3/2}}$

Then determine first two moments and cumulants of each distribution. What is special about higher order cumulants of the Gaussian distribution?

6. Consider x be a continuous random variable with distribution $P(x) = \alpha \exp(-\alpha |x|)/2$ where $\alpha > 0$ is some parameter. Find the distribution Q(g) of the random variable $g = x^2$.

1

- 7. Consider a box of volume V, containing N non-interacting particles. Let us assume that the average density is $\rho = N/V$. Then,
 - (a) Find out the probability $P_N(n, v/V)$ of finding n particles in a certain volume v.
 - (b) Evaluate average number of particles $(\mu = n)$ occupied in volume v and the variance $(\sigma^2 = \langle n^2 \rangle \langle n \rangle^2)$ in the number fluctuations. Determine the standard deviation (σ) to mean (μ) ratio (σ/μ) and show that, the ratio goes as $N^{-1/2}$.
 - (c) Consider the following simple extension to interacting particles. Assume that the volume V divided into V number of cells of unit volume. Find the number of ways to distribute N indistinguishable particles (with $0 \le N \le V$) within V cells, such that each cell may be either empty or filled up by only one particle. Show that the entropy per particle s(v) is given by

$$s(v) = K_B \left[v \ln v + (1 - v) \ln(1 - v) \right], \text{ where } v = V/N.$$

From this expression also show that

$$\frac{p}{T} = -K_B \ln(1 - \rho),$$

where p is the pressure, T is the temperature and $\rho = 1/v$ is the density.

- 8. Let ξ_i 's (for $1 \le i \le n$) be a set of n independent random variables chosen from certain distribution $\phi(\xi_i)$. μ and σ be its mean and standard deviation respectively.
 - (a) Let use define a random variable x in terms of ξ 's as follows

$$x = a \sum_{i=1}^{n} \xi_i$$

Find mean $\langle x(n) \rangle$ and variance $\langle x^2(n) \rangle - \langle x(n) \rangle^2$ of x if,

(i)
$$\xi_i = \begin{cases} 1 & \text{with probability } \frac{1}{2} \\ -1 & \text{with probability } \frac{1}{2} \end{cases}$$
 $(\mu = 0, \sigma = 1)$

and

(ii)
$$\xi_i = \begin{cases} 0 & \text{with probability } \frac{1}{4} \\ 1 & \text{with probability } \frac{1}{4} \\ 2 & \text{with probability } \frac{1}{2} \end{cases}$$
 $(\mu = 5/4, \sigma = 7/16)$

(b) Let use define another random variable y in terms of ξ 's as follows

$$y = \frac{\sum_{i=1}^{n} \xi_i - n\mu}{\sqrt{n}\sigma} \tag{1}$$

Show that in the limit $n \to \infty$, y has unit normal distribution [Gaussian with zero mean and unit variance, usually denoted as $\mathcal{N}(0,1)$], irrespective of the form of $\phi(\xi)$.

- 9. Discrete time random walk on a lattice. The random walker started at x=0 in time t=0, takes a forward step with probability p and backward step with probability q=1-p after every fixed time interval τ . Step size in both forward and backward direction is ℓ .
 - (a) Determine the probability that the walker is at location $x = n\ell$ in time $t = N\tau$, where N is the total number of steps taken and n is an integer.
 - (b) Determine the limiting distributions in the following two limits (i) $p=q+\delta$ with $0<\delta<<1/2$ and $N\to\infty$ [use Stirling's formula] (ii) $p\approx 0$ and $N\to\infty$ such that Np= finite.
- 10. A random walker is moving on a one dimensional lattice. Starting from the origin, it takes a step towards right with probability p and to the left with probability q = 1 p. Show that the probability R that the walker returns to the origin is given by R = 1 |p-q|.

Hint: Note that R can be written as $R = R_r p + R_\ell q$ where R_r is the return probability to the origin given that the walker had taken its first step on the right side. Similarly, R_ℓ is the return probability to the origin given that the walker had taken its first step on the left side. Try to write down expression for R_r by adding probabilities for different possibilities (events) as follows: Given that the particle took the first step on the right side (i.e. it is at site 1), it can either come back immediately to origin with prob q or it can take another step on the right side with p. Now given that it took another right step from the first site (site 1) it returns back to site 1 with prob R_r and then it takes a left step to reach the origin. So the probability of this event is $(pR_r)q$. So, $R_r = q + (pR_r)q + \dots$ Solving this equation one can get an expression of R_r . Similarly obtain an expression for R_ℓ .

11. Continuous time random walk on a lattice. Consider a 1-D random walker jumps forward and backward with equal rate r=1, with fixed jump length $\ell=1$ on both side. Initial position of the random walker is $x_0=0$. Show that, $\langle x^2 \rangle = 2t$.

Write a computer program to numerically simulate this 1-D random walk and verify the above.

12. $P(x,t|x_0)$ is the probability distribution that a particle is at x in time t, given that it started from x_0 at t=0 ($P(x,t|x_0)$ is also called as the propagator). For a particle undergoing diffusion, P satisfies following equation:

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2} \tag{2}$$

where D is the diffusion constant.

- (a) Solve for $P(x,t|x_0)$ from Eq.2 with an initial condition $P(x,t=0)=\delta(x-x_0)$ and boundary conditions $P(x\to\pm\infty,t)=0$. Check the normalization: $\int_{x=-\infty}^{\infty}P(x,t|x_0)dx=1$. Show that $\langle x\rangle=x_0$ and $\langle x^2\rangle-\langle x\rangle^2=2Dt$
- (b) Solve Eq.2 with an initial condition $P(x, t = 0) = \delta(x x_0)$, $(0 \le x_0 \le L)$ and reflecting boundaries at x = 0 and x = L. What happens to $P(x, t|x_0)$ as $t \to \infty$?

- (c) Use method of images to find the solution Eq.2 with the same initial condition and
- (i) absorbing boundaries at x = 0 and x = L (ii) reflecting boundaries at x = 0 and x = L.
- 13. The distribution for the first visiting times to some fixed point x, $q(x, t|x_0)$, is defined as, if a particle starts from $x = x_0$ at t=0, then q is the probability that the particle reaches x for the first time in time interval t and t+dt. $q(x,t|x_0)$ and $P(x,t|x_0)$ are related through a renewal equation:

$$P(x', t|x_0) = \int_{\tau=0}^{t} q(x, \tau|x_0) P(x', t - \tau|x) d\tau$$
 (3)

If one defines Laplace transform as $\tilde{g}(s) = \int_0^\infty e^{-st}g(t)dt$, then using the property of Laplace transform of a convolution, one can show that

$$\tilde{q}(x,s|x_0) = \frac{\tilde{P}(x',s|x_0)}{\tilde{P}(x',s|x)} \tag{4}$$

- (a) Using the Laplace transform of P determined in the previous question for diffusion process, find out $\tilde{q}(x, s|x_0)$.
- (b) Using the properties of Laplace transforms, find out (i) what is the probability that the particle reaches x ultimately, i.e. $\int_{t=0}^{\infty} q(x,t|x_0)dt$ and (ii) mean first passage time i.e. $\overline{T}(x|x_0) = \int_{t=0}^{\infty} tq(x,t|x_0)dt$.
- (c) Using standard inverse Laplace transform formula, determine $q(x, t|x_0)$ from $\tilde{q}(x, s|x_0)$. How does $q(x, t|x_0)$ behave at large times?
- 14. Estimate the value of diffusion coefficient D for a colloidal particle of radius $a=1\mu m$ moving in water and in air.

How far does it travel (typical distance covered= $\sqrt{2D \times \text{time}}$) in a minute? and in an hour? Do the answers change if gravity is considered?

Consider temperature to be 20°C. In SI units, air density 1.205 kg/m^3 and viscosity $1.82 \times 10^{-5} \ kg/ms$, water density 998.2 kg/m^3 and viscosity 0.001 kg/ms; gravitational acceleration 9.8 m/s^2).

- 15. Consider diffusion in a potential U(x). Write the evolution equation for the probability distribution $P(x, t|x_0, 0)$.
 - a) Find the steady state distribution for continuous and bounding potentials ($\lim_{x\to\pm\infty} U(x) = 0$). What is the problem for unbounded potentials?
 - b) Consider a Brownian particle in a 1D box of length L. Inside the box we have a potential,

$$U(x) = \begin{cases} 0 & 0 < x < x_0 \\ U_0 & x_0 \le x < L \\ \infty & \text{Otherwise} \end{cases}$$

What is the steady state distribution?

- c) Show that the diffusion equation in a potential is equivalent to Schroedinger equation under suitable transformation. What is the effective 'quantum' potential?
- 16. The 'Master equation' is: $\frac{\partial P}{\partial t} = WP$.

Consider a spin in a constant magnetic field h. The spin have only two possible states, s=1,-1. The spin can change the state via Metropolis dynamics characterised by the transition rate: $c=\min[1,exp(-\Delta E)]$, ΔE being the energy difference of the configurations before and after the transition.

- (a) Find the W-matrix.
- (b) Find the steady state.
- (c) What is the relaxation time?
- (d) Write a program to simulate the system and check (b) and (c).
- 17. Master equation for continuous time random walk on a lattice. Rate of jumping to the right is p and to left is q. The configuration of the walker is specified by its position x (discrete). The master equation is given by,

$$\frac{\partial P(x,t)}{\partial t} = pP(x-1,t) + qP(x+1,t) - (p+q)P(x,t).$$

- (a) For a finite box of size L=3, write the W-matrix. Use the boundary condition, P(0,t)=P(L+1,t)=0.
- (b) Find the eigenvalues and the left and right eigenvectors of W;
- (c) (i) What is the steady state and relaxation time? (ii) Check the answers using simulation.
- (d) Can we find the answer to the above questions for a general L?
- (e) (i) What are the eigenvalues and eigenstates for random walk on an infinite lattice? Do we have a steady state in this case?
- (ii) Find the probability P(x,t) for infinite line using simulation.
- 18. Under-damped Langevin equation for a particle of mass m moving in a fluid of temperature T is given by:

$$\dot{x} = v \qquad m\dot{v} = -\gamma v + \sqrt{2\gamma k_B T} \,\,\eta(t) \tag{5}$$

where γ is friction coefficient and $\eta(t)$ is a Gaussian white noise with $\langle \eta(t) \rangle = 0$ and $\langle \eta(t)\eta(t') \rangle = \delta(t-t')$. k_B is Boltzmann's constant. If x(t=0)=0 and v(t=0)=0 are the initial conditions for the particle position and velocity respectively, then determine the behavior of $\langle v \rangle$, $\langle v \rangle$, $\langle v^2 \rangle$ and $\langle x^2 \rangle$ as a function of time.

19. Overdamped Langeving equation.

$$\frac{dx}{dt} = -\frac{1}{\gamma} \frac{\partial U}{\partial x} + \xi(t),$$

where the noise is characterised by, $\langle \xi(t) \rangle = 0$, $\langle \xi(t)\xi(t') \rangle = 2D\delta(t-t')$, $D = \frac{k_B T}{\gamma}$.

Check that, for U=0, the time dependence as in question (11) is retrieved. Consider potentials, (i) $U(x)=\frac{1}{2}kx^2$, (ii) $U(x)=-\frac{1}{2}kx^2+\frac{1}{4}\lambda x^4$, k and $\lambda>0$. For initial condition $x(t=0)=x_0$, simulate the dynamics and plot,

- (a) trajectories x(t) vs t;
- (b) $\langle x(t) \rangle$, $\langle x^2(t) \rangle$ vs t;
- (c) Plot P(x,t) vs x for different t.

Note: For simulation, use the discretisation scheme: $x(t + \Delta t) = x(t) + \frac{F(x(t))}{\gamma} \Delta t + \sqrt{2D\Delta t} \eta$, η is drawn at each time step from the unit normal distribution $\mathcal{N}(0,1)$.

A consequence of this discretisation. Define $x(t+) = \lim_{\Delta t \to 0} x(t+\Delta t)$ and $v(t,t+) = \lim_{\Delta t \to 0} (x(t+\Delta t)-x(t))/(\Delta t)$. Calculate the ordered average $\langle x(t+)v(t,t+)-v(t,t+)x(t)\rangle$.

20. Barrier crossing problem for overdamped Langevine particle.

Consider a potential, $U(x) = \frac{1}{2}ax^2 - \frac{1}{3}bx^3$, a, b > 0. It shall have a minima at x = 0 and maxima at $x_c = \frac{a}{b}$. Consider a large N number of nonineracting browninan particles are released at x = 0 at the time t = 0. We consider a point x_0 beyond the barrier, i.e. $x_0 > x_c$.

- (a) Let, N_t is the number of particles at $x \geq x_0$ at time t. Averaging over a large number of realisations, numerically plot $\langle N_t \rangle$ vs t. The escape probability in time t is approximately $P(x_0, t|0, 0) \simeq \langle N_t \rangle / N$. Plot the escape rate $r = \frac{dP}{dt} = \frac{1}{N} \frac{d\langle N_t \rangle}{dt}$ with time.
- (b) In a single realisation, find the escape time distribution $f(t, x_0|0, 0)$ (probability density of crossing x_0 in the time interval t to t+dt) by noting the escape time of each particle. Find the mean escape time and most probable escape time. How do they compare with the escape rate obtained in (a)?

6

(c) Can we theoretically explain the simulation results?