Root numbers & parity of local Iwasawa invariants

Suman Ahmed

Postdoctoral Fellow IISER, Mohali

22nd December, 2016

(Joint work with Sudhanshu Shekhar & Aribam Chandrakant)

Contents

Introduction

- Definition
- Torsion points on elliptic curves & Galois module structure
- Iwasawa Theory
 - Iwasawa Modules
 - Selmer Group
 - Iwasawa Invariants

Main result

- Motivation
- Proof
- Counterexamples
- Main theorem 1
- Main theorem 1
- Supersingular elliptic curves
- Main theorem 2
- Guo's theorem for supersingular elliptic curves
- Comparison of local Iwasawa invariants

Root number

Introduction

Definition

An elliptic curve E/\mathbb{Q} is the locus of an equation

$$E: y^2 = x^3 + ax + b$$

where $a, b \in \mathbb{Q}$, together with a point ∞ (whose homogeneous coordinates are [0:1:0]), called the point at infinity and $-16(4a^3 + 27b^2) \neq 0$.

Introduction

Definition

An elliptic curve E/\mathbb{Q} is the locus of an equation

$$E: y^2 = x^3 + ax + b$$

where $a, b \in \mathbb{Q}$, together with a point ∞ (whose homogeneous coordinates are [0:1:0]), called the point at infinity and $-16(4a^3 + 27b^2) \neq 0$.

Mordell-Weil Theorem

Let *E* be an elliptic curve defined over a number field *K*. Then

 $E(K) \cong \mathbb{Z}^r \times T.$

We call *r* the rank of *E* over *K*, and *T* the torsion subgroup of E(K).

Torsion points on elliptic curves & Galois module structure

Let E/\mathbb{Q} be an elliptic curve and let $n \ge 2$ be an integer. Then

$$E[n](\bar{\mathbb{Q}}) \cong \frac{\mathbb{Z}}{n\mathbb{Z}} \times \frac{\mathbb{Z}}{n\mathbb{Z}}$$

the isomorphism being one between abstract groups.

Torsion points on elliptic curves & Galois module structure

Let E/\mathbb{Q} be an elliptic curve and let $n \ge 2$ be an integer. Then

$$E[n](\bar{\mathbb{Q}}) \cong \frac{\mathbb{Z}}{n\mathbb{Z}} \times \frac{\mathbb{Z}}{n\mathbb{Z}}$$

the isomorphism being one between abstract groups.

The absolute Galois group $G_{\overline{\mathbb{O}}/\mathbb{O}} \cup E[n]$, since if [n]P = O, then

$$[n](P^{\sigma}) = ([n]P)^{\sigma} = O^{\sigma} = O, \ \sigma \in G_{\overline{\mathbb{Q}}/\mathbb{Q}}$$

We thus obtain a mod n Galois representation

$$\bar{\rho}_{E,n}: G_{\bar{\mathbb{Q}}/\mathbb{Q}} \longrightarrow Aut(E[n]) \cong GL_2(\mathbb{Z}/n\mathbb{Z}),$$

where the later isomorphism involves choosing a basis for E[n].

Iwasawa Theory

Iwasawa theory is the study of \mathbb{Z}_p -extensions of fields where \mathbb{Z}_p denotes the set of p-adic integers.

If F/K is a \mathbb{Z}_p -extension, Galois theory shows that for each integer $n \ge 0$ there is a unique intermediate field $K_n, K \subset K_n \subset F$, with $\text{Gal}(K_n/K) = \mathbb{Z}/p^n\mathbb{Z}$, and then $F = \bigcup K_n$.

Write $\Gamma = Gal(F/K)$ and

$$\Lambda = \mathbb{Z}_p[[\Gamma]] = \varprojlim \mathbb{Z}_p[Gal(K_n/K)].$$

Theorem

 Λ is isomorphic to a power series ring $\mathbb{Z}_p[[T]]$.

Definition

Two Λ -modules M and N are said to be *pseudo-isomorphic* $(M \sim N)$ if there is a homomorphism $M \longrightarrow N$ with finite kernel and co-kernel.

Definition

Two Λ -modules M and N are said to be *pseudo-isomorphic* $(M \sim N)$ if there is a homomorphism $M \longrightarrow N$ with finite kernel and co-kernel.

Structure theorem of finitely generated Λ -modules

Let M be a finitely generated Λ -module. Then

$$M \sim \Lambda^r \oplus (\bigoplus_{i=1}^s \Lambda/(p^{n_i})) \oplus (\bigoplus_{i=1}^t \Lambda/(f_j(T)^{m_j}))$$

where $r, s, t, n_i, m_j \in \mathbb{N}$ and $f_j(T)$ are distinguished and irreducible. This decomposition is uniquely determined by M.

Selmer Group

Let *v* runs over all primes of *K*, archimedean and non-archimedean. If $[K : \mathbb{Q}] < \infty$ then K_v is the completion of *K* at *v*. Otherwise, we take K_v to be the union of the completions at *v* of all finite extensions of \mathbb{Q} contained in *K*. Then the Selmer and Tate-Shafarevich groups for *E* over *K* are defined by

$$\operatorname{Sel}_{E}(K) := \operatorname{ker}\left(\operatorname{H}^{1}(K, E(\bar{K})_{\operatorname{tors}}) \longrightarrow \prod_{v} \operatorname{H}^{1}(K_{v}, E(\bar{K}_{v}))\right)$$

and

$$\mathrm{III}_{E}(K) := \ker \left(\mathrm{H}^{1}(K, E(\bar{K})) \longrightarrow \prod_{\nu} \mathrm{H}^{1}(K_{\nu}, E(\bar{K}_{\nu})) \right)$$

Selmer Group

Let *v* runs over all primes of *K*, archimedean and non-archimedean. If $[K : \mathbb{Q}] < \infty$ then K_v is the completion of *K* at *v*. Otherwise, we take K_v to be the union of the completions at *v* of all finite extensions of \mathbb{Q} contained in *K*. Then the Selmer and Tate-Shafarevich groups for *E* over *K* are defined by

$$\operatorname{Sel}_{E}(K) := \operatorname{ker}\left(\operatorname{H}^{1}(K, E(\bar{K})_{\operatorname{tors}}) \longrightarrow \prod_{v} \operatorname{H}^{1}(K_{v}, E(\bar{K}_{v}))\right)$$

and

$$\mathrm{III}_{E}(K) := \ker \left(\mathrm{H}^{1}(K, E(\bar{K})) \longrightarrow \prod_{v} \mathrm{H}^{1}(K_{v}, E(\bar{K}_{v})) \right)$$

The *p*-primary subgroup of $Sel_E(K)$ is given by

$$\operatorname{Sel}_{E}(K)_{p} = \operatorname{ker}\left(\operatorname{H}^{1}(K, E[p^{\infty}]) \longrightarrow \prod_{v} \operatorname{H}^{1}(K_{v}, E(\bar{K}_{v}))\right)$$

The Selmer and Tate-Shafarevich groups for E over K fit into the following short exact sequence

$$0 \longrightarrow E(K) \otimes \mathbb{Q}/\mathbb{Z} \longrightarrow \operatorname{Sel}_{E}(K) \longrightarrow \operatorname{III}_{E}(K) \longrightarrow 0$$

Notice that

$$E(K)\otimes \mathbb{Q}/\mathbb{Z}\cong (\mathbb{Z}^r\times T)\otimes \mathbb{Q}/\mathbb{Z}\cong (\mathbb{Q}/\mathbb{Z})^r$$

Therefore finiteness of $\coprod_E(K)$ and knowledge of the structure of $\operatorname{Sel}_E(K)$ would give an upper bound on the rank of *E* over *K*.

Iwasawa Invariants

Let *p* be a prime where *E* has good ordinary reduction. Let \mathbb{Z}_p denote the ring of *p*-adic integers, and \mathbb{Q}^{cyc} be the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} with $\Gamma = \text{Gal}(\mathbb{Q}^{cyc}/\mathbb{Q}) \cong \mathbb{Z}_p$.

The *Pontryagin dual* $X(E/\mathbb{Q}^{cyc})$ of $Sel(E[p^{\infty}]/\mathbb{Q}^{cyc})$ is a finitely generated torsion Λ -module where $\Lambda = \mathbb{Z}_p[[\Gamma]] \cong \mathbb{Z}_p[[T]]$. Hence, by the classification of finitely generated Λ -modules one has a pseudo isomorphism

$$X(E/\mathbb{Q}^{cyc}) \sim (\bigoplus_{i=1}^{s} \Lambda/(f_i(T)^{a_i})) \oplus (\bigoplus_{j=1}^{t} \Lambda/(p^{\mu_E^j}))$$

where *s*, *t*, $a_i, \mu_i \in \mathbb{N}$, f_i is distinguished and irreducible for all *i*.

Iwasawa Invariants

Let *p* be a prime where *E* has good ordinary reduction. Let \mathbb{Z}_p denote the ring of *p*-adic integers, and \mathbb{Q}^{cyc} be the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} with $\Gamma = \text{Gal}(\mathbb{Q}^{cyc}/\mathbb{Q}) \cong \mathbb{Z}_p$.

The *Pontryagin dual* $X(E/\mathbb{Q}^{cyc})$ of $Sel(E[p^{\infty}]/\mathbb{Q}^{cyc})$ is a finitely generated torsion Λ -module where $\Lambda = \mathbb{Z}_p[[\Gamma]] \cong \mathbb{Z}_p[[T]]$. Hence, by the classification of finitely generated Λ -modules one has a pseudo isomorphism

$$X(E/\mathbb{Q}^{cyc}) \sim (\bigoplus_{i=1}^{s} \Lambda/(f_i(T)^{a_i})) \oplus (\bigoplus_{j=1}^{t} \Lambda/(p^{\mu_E'}))$$

where *s*, *t*, *a_i*, $\mu_i \in \mathbb{N}$, *f_i* is distinguished and irreducible for all *i*.

Since, the a_i 's and the μ_E^{l} 's are positive integers, one can define the algebraic lwasawa invariants λ_E and μ_E by

$$\lambda_E = \sum_{i=1}^s a_i \cdot deg(f_i(T)), \quad \mu_E = \sum_{j=1}^t \mu_E^j.$$

Motivation

For i = 1, 2, let

- E_i Elliptic curve defined over \mathbb{Q} with good and ordinary reduction at p.
- N_i Conductor of E_i over F.
- $\overline{N_i}$ The prime to *p* conductor of the Galois module $E_i[p]$.
- Σ The finite set of primes of F containing the primes of bad reduction of E₁ and E₂, the infinite primes and the primes above p.

Put

$$\Sigma_0 := \{ v \in \Sigma \mid v \mid N_1 / \overline{N_1} \text{ or } v \mid N_2 / \overline{N_2} \}.$$

- S_{E_i} Set of primes $v \in \Sigma_0$ such that E_i has split multiplicative reduction at v.
- $s_p(E_i/F)$ Rank of the Pontryagin dual of $Sel_p(E_i/F)$.

Motivation

Theorem (Shekhar, 2015)

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good and ordinary reduction at an odd prime p. Further assume the following (a) $E_1[p]$ is an irreducible $\operatorname{Gal}(\overline{F}/F)$ -module. (b) $\mu_p \subseteq F$ where μ_p denotes the group of p-th roots of unity. (c) $\operatorname{Sel}_p(E_1/F_{cyc})[p]$ is finite where F_{cyc} denote the cyclotomic \mathbb{Z}_p -extension of F. If $E_1[p] \cong E_2[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ modules then

$$s_p(E_1/F) + |S_{E_1}| \equiv s_p(E_2/F) + |S_{E_2}| \pmod{2}$$

Motivation

Theorem (Shekhar, 2015)

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good and ordinary reduction at an odd prime *p*. Further assume the following (a) $E_1[p]$ is an irreducible $\operatorname{Gal}(\overline{F}/F)$ -module. (b) $\mu_p \subseteq F$ where μ_p denotes the group of *p*-th roots of unity. (c) $\operatorname{Sel}_p(E_1/F_{cyc})[p]$ is finite where F_{cyc} denote the cyclotomic \mathbb{Z}_p -extension of *F*. If $E_1[p] \cong E_2[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ modules then

$$s_p(E_1/F) + |S_{E_1}| \equiv s_p(E_2/F) + |S_{E_2}| \pmod{2}$$

p-parity Conjecture

$$s_p(E/F) \equiv a(E/F) \pmod{2}$$

where a(E/F) denotes the order of zero of L(E/F, s) (the Hasse-Weil *L*-function of *E* over *F*) at s = 1.

Definition of Imprimitive Σ_0 -Selmer group

Let $\Sigma_0 \subset \Sigma \setminus \{ \text{ primes above p and the infinite primes} \}.$ Then

$$\operatorname{Sel}_{p}^{\Sigma_{0}}(E/F_{\operatorname{cyc}}) := \operatorname{Ker}\left(\operatorname{H}^{1}(F_{\Sigma}/F_{\operatorname{cyc}}, E[p^{\infty}]) \longrightarrow \prod_{l \in \Sigma - \Sigma_{0}} \mathcal{H}_{v}(F_{\operatorname{cyc}}, E[p^{\infty}])\right).$$

Definition of Imprimitive Σ_0 -Selmer group

Let $\Sigma_0 \subset \Sigma \setminus \{ \text{ primes above p and the infinite primes} \}.$ Then

$$\operatorname{Sel}_{p}^{\Sigma_{0}}(E/F_{\operatorname{cyc}}) := \operatorname{Ker}\left(\operatorname{H}^{1}(F_{\Sigma}/F_{\operatorname{cyc}}, E[p^{\infty}]) \longrightarrow \prod_{l \in \Sigma - \Sigma_{0}} \mathcal{H}_{v}(F_{\operatorname{cyc}}, E[p^{\infty}])\right).$$

Under the assumptions (a) and (c), we have $\lambda_{E_1}^{\Sigma_0} = \lambda_{E_2}^{\Sigma_0}$.

For a prime $v \nmid p$ of F, let $\tau_{E_1}^v$ denote the \mathbb{Z}_p -rank of the Pontryagin dual of $\mathcal{H}_v(F_{cyc}, E_1)$ where

$$\mathcal{H}_{v}(F_{\text{cyc}}, E_{1}) := \prod_{w|v} \mathrm{H}^{1}(F_{\text{cyc}, w}, E_{1}[p^{\infty}]).$$

From [Sh, Lemma 3.1], we have

$$\lambda_{E_i}^{\Sigma_0} = \lambda_{E_i} + \sum_{\mathbf{v} \in \Sigma_0} \tau_{E_i}^{\mathbf{v}}, i = 1, 2.$$

Now for each $v \in \Sigma_0$, choose a prime *w* of F_{cyc} dividing *v*. Let *P* be the set consisting of all such *w* and

$$\sigma_{E_i}^{w} := \operatorname{corank}_{\mathbb{Z}_p} \mathrm{H}^1(F_{cyc,w}, E_i[p^{\infty}]).$$

Then [Sh, Lemma 3.2] implies

$$\lambda_{E_i}^{\Sigma_0} \equiv \lambda_{E_i} + \sum_{w \in P} \sigma_{E_i}^w \pmod{2}, \ i = 1, 2.$$

Therefore

$$\lambda_{E_1} + \sum_{w \in P} \sigma_{E_1}^w \equiv \lambda_{E_2} + \sum_{w \in P} \sigma_{E_2}^w \pmod{2}.$$

From the comparisons of $\sigma_{E_i}^w$, i = 1, 2, we have

$$\lambda_{E_1} + |S_{E_1}| \equiv \lambda_{E_2} + |S_{E_2}| \pmod{2}.$$

Now for each $v \in \Sigma_0$, choose a prime *w* of F_{cyc} dividing *v*. Let *P* be the set consisting of all such *w* and

$$\sigma_{E_i}^{w} := \operatorname{corank}_{\mathbb{Z}_p} \mathrm{H}^1(F_{cyc,w}, E_i[p^{\infty}]).$$

Then [Sh, Lemma 3.2] implies

$$\lambda_{E_i}^{\Sigma_0} \equiv \lambda_{E_i} + \sum_{w \in P} \sigma_{E_i}^w \pmod{2}, \ i = 1, 2.$$

Therefore

$$\lambda_{E_1} + \sum_{w \in P} \sigma_{E_1}^w \equiv \lambda_{E_2} + \sum_{w \in P} \sigma_{E_2}^w \pmod{2}.$$

From the comparisons of $\sigma_{E_i}^w$, i = 1, 2, we have

$$\lambda_{E_1} + |S_{E_1}| \equiv \lambda_{E_2} + |S_{E_2}| \pmod{2}.$$

Theorem (Guo)

Let *E* be an elliptic curve defined over *F* and suppose that the Pontryagin dual of $\operatorname{Sel}_p(E_1/F_{cyc})$ is Λ - torsion. Then

$$s_p(E/F) \equiv \lambda_E \pmod{2}$$
.

Counterexamples

Assume $\mu_p \not\subseteq F$. Then for p = 3, we have the following counterexamples to the above theorem.

Example 1 :

 $E_1: y^2 + y = x^3 - x^2 - 10x - 20, (11a1)$ $E_2: y^2 + xy = x^3 + x^2 - 2x - 7, (121c1)$

 E_1 has split multiplicative reduction while E_2 has additive reduction at 11. Both have rank 0 and $E_1[3] \cong E_2[3]$.

Counterexamples

Assume $\mu_p \not\subseteq F$. Then for p = 3, we have the following counterexamples to the above theorem.

Example 1 :

 $E_1: y^2 + y = x^3 - x^2 - 10x - 20, (11a1)$ $E_2: y^2 + xy = x^3 + x^2 - 2x - 7, (121c1)$

 E_1 has split multiplicative reduction while E_2 has additive reduction at 11. Both have rank 0 and $E_1[3] \cong E_2[3]$.

Example 2 :

$$E_3: y^2 = x^3 - x^2 - 4133x + 186637, (4400m2)$$
$$E_4: y^2 = x^3 - x^2 - 1008x + 48512, (48400ch1)$$

 E_3 has non-split multiplicative reduction at 11 and additive reduction at 2,5 while E_4 has additive reduction at 2,5,11. E_3 and E_4 have rank 0 and 1 respectively and $E_3[3] \cong E_4[3]$.

Main Theorem 1 (for ordinary elliptic curves)

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good and ordinary reduction at an odd prime p. We further assume the following. (a) $E_1[p]$ is an irreducible $\operatorname{Gal}(\overline{F}/F)$ -module. (b) $\operatorname{Sel}_p(E_1/F_{cyc})[p]$ is finite. If $E_1[p] \cong E_2[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ modules then

$$s_p(E_1/F) + |S_{E_1}| \equiv s_p(E_2/F) + |S_{E_2}| + |T| \pmod{2}$$

where *T* denotes the set of primes *v* of *F* in Σ_0 such that $\mu_p \not\subset F_v$, one of the elliptic curves has multiplicative reduction and other has additive reduction at *v*.

Main Theorem 1 (for ordinary elliptic curves)

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good and ordinary reduction at an odd prime p. We further assume the following. (a) $E_1[p]$ is an irreducible $\operatorname{Gal}(\overline{F}/F)$ -module. (b) $\operatorname{Sel}_p(E_1/F_{cyc})[p]$ is finite. If $E_1[p] \cong E_2[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ modules then

$$s_p(E_1/F) + |S_{E_1}| \equiv s_p(E_2/F) + |S_{E_2}| + |T| \pmod{2}$$

where *T* denotes the set of primes *v* of *F* in Σ_0 such that $\mu_p \not\subset F_v$, one of the elliptic curves has multiplicative reduction and other has additive reduction at *v*.

Note that *T* can be non-empty only when p = 3.

Supersingular elliptic curves

Definition

For $n \ge 0$, we define $\operatorname{Sel}_p^{\pm}(E/F_n)$ to be the kernel of

$$\mathbf{f_n}: \mathrm{H}^{1}(F_{n,r}A) \longrightarrow \prod_{v} \frac{\mathrm{H}^{1}(F_{n,v},A)}{E^{\pm}(F_{n,v}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}}$$
(1)

and $\operatorname{Sel}_p^{\pm}(E/F_{cyc}) := \varinjlim_n \operatorname{Sel}_p^{\pm}(E/F_n)$. Here *v* ranges over all places of F_n , $F_{n,v}$ is the completion of F_n at *v* and the map is induced by the restrictions of the Galois cohomology groups. For notational convenience, let $F_{-1,v} = F_{0,v} = F_v$. Then

$$E^{+}(F_{n,v}) := \{P \in E(F_{n,v}) \mid \operatorname{Tr}_{n/m+1}P \in E(F_{m,v}) \text{ for even } m \ (0 \le m < n)\}$$
$$E^{-}(F_{n,v}) := \{P \in E(F_{n,v}) \mid \operatorname{Tr}_{n/m+1}P \in E(F_{m,v}) \text{ for odd } m \ (-1 \le m < n)\}$$
$$\operatorname{re}\operatorname{Tr}_{n/m} : E(F_{n,v}) \longrightarrow E(F_{m,v}) \text{ denotes the trace map for } n \ge m.$$

whe

Remark

For
$$n = 0$$
, we have $E^{-}(F_v) = E(F_v)$ hence $\operatorname{Sel}_p^{-}(E/F) = \operatorname{Sel}_p(E/F)$.

Assumption

For $E = E_1 \text{ or } E_2$

(*i*) E[p] is an irreducible $Gal(\overline{F}/F)$ -module.

(ii) Sel⁻_p $(E/F_{cyc})[p]$ is a finite group.

Remark

For
$$n = 0$$
, we have $E^{-}(F_v) = E(F_v)$ hence $\operatorname{Sel}_p^{-}(E/F) = \operatorname{Sel}_p(E/F)$.

Assumption

For $E = E_1 \text{ or } E_2$

(*i*) E[p] is an irreducible $Gal(\overline{F}/F)$ -module.

(ii) Sel⁻_p $(E/F_{cyc})[p]$ is a finite group.

Main Theorem 2 (for supersingular elliptic curves)

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good, supersingular reduction at an odd prime p and $a_p = 0$. We further assume the following. (a) $E_1[p]$ is an irreducible $\operatorname{Gal}(\overline{F}/F)$ -module. (b) $\operatorname{Sel}_p^-(E_1/F_{cyc})[p]$ is finite. (c) p splits completely over F. If $E_1[p] \cong E_2[p]$ as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ modules then

$$s_p(E_1/F) + |S_{E_1}| \equiv s_p(E_2/F) + |S_{E_2}| + |T| \pmod{2}$$

Guo's theorem for supersingular elliptic curves

Theorem

Let *E* be an elliptic curve defined over a number field *F* with good, supersingular reduction at primes dividing *p*. Assume that $\operatorname{Sel}_p^-(E/F_{cyc})$ is Λ -cotorsion. Then

$$corank_{\mathbb{Z}_p}(\operatorname{Sel}_p^-(E/F)) \equiv \lambda_E^-(mod \ 2)$$

where λ_E^- denotes the Iwasawa λ -invariant of the Pontryagin dual of Sel_p⁻(E/F_{cyc}).

Corollary

Let *E* be an elliptic curve defined over a number field *F* with good, supersingular reduction at primes dividing *p*. Assume that $\operatorname{Sel}_p^-(E/F_{cyc})$ is Λ -cotorsion. Then

$$s_p(E/F) \equiv \lambda_E^- \pmod{2}$$

Theorem (Hachimori-Matsuno)

Let $p \neq \ell$ be prime numbers. Let k be a finite extension of \mathbb{Q}_{ℓ} containing μ_p . Put $k_{\infty} = k(\mu_{p^{\infty}})$. Let E be an elliptic curve defined over k. Then we have the following. (1) If E has good reduction over k_{∞} , then

$$E(k_{\infty})_{p^{\infty}} \cong \begin{cases} E_{p^{\infty}} & \text{if } E(k)_{p} \neq 0, \\ 0 & \text{if } E(k)_{p} = 0. \end{cases}$$

(2) If *E* has split multiplicative reduction over k_{∞} , then there exists an element $q \in k^{\times}$ and $m \in \mathbb{Z}^+ \cup \{0\}$ s.t. $E(k_{\infty})_{p^{\infty}}$ is isomorphic to the subgroup of $k_{\infty}^{\times}/q^{\mathbb{Z}}$ generated by $\mu_{p^{\infty}}$ and q^{1/p^m} as a Gal (k_{∞}/k_1) -module.

(3) If *E* has non-split multiplicative or additive reduction over k_{∞} , then $E(k_{\infty})_{p^{\infty}}$ is finite. Moreover, if $p \ge 5$ or *E* has non-split multiplicative reduction, then $E(k_{\infty})_{p^{\infty}} = 0$.

Lemma 1 (Good – Good)

Let *v* be a finite prime of *F* with $v \nmid p$ and *w* be a prime of F_{cyc} with $w \mid v$. Let E_1 and E_2 be two elliptic curves with good reduction at *v* and $E_1[p] \cong E_2[p]$, then $\sigma_{E_1}^w = \sigma_{E_2}^w$.

For an elliptic curve *E* over *F*, consider the following exact sequence of Galois modules

$$0 \longrightarrow E[p] \longrightarrow E[p^{\infty}] \xrightarrow{p} E[p^{\infty}] \longrightarrow 0$$

where the map *p* denotes multiplication by *p*. From the long exact sequence of Galois cohomology w.r.t. $G = \text{Gal}(\overline{F}_v/F_{cyc,w})$, we get the following exact sequence

$$0 \longrightarrow \frac{\mathrm{H}^{0}(G, E[p^{\infty}])}{p\mathrm{H}^{0}(G, E[p^{\infty}])} \longrightarrow \mathrm{H}^{1}(G, E[p]) \longrightarrow \mathrm{H}^{1}(G, E[p^{\infty}])[p] \longrightarrow 0$$

Since E_i has good reduction at v, H⁰(G, E_i[p[∞]]) is divisible for i = 1, 2.
H¹(G, E[p[∞]]) is divisible, therefore

$$\operatorname{corank}_{\mathbb{Z}_p} \operatorname{H}^1(G, E[p^{\infty}]) = \dim_{\mathbb{F}_p} \operatorname{H}^1(G, E[p^{\infty}])[p].$$

Lemma 3 (Good – Additive)

(1) Let v be a finite prime of F with $v \nmid p$. Then it is not possible to have elliptic curves E_1 and E_2 such that E_1 has good reduction at v, E_2 has additive reduction at v and $E_1[p] \cong E_2[p]$.

Lemma 3 (Good – Additive)

(1) Let v be a finite prime of F with $v \nmid p$. Then it is not possible to have elliptic curves E_1 and E_2 such that E_1 has good reduction at v, E_2 has additive reduction at v and $E_1[p] \cong E_2[p]$.

Assume *E* has multiplicative reduction at *p* and *v* be a finite prime of *F* with $v \nmid p$. Let $\delta : G_v/I_v \longrightarrow \{\pm 1\}$ be the unique non-trivial unramified quadratic character of G_v if *E* has non-split multiplicative reduction, and let δ be the trivial character if *E* has split multiplicative reduction. Then we have

$$\rho_{E,p} \mid_{G_v} \sim \left(\begin{array}{cc} \epsilon_p & * \\ 0 & 1 \end{array} \right) \otimes \delta$$

where ϵ_p is the *p*-adic cyclotomic character and

$$\overline{\rho}_{E,p} \mid_{G_v} \sim \left(\begin{array}{cc} \overline{\epsilon_p} & \psi \\ 0 & 1 \end{array} \right) \otimes \delta.$$

Lemma 4 (Multiplicative – Additive)

Let $p \ge 5$ and v be a finite prime of F with $v \nmid p$. Then it is not possible to have elliptic curves E_1 and E_2 such that E_1 has multiplicative reduction at v, E_2 has additive reduction at v and $E_1[p] \cong E_2[p]$.

Proof : First, suppose that E_1 has split multiplicative reduction at *v*. Let $F' := F_v(\mu_p)$ and $G'' := \text{Gal}(\overline{F}_v/F'_{cyc,w})$. Since F' is unramified outside *p*, the reduction type at *v* does not change for E_1 and E_2 over F'. Since $p \ge 5$, from [**HM**] we have $E_2[p^{\infty}](F_v(\mu_{p^{\infty}})) = 0$ hence $E_2(F'_{cyc,w})[p] = 0$. Now it follows from the above representation that

$$\overline{\rho}_{E_1,p} \mid_{G''} \sim \left(\begin{array}{cc} 1 & \psi \\ 0 & 1 \end{array} \right)$$

which implies $E_1(F'_{cyc,w})[p] \neq 0$, a contradiction to the fact that $E_1[p] \cong E_2[p]$. Hence it is not possible to have elliptic curves E_1 and E_2 with one having split multiplicative reduction and other having additive reduction at v.

- Let E/\mathbb{Q} be an elliptic curve of conductor N.
- Let $L(s, E) := \prod_{p \nmid N} (1 a_p p^{-s} + p^{-2s})^{-1} \prod_{p \mid N} (\cdots)$ be the *L*-function attached to *E*.
- Let $\Lambda_E(s) = (2\pi)^{-s} \Gamma(s) N^{s/2} L(s, E)$.

Then by the Modularity Theorem,

$$\Lambda_E(s) = w(E)\Lambda_E(2-s), \ w(E) = \pm 1.$$

- Let E/\mathbb{Q} be an elliptic curve of conductor N.
- Let $L(s, E) := \prod_{p \nmid N} (1 a_p p^{-s} + p^{-2s})^{-1} \prod_{p \mid N} (\cdots)$ be the *L*-function attached to *E*.
- Let $\Lambda_E(s) = (2\pi)^{-s} \Gamma(s) N^{s/2} L(s, E)$.

Then by the Modularity Theorem,

$$\Lambda_E(s) = w(E)\Lambda_E(2-s), \ w(E) = \pm 1.$$

Theorem

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good reduction at an odd prime p and $E_1[p] \cong E_2[p]$. Then

$$\frac{w(E_1/F)}{w(E_2/F)} = (-1)^{|S_{E_1}| - |S_{E_2}| + |T|}.$$
(2)

Corollary

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good reduction at p and $E_1[p] \cong E_2[p]$. Then under the assumptions of main theorem 1 (E_i have ordinary reduction at p) or main theorem 2 (E_i have supersingular reduction at p), we have

$$\frac{w(E_1/F)}{w(E_2/F)} = \frac{(-1)^{s_p(E_1/F)}}{(-1)^{s_p(E_2/F)}}$$

Corollary

Let E_1 and E_2 be two elliptic curves defined over \mathbb{Q} with good reduction at p and $E_1[p] \cong E_2[p]$. Then under the assumptions of main theorem 1 (E_i have ordinary reduction at p) or main theorem 2 (E_i have supersingular reduction at p), we have

$$\frac{w(E_1/F)}{w(E_2/F)} = \frac{(-1)^{s_p(E_1/F)}}{(-1)^{s_p(E_2/F)}}$$

In this context, we also recall the *p*-parity conjecture which states that for every elliptic curve *E* defined over *F*,

$$w(E/F) = (-1)^{s_p(E/F)}.$$

The above corollary implies that if the *p*-parity conjecture is true for one of the congruent elliptic curves then it is also true for the other elliptic curve.

Thank You