
Multiloci Wright-Fisher process

In a population of size N with mutation prob per locus to be µ

avg no. of beneficial mutants produced per locus per generation= Nµ
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Weak mutation regime, Nµ≪ 1 (Jain & Krug, 2007)
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Simulation run of Wright-Fisher process

- Population is localised at one sequence (monomorphic)

- Passes through fitter mutants that are single mutation away

- Stays at a better sequence for a long time



For larger mutation probability,

- population is polymorphic at short times
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- But, at larger times, population is monomorphic

Evolution of monomorphic population?



Evolution in weak mutation regime

Rugged

Reaches the global maximum Trapped at a local maximum

Smooth

Cross fitness valley in

time ∼ (Nµ2)−1

Here we work on time
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Adaptive walk model (Maynard-Smith, 1970; Gillespie, 1984)

How does the population choose a better mutant?



Model 1: Greedy walk (Orr, 2003)

Choose the best mutant at each step: every chosen fitness is a record !
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Model 2: Random adaptive walk (Flyvbjerg & Lautrup, 1992)

Choose any of the better mutants with equal probability

Heuristic argument: for uniformly distributed fitnesses,

f0 = 0 , f1 =

∫ 1

0
dx x

∫ 1

0
dx

=
1

2
, f2 =

∫ 1

1/2
dx x

∫ 1

1/2
dx

=
3

4
, ...

Walk terminates when average fitness = local peak fitness

1− 2−J ∼ 1− L−1

Yields the logarithmic dependence of walk length !



Model 3: Natural selection walk

Better the mutant, higher is its chance to be chosen

At any time, only two types present→ one locus problem
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Probability (all •) =
1− e−2s

1− e−2Ns
(Kimura, 1962)

Strong selection regime, N |s| ≫ 1:

- Neglect deleterious and neutral mutations

- Fixation probability of beneficial mutations ≈ 1− e−2s



Basic recursion equation (Flyvbjerg & Lautrup,1992; Jain & Seetharaman, 2011)

PJ(f |f0) = Prob(fitness fixed is f at the J th step, starting from f0)

PJ+1(f |f0) =

∫ f

f0

dh T (f ← h)
︸ ︷︷ ︸

Transition prob

(1− qL(h))
︸ ︷︷ ︸

Availability prob

PJ(h|f0)

where

qL(h) = Prob(none are better than h) =

(∫ h

0

dg p(g)

)L

T (f ← h) = Transition probability ∝ 1− e−2( f−h
h )

No longer universal: biologically relevant fitness distribution(s)?



Fitness distribution: experiments (Eyre-Walker & Keightley, 2007)

Introduced random single-mutations in wild type virus with fitness 1

Fitness: relative growth rate of the mutant (Sanjuan et al. 2004)

Beneficial mutations are much rarer than the deleterious ones



Distribution of beneficial fitnesses: theory (Gillespie 1983; Orr 2003)

Rare events can be described by an extreme value theory

Conditional distribution above a large threshold can be of only three types !
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Distribution of beneficial fitnesses: experiments

Direct measurement of DBFE:

- measure the fitness of one-step mutants above a large threshold

- fit it to the extreme value distribution

p(f)
large fT
−→

[

1 +
κf

τ(fT )

]
−(1+ 1

κ )

All the three domains have been observed in experiments !

κ→ 0 (Exponential): Sanjuan et al. 2004, several others

κ < 0 (Bounded): Rokyta et al. 2008; Bataillon et al. 2011

κ > 0 (Fat-tailed): Schenk et al. 2012

What can we learn about DBFE from adaptation dynamics?



Transition in the walk length (Jain & Seetharaman, 2011; Jain, 2011)
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For L→∞: walk length is infinite (finite), if mean of p(f) is finite (infinite)



Transition in the walk length: an argument

T (f ← h) =
(f − h)p(f)

∫
∞

h
dg(g − h)p(g)

If the mean of the fitness distribution is finite:

transition probability is finite for finite fitness differences

=⇒ for infinitely long sequence, walk goes on forever

If the mean of the fitness distribution is infinite:

denominator is dominated by an extreme value fitness

transition probability is finite when fitness differences are large

=⇒ for infinitely long sequence, walk terminates

(Generating function of distribution PJ(f) can be found)



Walk length in experiments (Gifford et al., 2011)

20 replicate populations of A. nidulans evolved for 800 generations

Fitness (growth rate) of the colony measured

For different initial conditions, counted substitutions until fitness saturated



Walk length in experiments

Adaptive walks in bacteriophage

(Rokyta et al. 2009)
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consistent with theory

Adaptive walks in fungus A. nidulans

(Gifford et al. 2011)

inconsistent with theory



Average fitness fixed during the walk

f̄J(f0) =

∫ u

f0

df f PJ(f |f0)

For large initial fitnesses, we find the fitness fixed to be of the form

f̄J+1 = af̄J + b , κ < 1

where

a =







(1− 2κ)−1 < 1 (bounded)

1 (exponential)

κ−e2(1−κ)E1/κ(2)

2e2κ(1−κ)E1/κ(2)
> 1 (unbounded)

This has the consequence that

f̄J+1 − f̄J = aJ((a− 1)f0 + b)



Fitness difference is qualitatively different in three domains
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Fitness difference is qualitatively different in three domains
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Fitness difference is qualitatively different in three domains

Since adaptive walks

are short, measure

fitness fixed at first

step by changing

initial fitness

Simple, experimen-

tally accessible way

to deduce DBFE from

adaptation dynamics
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Fitness landscape: experiments (Weinreich et al. 2006)

Worked with five loci and generated all 32 mutants of WT

Fitness: minimum antibiotic concentration that blocked bacterial growth

At every step, at least one fitter

mutant was found

Smooth fitness landscape



Fitness landscape: experiments (Burch & Chao, 2000)

Fitness: size of the viral plaques on bacterial lawn

Rugged fitness landscape


