## Multiloci Wright-Fisher process

In a population of size N with mutation prob per locus to be $\mu$ avg no. of beneficial mutants produced per locus per generation $=N \mu$


## Weak mutation regime, $N \mu \ll 1$ (Jain \& Krug, 2007)



Simulation run of Wright-Fisher process

- Population is localised at one sequence (monomorphic)
- Passes through fitter mutants that are single mutation away
- Stays at a better sequence for a long time

For larger mutation probability,

- population is polymorphic at short times

- But, at larger times, population is monomorphic

Evolution of monomorphic population?

## Evolution in weak mutation regime



Reaches the global maximum


Trapped at a local maximum

Cross fitness valley in time $\sim\left(N \mu^{2}\right)^{-1}$

Here we work on time scales $\sim(N \mu)^{-1}$


Adaptive walk model (Maynard-Smith, 1970; Gillespie, 1984)


How does the population choose a better mutant?

## Model 1: Greedy walk (Orr, 2003)

Choose the best mutant at each step: every chosen fitness is a record!


## Model 2: Random adaptive walk (Flyvbjerg \& Lautrup, 1992)

Choose any of the better mutants with equal probability
Heuristic argument: for uniformly distributed fitnesses,

$$
f_{0}=0, f_{1}=\frac{\int_{0}^{1} d x x}{\int_{0}^{1} d x}=\frac{1}{2}, f_{2}=\frac{\int_{1 / 2}^{1} d x x}{\int_{1 / 2}^{1} d x}=\frac{3}{4}, \ldots
$$

Walk terminates when average fitness $=$ local peak fitness

$$
1-2^{-J} \sim 1-L^{-1}
$$

Yields the logarithmic dependence of walk length!

## Model 3: Natural selection walk

Better the mutant, higher is its chance to be chosen
At any time, only two types present $\rightarrow$ one locus problem


$$
\text { Probability }(\text { all } \bullet)=\frac{1-e^{-2 s}}{1-e^{-2 N s}} \quad(\text { Kimura, 1962 })
$$

Strong selection regime, $N|s| \gg 1$ :

- Neglect deleterious and neutral mutations
- Fixation probability of beneficial mutations $\approx 1-e^{-2 s}$

Basic recursion equation (Flyvbjerg \& Lautrup, 1992; Jain \& Seetharaman, 2011)
$P_{J}\left(f \mid f_{0}\right)=\operatorname{Prob}\left(\right.$ fitness fixed is $f$ at the $J$ th step, starting from $f_{0}$ )

$$
P_{J+1}\left(f \mid f_{0}\right)=\int_{f_{0}}^{f} d h \underbrace{T(f \leftarrow h)}_{\text {Transition prob }} \underbrace{\left(1-q^{L}(h)\right)}_{\text {Availability prob }} P_{J}\left(h \mid f_{0}\right)
$$

where

$$
\begin{aligned}
q^{L}(h) & =\operatorname{Prob}(\text { none are better than } h)=\left(\int_{0}^{h} d g p(g)\right)^{L} \\
T(f \leftarrow h) & =\text { Transition probability } \propto 1-e^{-2\left(\frac{f-h}{h}\right)}
\end{aligned}
$$

No longer universal: biologically relevant fitness distribution(s)?

Fitness distribution: experiments (Eyre-Walker \& Keightley, 2007) Introduced random single-mutations in wild type virus with fitness 1

Fitness: relative growth rate of the mutant (Sanjuan et al. 2004)


Beneficial mutations are much rarer than the deleterious ones

## Distribution of beneficial fitnesses: theory (Gillespie 1983; Orr 2003)

Rare events can be described by an extreme value theory
Conditional distribution above a large threshold can be of only three types !

many effects of small size OR few effects of very large size?

## Distribution of beneficial fitnesses: experiments

Direct measurement of DBFE:

- measure the fitness of one-step mutants above a large threshold
- fit it to the extreme value distribution

$$
p(f) \xrightarrow{\text { large } f_{T}}\left[1+\frac{\kappa f}{\tau\left(f_{T}\right)}\right]^{-\left(1+\frac{1}{k}\right)}
$$

All the three domains have been observed in experiments !
$\kappa \rightarrow 0$ (Exponential): Sanjuan et al. 2004, several others
$\kappa<0$ (Bounded): Rokyta et al. 2008; Bataillon et al. 2011
$\kappa>0$ (Fat-tailed): Schenk et al. 2012
What can we learn about DBFE from adaptation dynamics?

## Transition in the walk length (Jain \& Seetharaman, 2011; Jain, 2011)



For $L \rightarrow \infty$ : walk length is infinite (finite), if mean of $p(f)$ is finite (infinite)

## Transition in the walk length: an argument

$$
T(f \leftarrow h)=\frac{(f-h) p(f)}{\int_{h}^{\infty} d g(g-h) p(g)}
$$

If the mean of the fitness distribution is finite:
transition probability is finite for finite fitness differences
$\Longrightarrow$ for infinitely long sequence, walk goes on forever If the mean of the fitness distribution is infinite:
denominator is dominated by an extreme value fitness
transition probability is finite when fitness differences are large
$\Longrightarrow$ for infinitely long sequence, walk terminates
(Generating function of distribution $P_{J}(f)$ can be found)

## Walk length in experiments (Gifford et al., 2011)

20 replicate populations of $A$. nidulans evolved for 800 generations
Fitness (growth rate) of the colony measured
For different initial conditions, counted substitutions until fitness saturated


B


C


## Walk length in experiments

Adaptive walks in bacteriophage (Rokyta et al. 2009)

consistent with theory

Adaptive walks in fungus $A$. nidulans (Gifford et al. 2011)


Distance from fitness optimum
inconsistent with theory

Average fitness fixed during the walk

$$
\bar{f}_{J}\left(f_{0}\right)=\int_{f_{0}}^{u} d f f P_{J}\left(f \mid f_{0}\right)
$$

For large initial fitnesses, we find the fitness fixed to be of the form

$$
\bar{f}_{J+1}=a \bar{f}_{J}+b, \kappa<1
$$

where

$$
a=\left\{\begin{array}{lrl}
(1-2 \kappa)^{-1} & <1 & \text { (bounded) } \\
& 1 & \text { (exponential) } \\
\frac{\kappa-e^{2}(1-\kappa) E_{1 / \kappa}(2)}{2 e^{2} \kappa(1-\kappa) E_{1 / \kappa}(2)}>1 & \text { (unbounded) }
\end{array}\right.
$$

This has the consequence that

$$
\bar{f}_{J+1}-\bar{f}_{J}=a^{J}\left((a-1) f_{0}+b\right)
$$

## Fitness difference is qualitatively different in three domains



## Fitness difference is qualitatively different in three domains



Diminishing returns


Accelerating returns

## Fitness difference is qualitatively different in three domains

Since adaptive walks are short, measure fitness fixed at first step by changing initial fitness

Simple, experimentally accessible way to deduce DBFE from adaptation dynamics

$\bar{f}_{1}-f_{0}=(a-1) f_{0}+b$

## Fitness landscape: experiments (Weinreich et al. 2006)

Worked with five loci and generated all 32 mutants of WT
Fitness: minimum antibiotic concentration that blocked bacterial growth


At every step, at least one fitter


Smooth fitness landscape mutant was found

Fitness landscape: experiments (Burch \& Chao, 2000)
Fitness: size of the viral plaques on bacterial lawn




Rugged fitness landscape

