# Root numbers \& parity of local Iwasawa invariants 

Suman Ahmed<br>Postdoctoral Fellow IISER, Mohali

22nd December, 2016
(Joint work with Sudhanshu Shekhar \& Aribam Chandrakant)

## Contents

Introduction

- Definition
- Torsion points on elliptic curves \& Galois module structure
(2) Iwasawa Theory
- Iwasawa Modules
- Selmer Group
- Iwasawa Invariants
(3) Main result
- Motivation
- Proof
- Counterexamples
- Main theorem 1
- Main theorem 1
- Supersingular elliptic curves
- Main theorem 2
- Guo's theorem for supersingular elliptic curves
- Comparison of local Iwasawa invariants
(4) Root number


## Introduction

## Definition

An elliptic curve $E / \mathbb{Q}$ is the locus of an equation

$$
E: y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbb{Q}$, together with a point $\infty$ (whose homogeneous coordinates are [0:1 $: 0]$ ), called the point at infinity and $-16\left(4 a^{3}+27 b^{2}\right) \neq 0$.

## Introduction

## Definition

An elliptic curve $E / \mathbb{Q}$ is the locus of an equation

$$
E: y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbb{Q}$, together with a point $\infty$ (whose homogeneous coordinates are [0:1 $: 0]$ ), called the point at infinity and $-16\left(4 a^{3}+27 b^{2}\right) \neq 0$.

## Mordell-Weil Theorem

Let $E$ be an elliptic curve defined over a number field $K$. Then

$$
E(K) \cong \mathbb{Z}^{r} \times T
$$

We call $r$ the rank of $E$ over $K$, and $T$ the torsion subgroup of $E(K)$.

## Torsion points on elliptic curves \& Galois module structure

Let $E / \mathbb{Q}$ be an elliptic curve and let $n \geq 2$ be an integer. Then

$$
E[n](\overline{\mathbb{Q}}) \cong \frac{\mathbb{Z}}{n \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}
$$

the isomorphism being one between abstract groups.

## Torsion points on elliptic curves \& Galois module structure

Let $E / \mathbb{Q}$ be an elliptic curve and let $n \geq 2$ be an integer. Then

$$
E[n](\overline{\mathbb{Q}}) \cong \frac{\mathbb{Z}}{n \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}
$$

the isomorphism being one between abstract groups.
The absolute Galois group $G_{\overline{\mathbb{Q}} / \mathbb{Q}} \cup E[n]$, since if $[n] P=O$, then

$$
[n]\left(P^{\sigma}\right)=([n] P)^{\sigma}=O^{\sigma}=O, \quad \sigma \in G_{\overline{\mathbb{Q}} / \mathbb{Q}}
$$

We thus obtain a $\bmod \mathrm{n}$ Galois representation

$$
\bar{\rho}_{E, n}: G_{\overline{\mathbb{Q}} / \mathbb{Q}} \longrightarrow \operatorname{Aut}(E[n]) \cong G L_{2}(\mathbb{Z} / n \mathbb{Z}),
$$

where the later isomorphism involves choosing a basis for $E[n]$.

## Iwasawa Theory

Iwasawa theory is the study of $\mathbb{Z}_{p}$-extensions of fields where $\mathbb{Z}_{p}$ denotes the set of p -adic integers.
If $F / K$ is a $\mathbb{Z}_{p}$-extension, Galois theory shows that for each integer $n \geq 0$ there is a unique intermediate field $K_{n}, K \subset K_{n} \subset F$, with $\operatorname{Gal}\left(K_{n} / K\right)=\mathbb{Z} / p^{n} \mathbb{Z}$, and then $F=\bigcup K_{n}$.
Write $\Gamma=\operatorname{Gal}(F / K)$ and

$$
\Lambda=\mathbb{Z}_{p}[[\Gamma]]=\underset{\leftrightarrows}{\lim } \mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right] .
$$

## Theorem

$\Lambda$ is isomorphic to a power series ring $\mathbb{Z}_{p}[[T]]$.

## Iwasawa Modules

## Definition

Two $\Lambda$-modules $M$ and $N$ are said to be pseudo-isomorphic $(M \sim N)$ if there is a homomorphism $M \longrightarrow N$ with finite kernel and co-kernel.

## Iwasawa Modules

## Definition

Two $\Lambda$-modules $M$ and $N$ are said to be pseudo-isomorphic $(M \sim N)$ if there is a homomorphism $M \longrightarrow N$ with finite kernel and co-kernel.

## Structure theorem of finitely generated $\Lambda$-modules

Let $M$ be a finitely generated $\Lambda$-module. Then

$$
\mathcal{M} \sim \Lambda^{r} \oplus\left(\oplus_{i=1}^{s} \Lambda /\left(p^{n_{i}}\right)\right) \oplus\left(\oplus_{j=1}^{t} \Lambda /\left(f_{j}(T)^{m_{j}}\right)\right)
$$

where $r, s, t, n_{i}, m_{j} \in \mathbb{N}$ and $f_{j}(T)$ are distinguished and irreducible. This decomposition is uniquely determined by M .

## Selmer Group

Let $v$ runs over all primes of $K$, archimedean and non-archimedean. If $[K: \mathbb{Q}]<\infty$ then $K_{v}$ is the completion of $K$ at $v$. Otherwise, we take $K_{v}$ to be the union of the completions at $v$ of all finite extensions of $\mathbb{Q}$ contained in $K$. Then the Selmer and Tate-Shafarevich groups for $E$ over $K$ are defined by

$$
\operatorname{Sel}_{E}(K):=\operatorname{ker}\left(\mathrm{H}^{1}\left(K, E(\bar{K})_{\text {tors }}\right) \longrightarrow \prod_{V} \mathrm{H}^{1}\left(K_{v}, E\left(\bar{K}_{v}\right)\right)\right)
$$

and

$$
\amalg_{E}(K):=\operatorname{ker}\left(\mathrm{H}^{1}(K, E(\bar{K})) \longrightarrow \prod_{v} \mathrm{H}^{1}\left(K_{v}, E\left(\bar{K}_{v}\right)\right)\right)
$$

## Selmer Group

Let $v$ runs over all primes of $K$, archimedean and non-archimedean. If $[K: \mathbb{Q}]<\infty$ then $K_{v}$ is the completion of $K$ at $v$. Otherwise, we take $K_{v}$ to be the union of the completions at $v$ of all finite extensions of $\mathbb{Q}$ contained in $K$. Then the Selmer and Tate-Shafarevich groups for $E$ over $K$ are defined by

$$
\operatorname{Sel}_{E}(K):=\operatorname{ker}\left(\mathrm{H}^{1}\left(K, E(\bar{K})_{\text {tors }}\right) \longrightarrow \prod_{V} \mathrm{H}^{1}\left(K_{v}, E\left(\bar{K}_{v}\right)\right)\right)
$$

and

$$
Ш_{E}(K):=\operatorname{ker}\left(\mathrm{H}^{1}(K, E(\bar{K})) \longrightarrow \prod_{v} \mathrm{H}^{1}\left(K_{v}, E\left(\bar{K}_{v}\right)\right)\right)
$$

The $p$-primary subgroup of $\operatorname{Sel}_{E}(K)$ is given by

$$
\operatorname{Sel}_{E}(K)_{p}=\operatorname{ker}\left(\mathrm{H}^{1}\left(K, E\left[p^{\infty}\right]\right) \longrightarrow \prod_{v} \mathrm{H}^{1}\left(K_{v}, E\left(\bar{K}_{v}\right)\right)\right)
$$

## Selmer Group

The Selmer and Tate-Shafarevich groups for $E$ over $K$ fit into the following short exact sequence

$$
0 \longrightarrow E(K) \otimes \mathbb{Q} / \mathbb{Z} \longrightarrow \operatorname{Sel}_{E}(K) \longrightarrow \amalg_{E}(K) \longrightarrow 0
$$

Notice that

$$
E(K) \otimes \mathbb{Q} / \mathbb{Z} \cong\left(\mathbb{Z}^{r} \times T\right) \otimes \mathbb{Q} / \mathbb{Z} \cong(\mathbb{Q} / \mathbb{Z})^{r}
$$

Therefore finiteness of $\amalg_{E}(K)$ and knowledge of the structure of $\operatorname{Sel}_{E}(K)$ would give an upper bound on the rank of $E$ over $K$.

## Iwasawa Invariants

Let $p$ be a prime where $E$ has good ordinary reduction. Let $\mathbb{Z}_{p}$ denote the ring of $p$-adic integers, and $\mathbb{Q}^{c y c}$ be the cyclotomic $\mathbb{Z}_{p}$-extension of $\mathbb{Q}$ with $\Gamma=\operatorname{Gal}\left(\mathbb{Q}^{c y c} / \mathbb{Q}\right) \cong \mathbb{Z}_{p}$.

The Pontryagin dual $X\left(E / \mathbb{Q}^{c y c}\right)$ of $\operatorname{Sel}\left(E\left[p^{\infty}\right] / \mathbb{Q}^{c y c}\right)$ is a finitely generated torsion $\Lambda$-module where $\Lambda=\mathbb{Z}_{p}[[\Gamma]] \cong \mathbb{Z}_{p}[[T]]$. Hence, by the classification of finitely generated $\Lambda$-modules one has a pseudo isomorphism

$$
X\left(E / \mathbb{Q}^{c y c}\right) \sim\left(\oplus_{i=1}^{s} \Lambda /\left(f_{i}(T)^{a_{i}}\right)\right) \oplus\left(\oplus_{j=1}^{t} \Lambda /\left(p^{\mu_{E}^{j}}\right)\right)
$$

where $s, t, a_{i}, \mu_{j} \in \mathbb{N}, f_{i}$ is distinguished and irreducible for all $i$.

## Iwasawa Invariants

Let $p$ be a prime where $E$ has good ordinary reduction. Let $\mathbb{Z}_{p}$ denote the ring of $p$-adic integers, and $\mathbb{Q}^{c y c}$ be the cyclotomic $\mathbb{Z}_{p}$-extension of $\mathbb{Q}$ with $\Gamma=\operatorname{Gal}\left(\mathbb{Q}^{c y c} / \mathbb{Q}\right) \cong \mathbb{Z}_{p}$.

The Pontryagin dual $X\left(E / \mathbb{Q}^{c y c}\right)$ of $\operatorname{Sel}\left(E\left[p^{\infty}\right] / \mathbb{Q}^{c y c}\right)$ is a finitely generated torsion $\Lambda$-module where $\Lambda=\mathbb{Z}_{p}[[\Gamma]] \cong \mathbb{Z}_{p}[[T]]$. Hence, by the classification of finitely generated $\Lambda$-modules one has a pseudo isomorphism

$$
X\left(E / \mathbb{Q}^{c y c}\right) \sim\left(\oplus_{i=1}^{s} \Lambda /\left(f_{i}(T)^{a_{i}}\right)\right) \oplus\left(\oplus_{j=1}^{t} \Lambda /\left(p^{\mu_{E}^{j}}\right)\right)
$$

where $s, t, a_{i}, \mu_{j} \in \mathbb{N}, f_{i}$ is distinguished and irreducible for all $i$.
Since, the $a_{i}$ 's and the $\mu_{E}^{j}$ 's are positive integers, one can define the algebraic Iwasawa invariants $\lambda_{E}$ and $\mu_{E}$ by

$$
\lambda_{E}=\sum_{i=1}^{s} a_{i} \cdot \operatorname{deg}\left(f_{i}(T)\right), \quad \mu_{E}=\sum_{j=1}^{t} \mu_{E}^{j} .
$$

## Motivation

For $i=1,2$, let

- $E_{i}$ - Elliptic curve defined over $\mathbb{Q}$ with good and ordinary reduction at $p$.
- $N_{i}$ - Conductor of $E_{i}$ over $F$.
- $\overline{N_{i}}$ - The prime to $p$ conductor of the Galois module $E_{i}[p]$.
- $\Sigma$ - The finite set of primes of $F$ containing the primes of bad reduction of $E_{1}$ and $E_{2}$, the infinite primes and the primes above $p$.
- Put

$$
\Sigma_{0}:=\left\{v \in \Sigma|v| N_{1} / \overline{N_{1}} \text { or } v \mid N_{2} / \overline{N_{2}}\right\} .
$$

- $S_{E_{i}}$ - Set of primes $v \in \Sigma_{0}$ such that $E_{i}$ has split multiplicative reduction at $v$.
- $s_{p}\left(E_{i} / F\right)$ - Rank of the Pontryagin dual of $\operatorname{Sel}_{p}\left(E_{i} / F\right)$.


## Motivation

## Theorem (Shekhar, 2015)

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good and ordinary reduction at an odd prime $p$. Further assume the following
(a) $E_{1}[p]$ is an irreducible $\mathrm{Gal}(\bar{F} / F)$-module.
(b) $\mu_{p} \subseteq F$ where $\mu_{p}$ denotes the group of $p$-th roots of unity.
(c) $\operatorname{Sel}_{p}\left(E_{1} / F_{c y c}\right)[p]$ is finite where $F_{c y c}$ denote the cyclotomic $\mathbb{Z}_{p}$-extension of $F$.

If $E_{1}[p] \cong E_{2}[p]$ as $\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ modules then

$$
s_{p}\left(E_{1} / F\right)+\left|S_{E_{1}}\right| \equiv s_{p}\left(E_{2} / F\right)+\left|S_{E_{2}}\right|(\bmod 2)
$$

## Motivation

## Theorem (Shekhar, 2015)

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good and ordinary reduction at an odd prime $p$. Further assume the following
(a) $E_{1}[p]$ is an irreducible $\mathrm{Gal}(F / F)$-module.
(b) $\mu_{p} \subseteq F$ where $\mu_{p}$ denotes the group of $p$-th roots of unity.
(c) $\operatorname{Sel}_{p}\left(E_{1} / F_{c y c}\right)[p]$ is finite where $F_{c y c}$ denote the cyclotomic $\mathbb{Z}_{p}$-extension of $F$.

If $E_{1}[p] \cong E_{2}[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ modules then

$$
s_{p}\left(E_{1} / F\right)+\left|S_{E_{1}}\right| \equiv s_{p}\left(E_{2} / F\right)+\left|S_{E_{2}}\right|(\bmod 2) .
$$

## p-parity Conjecture

$$
s_{p}(E / F) \equiv a(E / F)(\bmod 2)
$$

where $a(E / F)$ denotes the order of zero of $L(E / F, s)$ (the Hasse-Weil $L$-function of $E$ over $F$ ) at $s=1$.

## Proof

## Definition of Imprimitive $\Sigma_{0}$-Selmer group

Let $\Sigma_{0} \subset \Sigma \backslash\{$ primes above p and the infinite primes\}. Then

$$
\operatorname{Sel}_{p}^{\Sigma_{0}}\left(E / F_{\mathrm{cyc}}\right):=\operatorname{Ker}\left(\mathrm{H}^{1}\left(F_{\Sigma} / F_{\mathrm{cyc}}, E\left[p^{\infty}\right]\right) \longrightarrow \prod_{l \in \Sigma-\Sigma_{0}} \mathcal{H}_{v}\left(F_{\mathrm{cyc}}, E\left[p^{\infty}\right]\right)\right)
$$

## Proof

## Definition of Imprimitive $\Sigma_{0}$-Selmer group

Let $\Sigma_{0} \subset \Sigma \backslash\{$ primes above p and the infinite primes\}. Then

$$
\operatorname{Sel}_{p}^{\Sigma_{0}}\left(E / F_{\mathrm{cyc}}\right):=\operatorname{Ker}\left(\mathrm{H}^{1}\left(F_{\Sigma} / F_{\mathrm{cyc}}, E\left[p^{\infty}\right]\right) \longrightarrow \prod_{l \in \Sigma-\Sigma_{0}} \mathcal{H}_{v}\left(F_{\mathrm{cyc}}, E\left[p^{\infty}\right]\right)\right)
$$

Under the assumptions (a) and (c), we have $\lambda_{E_{1}}^{\Sigma_{0}}=\lambda_{E_{2}}^{\Sigma_{0}}$.
For a prime $v \nmid p$ of $F$, let $\tau_{E_{1}}^{v}$ denote the $\mathbb{Z}_{p}$-rank of the Pontryagin dual of $\mathcal{H}_{v}\left(F_{\text {cyc }}, E_{1}\right)$ where

$$
\mathcal{H}_{v}\left(F_{c y c}, E_{1}\right):=\prod_{w \mid v} \mathrm{H}^{1}\left(F_{c y c, w}, E_{1}\left[p^{\infty}\right]\right) .
$$

From [Sh, Lemma 3.1], we have

$$
\lambda_{E_{i}}^{\Sigma_{0}}=\lambda_{E_{i}}+\sum_{v \in \Sigma_{0}} \tau_{E_{i}}^{v}, i=1,2
$$

## Proof

Now for each $v \in \Sigma_{0}$, choose a prime $w$ of $F_{\text {cyc }}$ dividing $v$. Let $P$ be the set consisting of all such $w$ and

$$
\sigma_{E_{i}}^{w}:=\operatorname{corank}_{\mathbb{Z}_{p}} \mathrm{H}^{1}\left(F_{c y c, w}, E_{i}\left[p^{\infty}\right]\right)
$$

Then [Sh, Lemma 3.2] implies

$$
\lambda_{E_{i}}^{\Sigma_{0}} \equiv \lambda_{E_{i}}+\sum_{w \in P} \sigma_{E_{i}}^{w}(\bmod 2), i=1,2
$$

Therefore

$$
\lambda_{E_{1}}+\sum_{w \in P} \sigma_{E_{1}}^{w} \equiv \lambda_{E_{2}}+\sum_{w \in P} \sigma_{E_{2}}^{w}(\bmod 2)
$$

From the comparisons of $\sigma_{E_{i}}^{w}, i=1,2$, we have

$$
\lambda_{E_{1}}+\left|S_{E_{1}}\right| \equiv \lambda_{E_{2}}+\left|S_{E_{2}}\right|(\bmod 2)
$$

## Proof

Now for each $v \in \Sigma_{0}$, choose a prime $w$ of $F_{\text {cyc }}$ dividing $v$. Let $P$ be the set consisting of all such $w$ and

$$
\sigma_{E_{i}}^{w}:=\operatorname{corank}_{\mathbb{Z}_{p}} \mathrm{H}^{1}\left(F_{c y c, w}, E_{i}\left[p^{\infty}\right]\right)
$$

Then [Sh, Lemma 3.2] implies

$$
\lambda_{E_{i}}^{\Sigma_{0}} \equiv \lambda_{E_{i}}+\sum_{w \in P} \sigma_{E_{i}}^{w}(\bmod 2), i=1,2
$$

Therefore

$$
\lambda_{E_{1}}+\sum_{w \in P} \sigma_{E_{1}}^{w} \equiv \lambda_{E_{2}}+\sum_{w \in P} \sigma_{E_{2}}^{w}(\bmod 2)
$$

From the comparisons of $\sigma_{E_{i}}^{w}, i=1,2$, we have

$$
\lambda_{E_{1}}+\left|S_{E_{1}}\right| \equiv \lambda_{E_{2}}+\left|S_{E_{2}}\right|(\bmod 2)
$$

## Theorem (Guo)

Let $E$ be an elliptic curve defined over $F$ and suppose that the Pontryagin dual of $\operatorname{Sel}_{p}\left(E_{1} / F_{\text {cyc }}\right)$ is $\Lambda$ - torsion. Then

$$
s_{p}(E / F) \equiv \lambda_{E}(\bmod 2)
$$

## Counterexamples

Assume $\mu_{p} \nsubseteq F$. Then for $p=3$, we have the following counterexamples to the above theorem.

## Example 1:

$E_{1}: y^{2}+y=x^{3}-x^{2}-10 x-20, \quad(11 a 1)$
$E_{2}: y^{2}+x y=x^{3}+x^{2}-2 x-7, \quad(121 c 1)$
$E_{1}$ has split multiplicative reduction while $E_{2}$ has additive reduction at 11 . Both have rank 0 and $E_{1}[3] \cong E_{2}[3]$.

## Counterexamples

Assume $\mu_{p} \nsubseteq F$. Then for $p=3$, we have the following counterexamples to the above theorem.

## Example 1:

$E_{1}: y^{2}+y=x^{3}-x^{2}-10 x-20$, (11a1)
$E_{2}: y^{2}+x y=x^{3}+x^{2}-2 x-7, \quad(121 c 1)$
$E_{1}$ has split multiplicative reduction while $E_{2}$ has additive reduction at 11 . Both have rank 0 and $E_{1}[3] \cong E_{2}[3]$.

## Example 2:

$E_{3}: y^{2}=x^{3}-x^{2}-4133 x+186637, \quad(4400 m 2)$
$E_{4}: y^{2}=x^{3}-x^{2}-1008 x+48512, \quad(48400 c h 1)$
$E_{3}$ has non-split multiplicative reduction at 11 and additive reduction at 2,5 while $E_{4}$ has additive reduction at $2,5,11 . E_{3}$ and $E_{4}$ have rank 0 and 1 respectively and $E_{3}[3] \cong E_{4}[3]$.

## Main Theorem 1 (for ordinary elliptic curves)

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good and ordinary reduction at an odd prime $p$. We further assume the following.
(a) $E_{1}[p]$ is an irreducible $\operatorname{Gal}(\bar{F} / F)$-module.
(b) $\operatorname{Sel}_{p}\left(E_{1} / F_{c y c}\right)[p]$ is finite.

If $E_{1}[p] \cong E_{2}[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ modules then

$$
s_{p}\left(E_{1} / F\right)+\left|S_{E_{1}}\right| \equiv s_{p}\left(E_{2} / F\right)+\left|S_{E_{2}}\right|+|T|(\bmod 2)
$$

where $T$ denotes the set of primes $v$ of $F$ in $\Sigma_{0}$ such that $\mu_{p} \not \subset F_{v}$, one of the elliptic curves has multiplicative reduction and other has additive reduction at $v$.

## Main Theorem 1 (for ordinary elliptic curves)

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good and ordinary reduction at an odd prime $p$. We further assume the following.
(a) $E_{1}[p]$ is an irreducible $\operatorname{Gal}(\bar{F} / F)$-module.
(b) $\operatorname{Sel}_{p}\left(E_{1} / F_{c y c}\right)[p]$ is finite.

If $E_{1}[p] \cong E_{2}[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ modules then

$$
s_{p}\left(E_{1} / F\right)+\left|S_{E_{1}}\right| \equiv s_{p}\left(E_{2} / F\right)+\left|S_{E_{2}}\right|+|T|(\bmod 2)
$$

where $T$ denotes the set of primes $v$ of $F$ in $\Sigma_{0}$ such that $\mu_{p} \not \subset F_{v}$, one of the elliptic curves has multiplicative reduction and other has additive reduction at $v$.

Note that $T$ can be non-empty only when $p=3$.

## Supersingular elliptic curves

## Definition

For $n \geq 0$, we define $\operatorname{Sel}_{p}^{ \pm}\left(E / F_{n}\right)$ to be the kernel of

$$
\begin{equation*}
\mathbf{f}_{\mathbf{n}}: \mathrm{H}^{1}\left(F_{n}, A\right) \longrightarrow \prod_{v} \frac{\mathrm{H}^{1}\left(F_{n, v}, A\right)}{E^{ \pm}\left(F_{n, v}\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}} \tag{1}
\end{equation*}
$$

and $\operatorname{Sel}_{p}^{ \pm}\left(E / F_{c y c}\right):=\lim _{\rightarrow n} \operatorname{Sel}_{p}^{ \pm}\left(E / F_{n}\right)$. Here $v$ ranges over all places of $F_{n}, F_{n, v}$ is the completion of $F_{n}$ at $\vec{v}$ and the map is induced by the restrictions of the Galois cohomology groups. For notational convenience, let $F_{-1, v}=F_{0, v}=F_{v}$. Then

$$
\begin{aligned}
& E^{+}\left(F_{n, v}\right):=\left\{P \in E\left(F_{n, v}\right) \mid \operatorname{Tr}_{n / m+1} P \in E\left(F_{m, v}\right) \text { for even } m(0 \leq m<n)\right\} \\
& E^{-}\left(F_{n, v}\right):=\left\{P \in E\left(F_{n, v}\right) \mid \operatorname{Tr}_{n / m+1} P \in E\left(F_{m, v}\right) \text { for odd } m(-1 \leq m<n)\right\}
\end{aligned}
$$

where $\operatorname{Tr}_{n / m}: E\left(F_{n, v}\right) \longrightarrow E\left(F_{m, v}\right)$ denotes the trace map for $n \geq m$.

## Remark

For $n=0$, we have $E^{-}\left(F_{v}\right)=E\left(F_{v}\right)$ hence $\operatorname{Sel}_{p}^{-}(E / F)=\operatorname{Sel}_{p}(E / F)$.

## Assumption

For $E=E_{1}$ or $E_{2}$
(i) $E[p]$ is an irreducible Gal $(\bar{F} / F)$-module.
(ii) $\operatorname{Sel}_{p}^{-}\left(E / F_{c y c}\right)[p]$ is a finite group.

## Remark

For $n=0$, we have $E^{-}\left(F_{v}\right)=E\left(F_{v}\right)$ hence $\operatorname{Sel}_{p}^{-}(E / F)=\operatorname{Sel}_{p}(E / F)$.

## Assumption

For $E=E_{1}$ or $E_{2}$
(i) $E[p]$ is an irreducible Gal $(\bar{F} / F)$-module.
(ii) $\operatorname{Sel}_{p}^{-}\left(E / F_{c y c}\right)[p]$ is a finite group.

## Main Theorem 2 (for supersingular elliptic curves)

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good, supersingular reduction at an odd prime $p$ and $a_{p}=0$. We further assume the following.
(a) $E_{1}[p]$ is an irreducible $\mathrm{Gal}(\bar{F} / F)$-module.
(b) $\operatorname{Sel}_{p}^{-}\left(E_{1} / F_{c y c}\right)[p]$ is finite.
(c) $p$ splits completely over $F$.

If $E_{1}[p] \cong E_{2}[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ modules then

$$
s_{p}\left(E_{1} / F\right)+\left|S_{E_{1}}\right| \equiv s_{p}\left(E_{2} / F\right)+\left|S_{E_{2}}\right|+|T|(\bmod 2)
$$

## Guo's theorem for supersingular elliptic curves

## Theorem

Let $E$ be an elliptic curve defined over a number field $F$ with good, supersingular reduction at primes dividing $p$. Assume that $\operatorname{Sel}_{p}^{-}\left(E / F_{c y c}\right)$ is $\Lambda$-cotorsion. Then

$$
\operatorname{corank}_{\mathbb{Z}_{p}}\left(\operatorname{Sel}_{p}^{-}(E / F)\right) \equiv \lambda_{E}^{-}(\bmod 2)
$$

where $\lambda_{E}^{-}$denotes the Iwasawa $\lambda$-invariant of the Pontryagin dual of $\operatorname{Sel}_{p}^{-}\left(E / F_{c y c}\right)$.

## Corollary

Let $E$ be an elliptic curve defined over a number field $F$ with good, supersingular reduction at primes dividing $p$. Assume that $\operatorname{Sel}_{p}^{-}\left(E / F_{c y c}\right)$ is $\Lambda$-cotorsion. Then

$$
s_{p}(E / F) \equiv \lambda_{E}^{-}(\bmod 2)
$$

## Comparison of local Iwasawa invariants

## Theorem (Hachimori-Matsuno)

Let $p \neq \ell$ be prime numbers. Let $k$ be a finite extension of $\mathbb{Q}_{\ell}$ containing $\mu_{p}$. Put $k_{\infty}=k\left(\mu_{p^{\infty}}\right)$. Let $E$ be an elliptic curve defined over $k$. Then we have the following. (1) If $E$ has good reduction over $k_{\infty}$, then

$$
E\left(k_{\infty}\right)_{p^{\infty}} \cong \begin{cases}E_{p^{\infty}} & \text { if } E(k)_{p} \neq 0, \\ 0 \text { if } E(k)_{p}=0 .\end{cases}
$$

(2) If $E$ has split multiplicative reduction over $k_{\infty}$, then there exists an element $q \in k^{\times}$and $m \in \mathbb{Z}^{+} \cup\{0\}$ s.t. $E\left(k_{\infty}\right)_{p^{\infty}}$ is isomorphic to the subgroup of $k_{\infty}^{\times} / q^{Z}$ generated by $\mu_{p^{\infty}}$ and $q^{1 / p^{m}}$ as a $\operatorname{Gal}\left(k_{\infty} / k_{1}\right)$-module.
(3) If $E$ has non-split multiplicative or additive reduction over $k_{\infty}$, then $E\left(k_{\infty}\right)_{p^{\infty}}$ is finite. Moreover, if $p \geq 5$ or $E$ has non-split multiplicative reduction, then $E\left(k_{\infty}\right)_{p^{\infty}}=0$.

## Comparison of local Iwasawa invariants

## Lemma 1 (Good - Good)

Let $v$ be a finite prime of $F$ with $v \nmid p$ and $w$ be a prime of $F_{c y c}$ with $w \mid v$. Let $E_{1}$ and $E_{2}$ be two elliptic curves with good reduction at $v$ and $E_{1}[p] \cong E_{2}[p]$, then $\sigma_{E_{1}}^{w}=\sigma_{E_{2}}^{w}$.

For an elliptic curve $E$ over $F$, consider the following exact sequence of Galois modules

$$
0 \longrightarrow E[p] \longrightarrow E\left[p^{\infty}\right] \xrightarrow{p} E\left[p^{\infty}\right] \longrightarrow 0
$$

where the map $p$ denotes multiplication by $p$. From the long exact sequence of Galois cohomology w.r.t. $G=\operatorname{Gal}\left(\bar{F}_{v} / F_{c y c, w}\right)$, we get the following exact sequence

$$
0 \longrightarrow \frac{\mathrm{H}^{0}\left(G, E\left[p^{\infty}\right]\right)}{p \mathrm{H}^{0}\left(G, E\left[p^{\infty}\right]\right)} \longrightarrow \mathrm{H}^{1}(G, E[p]) \longrightarrow \mathrm{H}^{1}\left(G, E\left[p^{\infty}\right]\right)[p] \longrightarrow 0
$$

- Since $E_{i}$ has good reduction at $v, \mathrm{H}^{0}\left(G, E_{i}\left[p^{\infty}\right]\right)$ is divisible for $i=1,2$.
- $\mathrm{H}^{1}\left(G, E\left[p^{\infty}\right]\right)$ is divisible, therefore

$$
\operatorname{corank}_{\mathbb{Z}_{p}} \mathrm{H}^{1}\left(G, E\left[p^{\infty}\right]\right)=\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{H}^{1}\left(G, E\left[p^{\infty}\right]\right)[p]
$$

## Comparison of local Iwasawa invariants

## Lemma 3 (Good - Additive)

(1) Let $v$ be a finite prime of $F$ with $v \nmid p$. Then it is not possible to have elliptic curves $E_{1}$ and $E_{2}$ such that $E_{1}$ has good reduction at $v, E_{2}$ has additive reduction at $v$ and $E_{1}[p] \cong E_{2}[p]$.

## Comparison of local Iwasawa invariants

## Lemma 3 (Good - Additive)

(1) Let $v$ be a finite prime of $F$ with $v \nmid p$. Then it is not possible to have elliptic curves $E_{1}$ and $E_{2}$ such that $E_{1}$ has good reduction at $v, E_{2}$ has additive reduction at $v$ and $E_{1}[p] \cong E_{2}[p]$.

Assume $E$ has multiplicative reduction at $p$ and $v$ be a finite prime of $F$ with $v \nmid p$. Let $\delta: G_{v} / I_{v} \longrightarrow\{ \pm 1\}$ be the unique non-trivial unramified quadratic character of $G_{v}$ if $E$ has non-split multiplicative reduction, and let $\delta$ be the trivial character if $E$ has split multiplicative reduction. Then we have

$$
\left.\rho_{E, p}\right|_{G_{v}} \sim\left(\begin{array}{cc}
\epsilon_{p} & * \\
0 & 1
\end{array}\right) \otimes \delta
$$

where $\epsilon_{p}$ is the $p$-adic cyclotomic character and

$$
\left.\bar{\rho}_{E, p}\right|_{G_{v}} \sim\left(\begin{array}{cc}
\overline{\epsilon_{p}} & \psi \\
0 & 1
\end{array}\right) \otimes \delta .
$$

## Comparison of local Iwasawa invariants

## Lemma 4 (Multiplicative - Additive)

Let $p \geq 5$ and $v$ be a finite prime of $F$ with $v \nmid p$. Then it is not possible to have elliptic curves $E_{1}$ and $E_{2}$ such that $E_{1}$ has multiplicative reduction at $v, E_{2}$ has additive reduction at $v$ and $E_{1}[p] \cong E_{2}[p]$.

Proof: First, suppose that $E_{1}$ has split multiplicative reduction at $v$. Let $F^{\prime}:=F_{v}\left(\mu_{p}\right)$ and $G^{\prime \prime}:=\operatorname{Gal}\left(\bar{F}_{v} / F_{c y c, w}^{\prime}\right)$. Since $F^{\prime}$ is unramified outside $p$, the reduction type at $v$ does not change for $E_{1}$ and $E_{2}$ over $F^{\prime}$. Since $p \geq 5$, from [HM ] we have $E_{2}\left[p^{\infty}\right]\left(F_{v}\left(\mu_{p^{\infty}}\right)\right)=0$ hence $E_{2}\left(F_{c y c, w}^{\prime}\right)[p]=0$. Now it follows from the above representation that

$$
\left.\bar{\rho}_{E_{1}, p}\right|_{G^{\prime \prime}} \sim\left(\begin{array}{cc}
1 & \psi \\
0 & 1
\end{array}\right)
$$

which implies $E_{1}\left(F_{c y c, w}^{\prime}\right)[p] \neq 0$, a contradiction to the fact that $E_{1}[p] \cong E_{2}[p]$. Hence it is not possible to have elliptic curves $E_{1}$ and $E_{2}$ with one having split multiplicative reduction and other having additive reduction at $v$.

## Root number

- Let $E / \mathbb{Q}$ be an elliptic curve of conductor $N$.
- Let $L(s, E):=\prod_{p \nmid N}\left(1-a_{p} p^{-s}+p^{-2 s}\right)^{-1} \prod_{p \mid N}(\cdots)$ be the $L$-function attached to E.
- Let $\Lambda_{E}(s)=(2 \pi)^{-s} \Gamma(s) N^{s / 2} L(s, E)$.

Then by the Modularity Theorem,

$$
\Lambda_{E}(s)=w(E) \Lambda_{E}(2-s), w(E)= \pm 1 .
$$

## Root number

- Let $E / \mathbb{Q}$ be an elliptic curve of conductor $N$.
- Let $L(s, E):=\prod_{p \nmid N}\left(1-a_{p} p^{-s}+p^{-2 s}\right)^{-1} \prod_{p \mid N}(\cdots)$ be the $L$-function attached to E.
- Let $\Lambda_{E}(s)=(2 \pi)^{-s} \Gamma(s) N^{s / 2} L(s, E)$.

Then by the Modularity Theorem,

$$
\Lambda_{E}(s)=w(E) \Lambda_{E}(2-s), w(E)= \pm 1
$$

## Theorem

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good reduction at an odd prime $p$ and $E_{1}[p] \cong E_{2}[p]$. Then

$$
\begin{equation*}
\frac{w\left(E_{1} / F\right)}{w\left(E_{2} / F\right)}=(-1)^{\left|S_{E_{1}}\right|-\left|S_{E_{2}}\right|+|T|} \tag{2}
\end{equation*}
$$

## Root number

## Corollary

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good reduction at $p$ and $E_{1}[p] \cong E_{2}[p]$. Then under the assumptions of main theorem 1 ( $E_{i}$ have ordinary reduction at $p$ ) or main theorem 2 ( $E_{i}$ have supersingular reduction at $p$ ), we have

$$
\frac{w\left(E_{1} / F\right)}{w\left(E_{2} / F\right)}=\frac{(-1)^{s_{p}\left(E_{1} / F\right)}}{(-1)^{s_{p}\left(E_{2} / F\right)}}
$$

## Root number

## Corollary

Let $E_{1}$ and $E_{2}$ be two elliptic curves defined over $\mathbb{Q}$ with good reduction at $p$ and $E_{1}[p] \cong E_{2}[p]$. Then under the assumptions of main theorem 1 ( $E_{i}$ have ordinary reduction at $p$ ) or main theorem 2 ( $E_{i}$ have supersingular reduction at $p$ ), we have

$$
\frac{w\left(E_{1} / F\right)}{w\left(E_{2} / F\right)}=\frac{(-1)^{s_{p}\left(E_{1} / F\right)}}{(-1)^{s_{p}\left(E_{2} / F\right)}}
$$

In this context, we also recall the $p$-parity conjecture which states that for every elliptic curve $E$ defined over $F$,

$$
w(E / F)=(-1)^{s_{p}(E / F)} .
$$

The above corollary implies that if the $p$-parity conjecture is true for one of the congruent elliptic curves then it is also true for the other elliptic curve.

## Thank You

