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Objects that are flexible purely for geometric reasons (sheets, filaments 
and ribbons) make an overwhelming variety of patterns in nature and in 

the technological world. 
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Sea urchin
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Sharon, Swinney, Marder
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Graphene NMenonICTS2018

Earth’s skin 

Fabric



Objects that are flexible purely for geometric reasons (sheets, filaments and 
ribbons) make an overwhelming variety of patterns in nature and our 

technological world. 
Can we organize this profusion of shape and form by identifying building 

blocks? Are there elementary excitations of elastic materials that we can study?
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Small deformations: 
wrinkles, ripples

Stress condensation: 
ridges, vertices

Plastic deformation: 
creases
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• These structures are generated 
by elastic instabilities

• What are the energetics and 
stability of these constructs?

• Where do all these structures 
belong? 

• How to specify these axes?

Wrinkles Ridges d-cones Creases (plasticity)Folds

External forces or confinement  or 
growth (structureless)

Material 
property

??

Overall goals of our discussion
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Bowden et al, 
1999

Nanoscale elastic patterning

Crosby 2010

Rogers 2011

Stretchable electronics

Harnessing 
instabilities

Patterning (actuatable ones at that), metrology, coatings, surface control 
Low-energy modes that allow large deviation

Mechanical 
metamaterials

Buckliball

Graphene-
based kirigami

Transformable acoustic waveguides

Topological material

Chen, Paulose, Vitelli

Reis2011 McEuen group

Bertoldi

Instability not as “failure” but technological tool



Plan
Overall theme Pattern formation via elastic instabilities
Intro Elasticity Stress, large deformation strain, Hooke’s Law
2D Elasticity Moduli for plates, scale separation
1D Euler buckling  Two approaches: near and far from threshold
1D wrinkling  Scaling analysis,  generality of “substrate” 
1D Folds mechanical stability, exact solution, system size dependence 
2D Wrinkling Lamé problem as archetype,  two limits of FvK, bendability and 

scale separation; (briefly) other geometries
Crumples Ridges, d-cones and e-cones
Wrapping Idea of asymptotic isometry; Folds in 2-D
Thermal effects Fluctuation induces rigidity; renormalize stiffness of plates, shells
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Things I will not do

Mainly mechanics, will not work at thermal scales

Advanced geometry

Working example:  sheets; not filaments or ribbons

Focus on statics, not on dynamics (lots of open problems and 
opportunities here)
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Why did these break the way they did?
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http://classes.mst.edu/civeng120
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Useful (to me) books on elasticity:

Physics of Continuum Matter by B. Lautrup -- nice exposition at an introductory level
Elasticity by Landau and Lifshitz – no comments needed
Theory of Elasticity by Timoshenko and Goodier; Plates and Shells by Timoshenko 
and Woinowsky-Krieger – both books are detailed pedagogical expositions. 
Timoshenko is a major figure in engineering mechanics; these are good places to 
look up solutions for specific geometries
Elasticity and Geometry by Audoly and Pomeau – elegant and modern book, with 
most relevance to thin objects
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Euler buckling (a) illustrations from Euler (1744) (b) illustrations from Lagrange 1770. 

Alain Goriely et al. Proc. R. Soc. A 2008;464:3003-3019

©2008 by The Royal Society
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Day 3

• 1D wrinkling patterns
• 1D localized solutions – folds
• 2D axisymmetric patterns
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Wrinkles in 1D

Huang PRL 2010
NMenonICTS2018



Wrinkles in 1D
Cerda and Mahadevan PRL 2003
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Wrinkles in 1D – fluid substrate

t=246 nm, increasing compression

Wavelength independent of amplitude
4/1

o
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Film thickness
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Tuning wavelength through B

Thickness
Young’s modulus

Table from Rus and Tolley 2105
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Finger rafting

Vella and Wettlaufer, PRL 2004

Finger rafting is the block zippered pattern that forms when thin ice sheets 
floating on water collide creating "fingers" that push over and under each 
other alternately. This photo was taken off the Antarctic coast. (Credit: W.F. 
Weeks)
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Wrinkles in 1D – beyond single mode

Period doubling phenomena Brau et al 2010

Cascade between two wavelengths, Huang 2010 
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Folding in 1D

Huang thesis 2010
(this is a video)
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Folding in 1D

Pocivavsek Science 2008, Soft Matter 2009

Plastic sheet (left)
Gold nanoparticles, lung surfactant
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Folding in 1D

• Pocivavsek 2008

• Transition to fold at around 
A=0.3λ
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Exact solution Diamant and Witten 2012

The symmetric (left) and 
antisymmetric (right) solutions 
are degenerate

Both cost less than the wrinkle 
solution at all ∆
After self-contact, get 
penetration and nonphysical 
solutions
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Large folds

Demery et al 2014
Goes beyond self-contact
Symm and antisymm degenerate till 
self-contact, but anti-symmetric 
wins for larger folds
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Main source for 1D wrinkling calculation -
Cerda, E., & Mahadevan, L. (2003). Geometry and physics of wrinkling. Physical review letters, 90(7), 074302.

More recent – Paulsen et al "Curvature-induced stiffness and the spatial variation of wavelength in wrinkled 
sheets." PNAS 113, no. 5 (2016): 1144-1149.

1D folds
Pocivavsek, L., Dellsy, R., Kern, A., Johnson, S., Lin, B., Lee, K. Y. C., & Cerda, E. (2008). Stress and fold localization 
in thin elastic membranes. Science, 320(5878), 912-916.
Diamant, H., & Witten, T. A. (2011). Compression induced folding of a sheet: An integrable system. Physical 
review letters, 107(16), 164302.
Démery, V., Davidovitch, B., & Santangelo, C. D. (2014). Mechanics of large folds in thin interfacial films. Physical 
Review E, 90(4), 042401.

Discussion of Euler buckling regimes follows a pedagogical review in preparation by Benny Davidovitch and 
myself.  Get in touch with me if you want a draft when it is ready



Thin sheet of plastic (PS) floating 
on water with a drop of water in 

the middle

2D wrinkles

NMenonICTS2018
Huang et al. Science 2007



Measure:
Wavenumber, N
Length, L L

Dependence on

• elasticity of sheet  

thickness, t, 

Young’s Modulus, E

•loading 

radius of drop, a

surface tension, γ

2D wrinkles
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2D wrinkling – wrinkle number

Standard (post-buckling) analysis captures dependence on 
drop size, film thickness
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Length of wrinkles
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L increases with a, but 
thickness dependence, 
too

Scaling L ~ a (post-buckling) found in Cerda 2005
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2D wrinkling - length

Postbuckling scaling does not 
work L ~ a  e.g. Cerda J. Biomech 2005

Data approximately collapsed by 
L ~ a t1/2

0 2 4 6 8 10 12 14
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

50 100 150 200 250
0.6
0.9
1.2
1.5
1.8
2.1

 

 

L 
(m

m
)

h (mm)

 

 

L 
(m

m
)

ah1/2(mm nm1 /2)
Other variables available to fix dimensions: E, γ

Only possible combination:  L = C a t1/2(E/γ)-1/2
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Other axisymmetric geometries

• Poking – negative 
Gaussian curvature

• Sheet on drop – positive 
Gaussian curvature

NMenonICTS2018

Postbuckling analysis fails to describe 
these situations as well

Vella, Huang, etc 2015

King, Schroll, etc PNAS 2012



Lecture 4

• Wrinkles in 2D geometries
Bendability
Near-threshold, far-from-threshold

• Crumples – quick overview 
Ridges, d-cones
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Lamé problem

KB Toga thesis
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Davidovitch, et al PNAS 2011

Pineirua Soft Matter



Flat sheet on curved surface

Confinement into smaller perimeters governed by 
α=Y/γ (W/R)2   Y: stretching modulus
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Experimental Setup

Spin-coated polystyrene film: thickness, t = 40 to 150 nm

Radius of film, W = 0.5 to 1.5 mm

W

NMenonICTS2018



Top view

Side view

Wrinkles grow inward from edge

increase drop curvature
(increase confinement α)

How long are the wrinkles? How many are there?
NMenonICTS2018



Lamé solution
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Davidovitch, et al PNAS 2011

• Azimuthal stress turns negative for confinement τ=Ti/To >2



Post-buckling (NT) calculation gets wrinkle length entirely 
wrong

Normalized 
size of 
unwrinkled 
zone

Confinement

Wrinkle length
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FT calculation predicts wrinkle length successfully

Normalized 
size of 
unwrinkled 
zone

Confinement

Wrinkle length
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Lecture 4 references:

2D wrinkling
Huang, J., Juszkiewicz, M., De Jeu, W. H., Cerda, E., Emrick, T., Menon, N., & Russell, T. P. (2007). 
Capillary wrinkling of floating thin polymer films. Science, 317(5838), 650-653.
Davidovitch, B., Schroll, R. D., Vella, D., Adda-Bedia, M., & Cerda, E. A. (2011). Prototypical model for 
tensional wrinkling in thin sheets. Proceedings of the National Academy of Sciences, 108(45), 18227-
18232.
King, H., Schroll, R. D., Davidovitch, B., & Menon, N. (2012). Elastic sheet on a liquid drop reveals 
wrinkling and crumpling as distinct symmetry-breaking instabilities. Proceedings of the National 
Academy of Sciences, 109(25), 9716-9720.
The last two papers --particularly the supplementary info of the 2012 PNAS -- are good resources to 
follow up my blackboard notes
Paulsen et al "Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets." 
PNAS 113, no. 5 (2016): 1144-1149

Crumples-
Witten, T. A. (2007). Stress focusing in elastic sheets. Reviews of Modern Physics, 79(2), 643.
Lobkovsky, A., Gentges, S., Li, H., Morse, D., & Witten, T. A. (1995). Scaling properties of stretching 
ridges in a crumpled elastic sheet. Science
Cerda, E., Chaieb, S., Melo, F., & Mahadevan, L. (1999). Conical dislocations in crumpling. Nature, 
401(6748), 46-49.
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Wrinkling for sheet on drop – “phases”

“Bendability”

“C
on

fin
em

en
t”

γW2/B

γ/Y (W/R)2

Almost no regime 
of near threshold

King et al. PNAS 2012NMenonICTS2018

Smooth NT
FT



Slide from 
Benny 
Davidovitch
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A little about crumples  - ridges

Lobkovsky et al. 1997
Ben-Amar, Pomeau
Witten RMP 2009

NMenonICTS2018

Localizes strain and bending

• Stored energy E ~ α7/3 k(X/t)1/3

• Mid-ridge radius ~  α−4/3 X2/3t1/3 

• Bending energy ~ Stretching energy
α



Lecture 5

• Crumples – quick overview 

• Large deformation – wrappings, asymptotic isometries
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A little about crumples  - ridges

Lobkovsky et al. 1997
Ben-Amar, Pomeau
Witten RMP 2009

NMenonICTS2018

Localizes strain and bending

• Stored energy E ~ α7/3 k(X/t)1/3

• Mid-ridge radius ~  α−4/3 X2/3t1/3 

• Bending energy ~ Stretching energy
α



Only bending outside core

Core has comparable stretching and 
bending

Cerda et al. 1999

NMenonICTS2018

A little about crumples : d-cones



• An example with too much 
material

• Emerges naturally in growth 
problems

Muller et al 2008

• Klein, Efrati, Sharon 2007
NMenonICTS2018

A little about crumples : e-cones



A few wrinkles grow, and sharpen into “crumples”
The others recede

Top view

Side view

increase drop curvature

Delocalized modes get localized
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A different way of hiding material 
Analogous to scars/disclinations

but fold, not cut, material
emerges from continuum elasticity, no discrete chargeNMenonICTS2018
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Another wrinkle-to-crumple transition

Chopin Kudrolli 2013



Large deformation
What can wrinkles, folds and crumples do for you?
When they are cheap (large bendability), they can achieve nontrivial shapes

NMenonICTS2018 D. Vella et al 2015 EPL 112 24007
Dudte et al Nature Mat 2016



Wrapping a drop

“Capillary origami” Py, Reverdy, Baroud, Roman, Bico 2006 t=50µm; W ~ few mm, PDMS 

Bending balances torques created by 
capillary forces

Shapes with flaps cut to allow pure 
bending (developable shapes)

t
W
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Now for something thinner….

(but why?)



Wrapping with thin sheets






t= 29 nm

How to understand this sequence of shapes?

Wrinkles,folds, crumples, all interacting on a curved 
surface 

Axially symmetric wrinkles, crumples

Polygonal shapes folds, crumples
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t= 29 nm t= 113 nm t= 241 nm

Maybe mechanics is unimportant?
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Wrapping with thin sheets

Describe all shapes with a simple equation:

Energy, U = γ Afree

Constraint:  free ‘compression’, but no stretching

Pure geometry, no material parameters!
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Wrapping with thin sheets

Describe all shapes with a simple equation:

Energy, U = γ Afree

Constraint:  free ‘compression’, but no stretching

Works when energy scales are separated (the first inequality is high 
bendability):

bending << surface << stretching
γ

NMenonICTS2018



Predicts non-axisymmetric shapes

Samosa less efficient than gujiya
NMenonICTS2018



Other shapes possible as well
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Implications

• A ‘thin’ sheet spontaneously achieves the highest wrapping efficiency
No need for careful design

• Doesn’t rely on material parameters (in high bendability regime)

• Shows possibilities of near-isometric deformation if you have high 
enough bendability (see also Vella 2015)
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• These structures are generated 
by elastic instabilities

• What are the energetics and 
stability of these constructs?

• Where do all these structures 
belong? 

• How to specify these axes?

Wrinkles Ridges d-cones Creases (plasticity)Folds

External forces or confinement  or 
growth (structureless)

Material 
property

??

Overall goals of our discussion
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Thanks

• Audience

• Collaborators
Expts – Deepak Kumar, Gangaprasath, J. Huang, H. King, KB Toga, JD Paulsen, 
Tom Russell
Theory – B. Davidovitch, R Schroll, V. Demery, E. Cerda, D. Vella

• School organizers
Abhishek, Sanjib, and ICTS staff
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2D wrinkles (again)-
Huang, J., Juszkiewicz, M., De Jeu, W. H., Cerda, E., Emrick, T., Menon, N., & Russell, T. P. (2007). 
Capillary wrinkling of floating thin polymer films. Science, 317(5838), 650-653.
King, H., Schroll, R. D., Davidovitch, B., & Menon, N. (2012). Elastic sheet on a liquid drop reveals 
wrinkling and crumpling as distinct symmetry-breaking instabilities. Proceedings of the National 
Academy of Sciences, 109(25), 9716-9720.  The SI is useful.
Davidovitch, B., Schroll, R. D., Vella, D., Adda-Bedia, M., & Cerda, E. A. (2011). Prototypical model for 
tensional wrinkling in thin sheets. Proceedings of the National Academy of Sciences, 108(45), 18227-
18232.
Crumples-
Witten, T. A. (2007). Stress focusing in elastic sheets. Reviews of Modern Physics, 79(2), 643.
Lobkovsky, A., Gentges, S., Li, H., Morse, D., & Witten, T. A. (1995). Scaling properties of stretching 
ridges in a crumpled elastic sheet. Science
Cerda, E., Chaieb, S., Melo, F., & Mahadevan, L. (1999). Conical dislocations in crumpling. Nature, 
401(6748), 46-49.
Wrapping etc
Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B., & Baroud, C. N. (2007). Capillary origami: 
spontaneous wrapping of a droplet with an elastic sheet. Physical Review Letters, 98(15), 156103.
Vella, D., Huang, J., Menon, N., Russell, T. P., & Davidovitch, B. (2015). Indentation of ultrathin elastic 
films and the emergence of asymptotic isometry. Physical review letters, 114(1), 014301.
JD Paulsen, V. Démery et al. (2015) Optimal wrapping of liquids with ultrathin sheets Nature materials 
14, 1206 (2015). NMenonICTS2018
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Axisymmetric shape,
Stretched 'cap',

Axisymmetric stress

Broken symmetry shape,
Smooth wrinkles,

Axisymmetric stress

Further symmetry breaking,
Localized features

Continuous, reversible, wrinkle-to-crumple transition
Increasing 
curvature

NMenonICTS2018
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