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When computers we build become quantum,

Then spies of all factions will want ’em.

Our codes will all fail,

And they’ll hack our email,

But crypto that’s quantum will daunt ’em.

This is a slightly modified version of a limerick by Peter and Jennifer Shor. (The original version is

printed in the book by Nielsen and Chuang.) Continuing in a literary vein, on p. 453 of Nielsen and

Chuang is a very well-crafted (Shakespearean) sonnet by Daniel Gottesman on error correction. It

seems that quantum computing brings out latent literary qualities in scientists who work on it.

Back to the matter in hand. In this handout, we consider a simple but generic example of using

period finding to factor an integer into its two prime factors. We take

N = pq = 91, with factors p = 13, q = 7. (1)

Choosing a random integer b which has no factors in common with 91 we take b = 4. First we

determine the period r, which is the smallest integer such that br ≡ 1 mod pq. We have

b = 4

b2 = 16

b3 = 64

b4 ≡ 74 mod pq (since 64× 4 = 2× 91 + 74)

b5 ≡ 23 mod pq (since 74× 4 = 3× 91 + 23)

b6 ≡ 1 mod pq (since 23× 4 = 1× 91 + 1) (2)

so the period is

r = 6 . (3)

Fortunately this is even. Also fortunately br/2 +1 = 65 is not equivalent to 0 mod pq so one of the

factors, either p or q, is the greatest common divisor of their product, N (= 91) and br/2+1 (= 65).

The other factor of N is the greatest common divisor of N and br/2 − 1 (= 63).
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The greatest common divisor (GCD) can be determined from Euclid’s algorithm as follows.

Suppose we want the GCD of a0 and b0, say, with a0 > b0. We iterate the following expressions:

an+1 = bn, (4a)

bn+1 = an − [an/bn] bn, (4b)

for n = 1, 2, · · · , where [x] means the greatest integer less than or equal to x. The values of the

an decrease, as do those of the bn, with always an > bn. Common factors of both numbers are

preserved by this process. At some point, the smaller number bn will have been reduced to the

common factor itself so [an/bn] is an integer and hence bn+1 = 0. Thus, the GCD is the value of b

at the iteration before it becomes zero.

Let’s go through this with a0 = 91, b0 = 65:

a1 = 65,

b1 = 91− [91/65] 65 = 91− 65 = 26,

a2 = 26,

b2 = 65− [65/26] 25 = 65− 52 = 13,

a3 = 13,

b3 = 26− [26/13] 13 = 26− 26 = 0. (5)

Hence the GCD is b2 = 13, which is indeed one of the factors of 91. By the same process the GCD

of 63 and 91 is found to be 7, the other factor of 91.

In Shor’s algorithm the period is found by Fourier transforming the function

f(x) = bx mod pq (6)

evaluated for x = 0, 1, 2, · · · , 2n − 1. What do we take for n? For our choice of N = 91, N can

be represented in n0 = 7 bits. According to Mermin, one should take n = 2n0, to ensure that one

has at least N periods in the data. (In our example we will actually have very many more than N

periods, so we are doing a bit of an overkill.) Anyway we follow Mermin and take n = 14.

Now the period r = 6 is not a power of 2, so 2n = 16384 is not a multiple of r. Hence our

range of x does not cover an exact integer number of periods. This is the usual situation. However,

as explained by Mermin, if both p and q are both primes of the form 2ℓ + 1 (an example being

the commonly studied case of N = 15), the period is a power of 2, so the function to be Fourier

transformed will contain an exact integer number of periods. In these special cases the application
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of the Fourier transform to find the period is much simpler than the general case. Here we consider

a generic example, where the application of the Fourier transform to find the period requires a bit

more thought.

As discussed in the lecture, a measurement is made of the output register, obtaining some value

for f(x), say f0. The input register will then contain a superposition of those basis states for which

f(x) = f0. Since f(x) is periodic with period r, the possible values of x are of the form x0 + kr,

so, after the measurement on the output register, the state of the input register becomes

|ψ〉 = 1√
Q

Q−1
∑

k=0

|x0 + kr〉. (7)

Here x0 < r, x0 + kr < 2n and the number states in the sum is

Q =

[

2n

r

]

. (8)

order (m) peak position (m 2n/r) nearest integer (ym) P (ym)

0 0 0 0.167

1 2730.67 2731 0.114

2 5461.33 5461 0.114

3 8192 8192 0.167

4 10922.67 10923 0.114

5 13653.33 13653 0.114

TABLE I: The peak positions in the Fourier transform for the example discussed in this handout. The output

is at integer values of y and the nearest integers to the peaks are shown along with the probability at those

nearest integer values. Neglecting the zeroth order peak at y = 0, which doesn’t give useful information, the

sum of the other probabilities at the nearest integers is 0.623, so we have a greater than 60% probability of

obtaining the nearest integer to a non-zero multiple of 2n/r from which there are techniques for obtaining

r.

If we were to measure |ψ〉 we would just get one value of x0 + kr, which, because of the

dependence on the unknown quantity x0, does not give any information from which we might

be able to determine the period r. Therefore, in order to extract information on r, we Fourier

transform |ψ〉, obtaining

2n−1
∑

y=0

(

1√
2nQ

Q−1
∑

k=0

e2πi(x0+kr)y/2n

)

|y〉 . (9)
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The probability of getting a particular state y is given by the square of the absolute value of a

term in the brackets in Eq. (9), i.e.

P (y) =
1

2nQ

∣

∣

∣

∣

∣

Q−1
∑

k=0

e2πikry/2
n

∣

∣

∣

∣

∣

2

. (10)

Note that the troublesome dependence on x0, which gives information on the possible values of x

when measuring |ψ〉, only appears as an unimportant phase factor in the Fourier transform, and

this will drop out when we take the square of the absolute value to get the probabilities. If y could

take real values, the exponentials would add up precisely in phase (and so there would be a peak

in the probability for y), at for

ym = m
2n

r
, (11)

where m is an integer. We emphasize that ym is not an integer in general, but the measured values

of y are are integers, so there will be peaks in P (y) at integer values close to the ym in Eq. (11).
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FIG. 1: Probabilities for the different components of the Fourier transformed state. There are six sharp

peaks. The one at y = 0 doesn’t give useful information. However, the probability of hitting the highest

point of one of the other five peaks, i.e. the nearest integer to a non-zero multiple of 2n/r, is greater than

60%, see Table I. If the measurement gives one of these results, it can then be used to determine the period

r, as discussed in the appendix.
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FIG. 2: A blowup of the region around the m = 2 peak in Fig. 1 (see also Table I). The histogram is

obtained from numerical evaluation of Eq. (10). The probability is dominated by the biggest peak, the one

where y is the nearest integer to y2 = 2 × (2n/r) = 5461.33 (indicated by the vertical dashed line). The

solid curve is the expression shown in Eq. (14) (with y considered to be a continuous variable).

For the example we are studying, N = 91, r = 6, n = 14, we have

2n

r
= 2730.67 (12)

so

Q = 2730 . (13)

Hence there are 2730 (and a third) periods in our data. The peaks in the Fourier transform, which

are at integers next to multiples of 2n/r as discussed above, are shown in Table I.

I have evaluated P (y) numerically from Eq. (10) and the results are shown in Fig. 1. There are

r = 6 peaks. There is a trivial one at y = 0 but this can not give any useful information about the

period r. The other five peaks are around integer multiples (m) of 2n/r. However, since the values

of y are integers, one has a set of discrete values around each peak, as shown in the histogram in

Fig. 2 which blows up the region around the m = 2 peak.

As discussed in the lecture, the sum in Eq. (10), can be evaluated, and gives, in the region of a

peak, when the number of periods is large,

P (y) =
1

r

(

sinπδ

πδ

)2

, (14)



6

where

y = ym + δ (15)

where ym is the real number given by Eq. (11) that indicates the peak position. (Recall that y

itself is an integer.) The function in Eq. (14) is plotted for continuous y as the solid curve in

Fig. 2. When evaluated at integer y, it agrees very well with the values numerically computed from

Eq. (10) which are shown as the histogram in Fig. 2.

Note that δ in Eq. (15) can be written as

δ = ǫ+ ℓ (16)

where ℓ is an integer and |ǫ| < 0.5. Note too that

∞
∑

ℓ=−∞

(

sin(π(ǫ+ ℓ))

π(ǫ+ ℓ)

)2

= 1, (17)

for arbitrary ǫ (Mathematica finds this numerically but does not seem to know it analytically).

Hence, according to Eq. (14), the weight around each of the peaks in Fig. 1 is equal to 1/r (= 1/6

here). Since there are 6 peaks, the sum of all the probabilities is 1 as required. Referring to

Fig. 2, the weight in the largest histogram is 0.114 which is 68% of 1/6, the total weight in all the

histograms for this peak.

Appendix A: Continued Fractions

Here we discuss, using continued fractions, how to estimate the period r when the Fourier

transform gives value of the integer closest to m2n/r for some integer m. We call this measured

integer value y, and determined the continued fraction representation of x = y/2n, which is close

to m/r, where r, the period, is what we want to determine.

The continued fraction representation of x is obtained as follows. If there is an integer part of

x call this c0. Subtract c0 from x and call the inverse of the remainder x1, so

x = c0 +
1

x1
. (A1)

Let the integer part of x1 be c1. Subtract c1 from x1 and call the inverse of the remainder x2.
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Continuing in the same way for c2 and x3 etc. we get

x = c0 +
1

c1 +
1

x2

= c0 +
1

c1 +
1

c2 +
1

x3

· · · = c0 +
1

c1 +
1

c2 +
1

c3 + · · ·

. (A2)

If x is a rational number (ratio of two integers) the continued fraction will eventually terminate.

If x is irrational (like π) the continued fraction will go on for ever.

There is a theorem, see Mermin, that the best guess for x is partial sum having the largest de-

nominator less than N . Assume that we measure the value y = 5461, the highest histogram for the

peak in Fig. 2. Then we determine the continued fraction representation for x = 5461/16384. Since

this is a rational fraction the continued fraction terminates and has only the following denominators

c0 = 0, c1 = 3, c2 = 5461. (A3)

The partial sums are 1/3 and 5461/16384. The latter has a denominator bigger than N (= 91) so

we neglect it and conclude that

m

r
=

1

3
, so r = 3m. (A4)

We try some small values for m, and deduce that m = 2 gives the period (r = 6). In our case, we

already know that m = 2 is the correct value because we chose, by hand, the m = 2 peak in Fig. 1,

see also Fig. 2. Knowing that the period is r = 6, we can determine the factors of N (= 91), as

shown at the beginning of this handout.


