On the Fourier coefficients of a Cohen-Eisenstein series

Srilakshmi Krishnamoorthy Inspire Faculty, I.I.T. Madras

Theoretical and Computational Aspects of the BSD Conjecture ICTS, Bangalore

Dec 22nd, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cohen-Eisenstein series

Let $N = p_1 p_2 \dots p_k M$ be a squarefree integer.

Let B be a definite quaternion algebra ramified at primes

 $p_1, p_2, ..., p_k$ and at ∞ .

Let \mathcal{O} be an order of level N.

Let $I_1, I_2, ..., I_n$ be a set of left ideals representing the distinct ideal classes of \mathcal{O} , with $I_1 = \mathcal{O}$ and $R_1, R_2, ..., R_n$ be the respective right orders of each ideal I_i .

For each R_i , let L_i be the lattice $\mathbb{Z} + 2R_i$.

Denote the trace zero elements of L_i by S_i^0 .

For $b \in S_i^0$, let $\mathbb{N}(b)$ be the norm of b. For each i = 1 to n, Define

$$g_i = rac{1}{2} \sum_{b \in S_i^0} q^{\mathbb{N}(b)}, \ q = e^{2\pi i z}.$$

Cohen-Eisenstein series

The modular forms g_i are in the Kohnen's plus-space [the space of modular forms of weight 3/2 on Γ₀(4N) whose Fourier coefficients a_m are 0 if −m ≡ 2,3 (mod 4).]

• The Cohen-Eisenstein series \mathcal{G} is defined by $\mathcal{G} = \sum_{i=1}^{n} \frac{1}{w_i} g_i$.

Shimura Lift

Let f ∈ S₂(N) be a normalized newform. It corresponds to a one-dimensional eigenspace (v = (v₁, v₂, ..., v_n)), of the Brandt matrices {B_p} in B, such that B_pv = a_pv, where a_p is the eigenvalue satisfying T_pf = a_pf, for all p.

Let w_i be the order of the finite group $R_i^*/\pm 1$ for i=1 to n. Then

$$\mathcal{H} = \sum_{i=1}^{n} \frac{v_i}{w_i} g_i = \sum_d m_d q^d$$

is the weight 3/2 modular form which corresponds to f via the Shimura correspondence.

Shimura Lift

The modular form $\mathcal{H} = \sum_{i=1}^{n} \frac{v_i}{w_i} g_i = \sum_d m_d q^d$ is zero unless $\operatorname{sgn}(W_p) = \begin{cases} -1, & \text{for } p = p_i, i = 1 \text{ to } k \\ +1, & \text{for } p \mid M. \end{cases}$

・ロト・日本・モート モー うへぐ

• The Legendre symbol $\left(\frac{-d}{p}\right)$ is defined by

$$\left(\frac{-d}{p}\right) := \begin{cases} 1, & \text{if } p \text{ splits in } K \\ 0, & \text{if } p \text{ ramifies in } K \\ -1, & \text{if } p \text{ inert in } K. \end{cases}$$

• The Legendre symbol $\left(\frac{-d}{p}\right)$ is defined by

$$\left(\frac{-d}{p}\right) := \begin{cases} 1, & \text{if } p \text{ splits in } K \\ 0, & \text{if } p \text{ ramifies in } K \\ -1, & \text{if } p \text{ inert in } K. \end{cases}$$

Let *c* be the conductor of \mathcal{O}_d .

• The Legendre symbol $\left(\frac{-d}{p}\right)$ is defined by

$$\left(\frac{-d}{p}\right) := \begin{cases} 1, & \text{if } p \text{ splits in } K \\ 0, & \text{if } p \text{ ramifies in } K \\ -1, & \text{if } p \text{ inert in } K. \end{cases}$$

Let *c* be the conductor of \mathcal{O}_d .

• The Eichler symbol $\{\frac{-d}{p}\}$ is defined by

$$\left\{\frac{-d}{p}\right\} := \begin{cases} 1, & \text{if } p^2 \mid c\\ \left(\frac{-d}{p}\right), & \text{if } p^2 \nmid c. \end{cases}$$

Waldspurger's formula

▶ Let *D* be a natural number and -D be a fundamental discrimant. If $\left(\frac{-D}{p}\right)$ sgn $(W_p) \neq -1$ for every prime $p \mid N$, then the following Waldspurger's formula holds.

Waldspurger's formula

▶ Let *D* be a natural number and -D be a fundamental discrimant. If $\left(\frac{-D}{p}\right)$ sgn $(W_p) \neq -1$ for every prime $p \mid N$, then the following Waldspurger's formula holds.

$$\prod_{\substack{p\mid \frac{N}{\gcd(N,D)}}} (1+(\frac{-D}{p})sgn(W_p))L(f,1)L(f\otimes\epsilon_D,1) = \frac{2^{\omega(N)}(f,f)m_D^2}{\sqrt{D}\sum_{i=1}^n \frac{V_i^2}{w_i^2}}$$

where $\omega(N)$ is the number of distinct primes that divide N.

Gross's formula

► Theorem (Gross)

If N is prime and -D is a fundamental discriminant such that $\left(\frac{-D}{N}\right) \neq 1$, then the coefficients $\mathcal{G}(D)$ of the weight 3/2 Eisenstein series,

$$\mathcal{G}=\sum_{i=1}^nrac{1}{w_i}g_i=\sum_{i=1}^nrac{1}{2w_i}+\sum_{d>0}\mathcal{G}(d)q^d,$$

are given by

$$\mathcal{G}(D) = \frac{\left(1 - \left(\frac{-D}{N}\right)\right)}{2} \frac{h(D)}{u(D)}.$$

A Conjecture

What can we say about the coefficients when the level N is squarefree?

A Conjecture

What can we say about the coefficients when the level N is squarefree?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quattrini presented the following conjecture on the coefficients of $\ensuremath{\mathcal{G}}.$

A Conjecture

What can we say about the coefficients when the level N is squarefree?

Quattrini presented the following conjecture on the coefficients of $\mathcal{G}. \label{eq:Gamma}$

Conjecture (Quattrini)

Let B be a quaternion algebra ramified at exactly one finite prime p and let N = pM be a square free integer. Let $\mathcal{G} = \sum_{i=1}^{n} \frac{1}{w_i} g_i = \sum_{i=1}^{n} \frac{1}{2w_i} + \sum_{d>0} \mathcal{G}(d)q^d$. Let $D \in \mathbb{N}$ be such that -D is a fundamental discriminant and $\left(\frac{-D}{p}\right) \neq 1$, and $\left(\frac{-D}{q}\right) \neq -1$ for every prime $q \mid M$. If s(D) is the number of primes that divide N and ramify in $\mathbb{Q}(\sqrt{-D})$, then

$$\mathcal{G}(D) = \frac{2^{\omega(N)-s(D)-1}h(D)}{u(D)}.$$

Some Numerical Examples

E = 14A1 = [1, 0, 1, 4, -6] has conductor N = 14 and a 3-torsion point.

 $\operatorname{sgn}(W_7) = -1 \text{ and } \operatorname{sgn}(W_2) = +1.$

We consider the quaternion algebra ramified at the prime 7 and ∞ .

For $D \leq 1000$ such that -D is a fundamental discriminant and $\left(\frac{-D}{7}\right) \neq 1$ and $\left(\frac{-D}{2}\right) \neq -1$, the coefficients of \mathcal{G} are given by

$$\mathcal{G}(D) = \begin{cases} 2\frac{h(D)}{u(\mathcal{O}_D)}, & \text{if } 7 \text{ is inert and } 2 \text{ splits in } \mathcal{O}_D \\ \frac{h(D)}{u(\mathcal{O}_D)}, & \text{if } 7 \text{ is inert and } 2 \text{ ramified in } \mathcal{O}_D \\ \frac{h(D)}{u(\mathcal{O}_D)}, & \text{if } 7 \text{ is ramified and } 2 \text{ splits in } \mathcal{O}_D \\ \frac{1}{2}h(D), & \text{if } 7 \text{ and } 2 \text{ ramify in } \mathcal{O}_D. \end{cases}$$

Some Numerical Examples

E = 26A1 = [1, 0, 1, -5, -8] has conductor N = 26 and a 3-torsion point.

$$\operatorname{sgn}(W_{13}) = -1$$
 and $\operatorname{sgn}(W_2) = +1$.

We consider the quaternion algebra ramified at the prime 13 and $\infty.$

For $D \leq 1000$ such that -D is a fundamental discriminant and $\left(\frac{-D}{13}\right) \neq 1$ and $\left(\frac{-D}{2}\right) \neq -1$, we get

$$\mathcal{G}(D) = \begin{cases} 2\frac{h(D)}{u(\mathcal{O}_D)}, & \text{if } 13 \text{ is inert and } 2 \text{ splits in } \mathcal{O}_D \\ \frac{h(D)}{u(\mathcal{O}_D)}, & \text{if } 13 \text{ is inert and } 2 \text{ ramified in } \mathcal{O}_D \\ \frac{h(D)}{u(\mathcal{O}_D)}, & \text{if } 13 \text{ is ramified and } 2 \text{ splits in } \mathcal{O}_D \\ \frac{1}{2}\frac{h(D)}{u(\mathcal{O}_D)}, & \text{if } 13 \text{ and } 2 \text{ ramify in } \mathcal{O}_D. \end{cases}$$

Some Numerical Examples

E = 30A11 = [1, 0, 1, 1, 2] has a 2 and 3-torsion point. $sgn(W_3) = -1$ and $sgn(W_2) = sgn(W_5) = +1$. We consider the quaternion algebra ramified at the prime 3 and ∞ . For $D \le 1000$ such that -D is a fundamental discriminant and $(\frac{-D}{3}) \ne 1, (\frac{-D}{2}) \ne -1, (\frac{-D}{5}) \ne -1$, we get

$$\mathcal{G}(D) = \begin{cases} 2^{2} \frac{h(D)}{u(\mathcal{O}_{D})}, \\ 2 \frac{h(D)}{u(\mathcal{O}_{D})}, \\ \frac{h(D)}{u(\mathcal{O}_{D})}, \\ \frac{1}{2} \frac{h(D)}{u(\mathcal{O}_{D})}, \end{cases}$$

if 3 is inert and 2,5 split in \mathcal{O}_D if exactly one of the primes 2,3,5 ramifies in \mathcal{O}_D if exactly two of the primes ramify in \mathcal{O}_D if 2,3,5 all ramify in \mathcal{O}_D .

Main Theorem

Let *B* be a definite quaternion algebra ramified at $p_1, p_2, ..., p_k$ and at ∞ . Let $N = p_1 p_2 ... p_k M$ be a square free integer. Denote by $\mathcal{G} = \sum_{i=1}^n \frac{1}{w_i} g_i = \sum_{i=1}^n \frac{1}{2w_i} + \sum_{d>0} \mathcal{G}(d) q^d$. Let $D \in \mathbb{N}$ such that -D is a fundamental discriminant and $\left(\frac{-D}{p_i}\right) \neq 1$ for i = 1 to kand $\left(\frac{-D}{q}\right) \neq -1$ for every prime $q \mid M$, then

$$\mathcal{G}(D) = \frac{2^{\omega(N)-s(D)-1}h(D)}{u(D)}$$

Main Theorem

Let *B* be a definite quaternion algebra ramified at $p_1, p_2, ..., p_k$ and at ∞ . Let $N = p_1 p_2 ... p_k M$ be a square free integer. Denote by $\mathcal{G} = \sum_{i=1}^n \frac{1}{w_i} g_i = \sum_{i=1}^n \frac{1}{2w_i} + \sum_{d>0} \mathcal{G}(d) q^d$. Let $D \in \mathbb{N}$ such that -D is a fundamental discriminant and $\left(\frac{-D}{p_i}\right) \neq 1$ for i = 1 to kand $\left(\frac{-D}{q}\right) \neq -1$ for every prime $q \mid M$, then

$$\mathcal{G}(D) = \frac{2^{\omega(N)-s(D)-1}h(D)}{u(D)}.$$

Corollary

Quattrini's Conjecture holds by letting k = 1 in the above theorem.

Let K be a quadratic field over \mathbb{Q} such that the primes $p_1, p_2, ..., p_k$ are either ramified or inert in K. Let ϕ be an embedding of K into B. The field K is totally imaginary as B is a definite quaternion algebra. Let \mathcal{O}_d be an order of K of discriminant d.

Let K be a quadratic field over \mathbb{Q} such that the primes $p_1, p_2, ..., p_k$ are either ramified or inert in K. Let ϕ be an embedding of K into B. The field K is totally imaginary as B is a definite quaternion algebra. Let \mathcal{O}_d be an order of K of discriminant d.

Definition

We say that ϕ is an optimal embedding of the order \mathcal{O}_d into R_i if ϕ is an embedding of K into B such that $\phi(\mathcal{O}_d) = \phi(K) \cap R_i$.

Let K be a quadratic field over \mathbb{Q} such that the primes $p_1, p_2, ..., p_k$ are either ramified or inert in K. Let ϕ be an embedding of K into B. The field K is totally imaginary as B is a definite quaternion algebra. Let \mathcal{O}_d be an order of K of discriminant d.

Definition

We say that ϕ is an optimal embedding of the order \mathcal{O}_d into R_i if ϕ is an embedding of K into B such that $\phi(\mathcal{O}_d) = \phi(K) \cap R_i$.

► Two optimal embeddings i₁, i₂ are equivalent if they are conjugate to each other by an element in R_i^{*}. In other words, if there exists x ∈ R_i^{*} such that i₁(y) = xi₂(y)x⁻¹ for all y ∈ K.

Proposition

Let $h(\mathcal{O}_d, R_i)$ be the number of equivalence classes of optimal embeddings of the order of discriminant d into R_i . Let h(d) be the cardinality of the group $\operatorname{Pic}(\mathcal{O}_d)$. Then

$$\sum_{i=1}^{n} h(\mathcal{O}_d, R_i) = h(d) \prod_{i=1}^{k} (1 - \{\frac{-d}{p_i}\}) \prod_{q \mid M} (1 + \{\frac{-d}{q}\}).$$

Proposition

Let $h(\mathcal{O}_d, R_i)$ be the number of equivalence classes of optimal embeddings of the order of discriminant d into R_i . Let h(d) be the cardinality of the group $\operatorname{Pic}(\mathcal{O}_d)$. Then

$$\sum_{i=1}^{n} h(\mathcal{O}_d, R_i) = h(d) \prod_{i=1}^{k} (1 - \{\frac{-d}{p_i}\}) \prod_{q \mid M} (1 + \{\frac{-d}{q}\}).$$

Sketch of the proof. Let $\{\mathfrak{M}\}$ be a system of representatives of two-sided R_i ideals modulo two-sided R_i ideals of the form $R_i\xi$ where ξ is an \mathcal{O}_d ideal. Let $\{\mathfrak{B}\}$ be a system of representatives of the ideal classes in \mathcal{O}_d .

Consider the set of all $(\mathfrak{M}, \mathfrak{B})$ such that

 (1) The norm of M is squarefree and if q is a prime divisor of the norm of M, then either q = p_i (for some i = 1 to k) with {^{-d}/_{p_i}} = −1 or q is a prime divisor of M with {^{-d}/_q} = 1,

Consider the set of all $(\mathfrak{M}, \mathfrak{B})$ such that

 (1) The norm of M is squarefree and if q is a prime divisor of the norm of M, then either q = p_i (for some i = 1 to k) with {-d / p_i} = -1 or q is a prime divisor of M with {-d / q} = 1,

• (2) \mathfrak{B} is an integral ideal coprime to the conductor of \mathcal{O}_d .

Consider the set of all $(\mathfrak{M}, \mathfrak{B})$ such that

 (1) The norm of 𝔐 is squarefree and if q is a prime divisor of the norm of 𝔐, then either q = p_i (for some i = 1 to k) with {-d / p_i} = −1 or q is a prime divisor of M with {-d / q} = 1,

• (2) \mathfrak{B} is an integral ideal coprime to the conductor of \mathcal{O}_d .

The number of pairs $(\mathfrak{M}, \mathfrak{B})$ satisfying the conditions (1) and (2) is equal to

$$h(d)\prod_{i=1}^{k}(1-\{rac{-d}{p_{i}}\})\prod_{q|M}(1+\{rac{-d}{q}\}).$$

There is a one-to-one correspondence between the set of all pairs $(\mathfrak{M}, \mathfrak{B})$ satisfying (1) and (2) and equivalence classes of optimal embeddings of the order of discriminant *d* into R_i . Hence

$$\sum_{i=1}^{n} h(\mathcal{O}_d, R_i) = h(d) \prod_{i=1}^{k} (1 - \{\frac{-d}{p_i}\}) \prod_{q \mid M} (1 + \{\frac{-d}{q}\}).$$

Proposition

Let $g_i = \frac{1}{2} + \frac{1}{2} \sum_{d>0} a_i(d)q^d$. Then $a_i(d)$ is the number of elements $b \in R_i$ with $\operatorname{Tr}(b) = 0$, $b \in \mathbb{Z} + 2R_i$, $\mathbb{N}(b) = d$. For i = 1 to n, we have

$$a_i(d) = w_i \sum_{-d=-Df^2} \frac{h(\mathcal{O}_D, R_i)}{u(D)},$$

where
$$u(D) = \begin{cases} 3, & \text{if } -D = -3 \\ 2, & \text{if } -D = -4 \\ 1 & \text{otherwise.} \end{cases}$$

Sketch of the proof.

Let S be the set of elements $b \in R_i$ with Tr(b) = 0, $b \in \mathbb{Z} + 2R_i$ and $\mathbb{N}(b) = d$.

For a positive integer *D*, if $g : \mathbb{Q}(\sqrt{-D}) \hookrightarrow B$ is an embedding of an order \mathcal{O}_D into R_i , then $b = g(\sqrt{-D})$ is an element in $\{x \in B | \operatorname{Tr}(x) = 0\}$ and the norm of *b* is *D*. Since $\mathcal{O}_D = \mathbb{Z} + \mathbb{Z} \frac{(D+\sqrt{-D})}{2}$, we have $b \in (\mathbb{Z} + 2R_i)$.

$$\Rightarrow b \in S_i^0 = \{x \in B | \operatorname{Tr}(x) = 0\} \cap (\mathbb{Z} + 2R_i).$$

Conversely, if *b* is an element in S_i^0 such that the norm of *b* is *D*, then $g(\sqrt{-D}) = b$ gives rise to an embedding of the order $\mathcal{O}_D = \mathbb{Z} + \mathbb{Z} \frac{(D+\sqrt{-D})}{2}$ into R_i .

Conversely, if *b* is an element in S_i^0 such that the norm of *b* is *D*, then $g(\sqrt{-D}) = b$ gives rise to an embedding of the order $\mathcal{O}_D = \mathbb{Z} + \mathbb{Z} \frac{(D+\sqrt{-D})}{2}$ into R_i .

The embedding $g(\sqrt{-D}) = b$ is optimal if and only if $b \notin m(\mathbb{Z} + 2R_i)$ for some m > 1. Let $h^*(\mathcal{O}_D, R_i)$ be the number of optimal embeddings of \mathcal{O}_D into R_i .

Conversely, if *b* is an element in S_i^0 such that the norm of *b* is *D*, then $g(\sqrt{-D}) = b$ gives rise to an embedding of the order $\mathcal{O}_D = \mathbb{Z} + \mathbb{Z} \frac{(D+\sqrt{-D})}{2} \text{ into } R_i.$

The embedding $g(\sqrt{-D}) = b$ is optimal if and only if $b \notin m(\mathbb{Z} + 2R_i)$ for some m > 1. Let $h^*(\mathcal{O}_D, R_i)$ be the number of optimal embeddings of \mathcal{O}_D into R_i .

Using the above connection we get

$$a_i(d) = \sharp S = \sum_{-d=-Df^2} \{b \in S, \frac{b}{f} \in S_i^0, \frac{b}{f} \notin m(\mathbb{Z}+2R_i) \text{ for } m > 1\}.$$

$$=\sum_{-d=-Df^2}h^*(\mathcal{O}_D,R_i).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The group $\Gamma_i = R_i^* / \pm 1$ acts on *S*. The Γ_i orbits of *S* correspond to equivalence classes of optimal embeddings. Hence

$$\sharp S/\Gamma_i = \sum_{-d=-Df^2} h(\mathcal{O}_D, R_i).$$

The order of the stabilizer of an element $b \in S$ is 1 unless the corresponding embedding extends to $\mathbb{Z}[\mu_6]$ or $\mathbb{Z}[\mu_4]$, when it is 3 or 2 respectively.

The group $\Gamma_i = R_i^* / \pm 1$ acts on *S*. The Γ_i orbits of *S* correspond to equivalence classes of optimal embeddings. Hence

$$\sharp S/\Gamma_i = \sum_{-d=-Df^2} h(\mathcal{O}_D, R_i).$$

The order of the stabilizer of an element $b \in S$ is 1 unless the corresponding embedding extends to $\mathbb{Z}[\mu_6]$ or $\mathbb{Z}[\mu_4]$, when it is 3 or 2 respectively.

Thus we see that

$$\mathsf{a}_i(d) = \# \Gamma_i \sum_{-d=-Df^2} \frac{h(\mathcal{O}_D, R_i)}{u(D)} = \mathsf{w}_i \sum_{-d=-Df^2} \frac{h(\mathcal{O}_D, R_i)}{u(D)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof

• Consider the weight 3/2 Cohen-Eisenstein Series \mathcal{G} ,

$$\mathcal{G} = \sum_{i=1}^{n} \frac{1}{w_i} g_i = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_i} + \sum_{d>0} \sum_{i=1}^{n} \frac{a_i(d)}{w_i} q^d.$$

・ロト・日本・モト・モート ヨー うへで

Proof

• Consider the weight 3/2 Cohen-Eisenstein Series \mathcal{G} ,

$$\mathcal{G} = \sum_{i=1}^{n} \frac{1}{w_i} g_i = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_i} + \sum_{d>0} \sum_{i=1}^{n} \frac{a_i(d)}{w_i} q^d.$$

We know that

$$\sum_{i=1}^{n} \sum_{d>0} \frac{a_i(d)}{w_i} q^d = \frac{1}{2} \sum_{d>0} \sum_{-d=-Df^2} \Big(\sum_{i=1}^{n} \frac{h(\mathcal{O}_D, R_i)}{u(D)} \Big).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Proof

• Consider the weight 3/2 Cohen-Eisenstein Series \mathcal{G} ,

$$\mathcal{G} = \sum_{i=1}^{n} \frac{1}{w_i} g_i = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_i} + \sum_{d>0} \sum_{i=1}^{n} \frac{a_i(d)}{w_i} q^d.$$

We know that

$$\sum_{i=1}^{n} \sum_{d>0} \frac{a_i(d)}{w_i} q^d = \frac{1}{2} \sum_{d>0} \sum_{-d=-Df^2} \left(\sum_{i=1}^{n} \frac{h(\mathcal{O}_D, R_i)}{u(D)} \right).$$
$$\sum_{i=1}^{n} h(\mathcal{O}_D, R_i) = h(D) \prod_{i=1}^{k} \left(1 - \left\{ \frac{-D}{p_i} \right\} \right) \prod_{q|M} \left(1 + \left\{ \frac{-D}{q} \right\} \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hence

$$\mathcal{G} = \sum_{i=1}^{n} \frac{1}{w_i} g_i = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_i} + \sum_{d>0} \mathcal{G}(d) q^d$$

where

$$\mathcal{G}(d) = \frac{1}{2} \sum_{-d=-Df^2} \left[\frac{h(D)}{u(D)} \prod_{i=1}^k \left(1 - \{ \frac{-D}{p_i} \} \right) \prod_{q \mid M} \left(1 + \{ \frac{-D}{q} \} \right) \right].$$

Hence

$$\mathcal{G} = \sum_{i=1}^{n} \frac{1}{w_i} g_i = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_i} + \sum_{d>0} \mathcal{G}(d) q^d$$

where

٠

$$\mathcal{G}(d) = \frac{1}{2} \sum_{-d=-Df^2} \left[\frac{h(D)}{u(D)} \prod_{i=1}^k \left(1 - \{ \frac{-D}{p_i} \} \right) \prod_{q \mid M} \left(1 + \{ \frac{-D}{q} \} \right) \right].$$

▶ In particular, if -D is the fundamental discriminant and $\left(\frac{-D}{p_i}\right) \neq 1$, for every i = 1 to k, and $\left(\frac{-D}{q}\right) \neq -1$ for every prime $q \mid M$, then

$$\mathcal{G}_N(D) = \frac{2^{\omega(N)-s(D)-1}h(D)}{u(D)}.$$

Application

We have an equation which relates L-function of f with the coefficients m_D^2 ,

$$\prod_{p\mid \frac{N}{\gcd(N,D)}} (1+(\frac{-D}{p}) sgn(W_p)) L(f,1) L(f\otimes \epsilon_D,1) = \frac{2^{\omega(N)}(f,f) m_D^2}{\sqrt{D} \sum \frac{v_i^2}{w_i^2}}.$$

Application

We have an equation which relates L-function of f with the coefficients m_D^2 ,

$$\prod_{\substack{p\mid \frac{N}{\gcd(N,D)}}} (1+(\frac{-D}{p}) sgn(W_p)) L(f,1) L(f\otimes \epsilon_D,1) = \frac{2^{\omega(N)}(f,f) m_D^2}{\sqrt{D} \sum \frac{v_i^2}{w_i^2}}.$$

If *E* is the elliptic curve with conductor *N* associated with $f \in S_2(\Gamma_0(N))$, then we have L(E, 1) = L(f, 1) and the *L*-function $L(f \otimes \epsilon_D, 1) = L(E_D, 1)$, where E_D is the -D quadratic twist of *E* associated with $f \otimes \epsilon_D \in S_2(\Gamma_0(ND^2))$.

Assume that the rank of E is 0.

The rank 0 case of Birch-Swinnerton Conjecture gives

$$\frac{L(E_D,1)}{\Omega_D} = \frac{\# \operatorname{Sh}_D \prod c_{p,D}}{|\operatorname{Tor}(E_D)|^2},$$

where $c_{p,D}$'s are the Tamagawa numbers and $\text{Tor}(E_D)$ is the torsion subgroup of $E_D(\mathbb{Q})$, Ω_D is the real period of E_D .

Assume that the rank of E is 0.

The rank 0 case of Birch-Swinnerton Conjecture gives

$$\frac{L(E_D,1)}{\Omega_D} = \frac{\# \operatorname{Sh}_D \prod c_{p,D}}{|\operatorname{Tor}(E_D)|^2},$$

where $c_{p,D}$'s are the Tamagawa numbers and $\operatorname{Tor}(E_D)$ is the torsion subgroup of $E_D(\mathbb{Q})$, Ω_D is the real period of E_D . Under the assumptions, $\left(\frac{-D}{p}\right) sgn(W_p) = 1$ for all $p \mid \frac{N}{\gcd(N,D)}$, and $\#\operatorname{Sh}_D = \frac{m_D^2}{2^*}$ for some integer *, cardinality of Sh_D is related to the class number.

Proposition

Let *E* be an elliptic curve of analytic rank zero and square-free conductor *N*. Let $\{p_1, p_2, ..., p_k\} = \{p \mid N \text{ and sign of } W_p \text{ is } -1\}$. Suppose *k* is odd.

Consider the family $\{E_D\}$ of negative quadratic twists of E satisfying the condition $\left(\frac{-D}{p_i}\right) \neq 1$ for i = 1 to k and $\left(\frac{-D}{q}\right) \neq -1$ for every prime $q \mid M$, where $N = p_1 p_2 \dots p_k M$. Suppose E has a torsion point defined over \mathbb{Q} , of odd prime order I and that $\# \operatorname{Sh}_D = \frac{m_D^2}{2^*}$. Assume that $\lambda u \equiv v \pmod{I}$, for some $\lambda \in \mathbb{F}_I^{\times}$. Then, $\# \operatorname{Sh}_D$ is divisible by I, if and only if the class number h(D) of $\mathbb{Q}(\sqrt{-D})$ is divisible by I.

Some examples of elliptic curves satisfying the hypotheses of the Proposition.

- ▶ From Cremona's tables, the strong Weil curves of rank zero and prime conductor with an odd torsion point, are listed by *E* = 11*A*1, *E* = 19*A*1 and *E* = 37*B*1. The first one has a 5-torsion point. The other two curves have a 3-torsion point. For the (-D) quadratic twists of *E*, We also have #Sh_D is *m*²_D, upto a power of 2.
- ▶ For the elliptic curves 17A1, 67A1, 73A1, 89B1, 109A1, 139A1, 307A1, 307B1, 307C1, 307D1 with $D \le 10^6$ and for the elliptic curves 14A1, 26A1, 26B1 with $D \le 2000$, we have $\#Sh_D$ is m_D^2 , upto a power of 2.

Proof.

• Consider
$$\lambda \mathcal{G} - \mathcal{H} = \sum_{i=1}^{n} \frac{(\lambda - v_i)}{w_i} g_i$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof.

• Consider
$$\lambda \mathcal{G} - \mathcal{H} = \sum_{i=1}^{n} \frac{(\lambda - v_i)}{w_i} g_i$$
.

If *I* is an odd prime number, dividing the order of the group of torsion points of the elliptic curve *E*, by Mazur's theorem, *I* = 3, 5 or 7. We know that *w_i* | 12, the product ∏ⁿ_{i=1} *w_i* equals the exact denominator of ^{N-1}/₁₂ and 3 divides the exact numerator of ^{N-1}/₁₂. Hence *w_i* ∈ F[×]₁ for *I* = 3, 5 or 7.

Proof.

• Consider
$$\lambda \mathcal{G} - \mathcal{H} = \sum_{i=1}^{n} \frac{(\lambda - v_i)}{w_i} g_i$$
.

- If *I* is an odd prime number, dividing the order of the group of torsion points of the elliptic curve *E*, by Mazur's theorem, *I* = 3, 5 or 7. We know that *w_i* | 12, the product ∏ⁿ_{i=1} *w_i* equals the exact denominator of ^{N-1}/₁₂ and 3 divides the exact numerator of ^{N-1}/₁₂. Hence *w_i* ∈ F[×]₁ for *I* = 3, 5 or 7.
- The congruence λu ≡ v (mod I), for some λ ∈ 𝔽[×]_I gives a congruence λ𝔅 ≡ 𝕂 (mod I).
- We get the congruence on the coefficients, λG(D) ≡ m²_D (mod *I*). Hence *I* divides h(D) if and only if #Sh_D.

Bibliography

- S. Bocherer, R. Schulze-Pillot, On a theorem of Waldspurger and on Eisenstein series of Klingen type, *Math. Ann.*, 288, (1990), 361–388.
- M. Eichler, Zur Zahlentheorie der Quaternion-Algebren. J. Reine Angew. Math., **195** (1955), 127–151.
- G. Frey, On the Selmer group of twists of elliptic curves with Q-rational torsion points, *Canad. J. Math.*, Vol **40**, no. 3, (1988) 649–665.
- B. Gross, Heights and the special values of *L*-series, *CMS conference Proceedings*, Vol **7**, (1987), 115–187.
- K. James, Elliptic curves satisfying the Birch and Swinnerton Dyer conjecture and mod 3 J. Number Theory. Vol 128 (2008) 2823–2835.

Bibliography

- P.L. Quattrini, The effect of torsion on the distribution of Sh among quadratic twists of an elliptic curve, *Journal of Number Theory*, no. 2, (2011), 195–211.
- K. Ono, Nonvanishing of quadratic twists of modular *I*-functions and applications to elliptic curves *J. Reine Angew. Math.* Vol **553** (2001), 81–97.
- H. Shimizu, On Zeta Functions of Quaternion Algebras Ann. Math. Vol **81** no. 1, (1965), 166–193.

S. Wong, Elliptic curves and class number divisibility *Int. Math. Res. Not.*, **12** (1999), 661–672.

Thank you

<□ > < @ > < E > < E > E のQ @