On the Fourier coefficients of a Cohen-Eisenstein series

Srilakshmi Krishnamoorthy
Inspire Faculty, I.I.T. Madras

Theoretical and Computational Aspects of the BSD Conjecture ICTS, Bangalore

Dec 22nd, 2016

Cohen-Eisenstein series

Let $N=p_{1} p_{2} \ldots p_{k} M$ be a squarefree integer.
Let B be a definite quaternion algebra ramified at primes
$p_{1}, p_{2}, \ldots, p_{k}$ and at ∞.
Let \mathcal{O} be an order of level N.
Let $I_{1}, I_{2}, \ldots, I_{n}$ be a set of left ideals representing the distinct ideal classes of \mathcal{O}, with $I_{1}=\mathcal{O}$ and $R_{1}, R_{2}, \ldots, R_{n}$ be the respective right orders of each ideal I_{i}.
For each R_{i}, let L_{i} be the lattice $\mathbb{Z}+2 R_{i}$.
Denote the trace zero elements of L_{i} by S_{i}^{0}.
For $b \in S_{i}^{0}$, let $\mathbb{N}(b)$ be the norm of b. For each $i=1$ to n, Define

$$
g_{i}=\frac{1}{2} \sum_{b \in S_{i}^{0}} q^{\mathbb{N}(b)}, q=e^{2 \pi i z}
$$

Cohen-Eisenstein series

- The modular forms g_{i} are in the Kohnen's plus-space [the space of modular forms of weight $3 / 2$ on $\Gamma_{0}(4 N)$ whose Fourier coefficients a_{m} are 0 if $-m \equiv 2,3(\bmod 4)$.]
- The Cohen-Eisenstein series \mathcal{G} is defined by $\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}$.

Shimura Lift

- Let $f \in S_{2}(N)$ be a normalized newform. It corresponds to a one-dimensional eigenspace $\left\langle v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle$, of the Brandt matrices $\left\{B_{p}\right\}$ in B, such that $B_{p} v=a_{p} v$, where a_{p} is the eigenvalue satisfying $T_{p} f=a_{p} f$, for all p.

Let w_{i} be the order of the finite group $R_{i}^{*} / \pm 1$ for $i=1$ to n.Then

$$
\mathcal{H}=\sum_{i=1}^{n} \frac{v_{i}}{w_{i}} g_{i}=\sum_{d} m_{d} q^{d}
$$

is the weight $3 / 2$ modular form which corresponds to f via the Shimura correspondence.

Shimura Lift

The modular form $\mathcal{H}=\sum_{i=1}^{n} \frac{v_{i}}{w_{i}} g_{i}=\sum_{d} m_{d} q^{d}$ is zero unless

$$
\operatorname{sgn}\left(W_{p}\right)= \begin{cases}-1, & \text { for } p=p_{i}, i=1 \text { to } k \\ +1, & \text { for } p \mid M\end{cases}
$$

Let d be a natural number and let \mathcal{O}_{d} be the ring of integers in $\mathbb{Q}(\sqrt{-d})$. let $h(d)$ be the cardinality of the group $\operatorname{Pic}\left(\mathcal{O}_{d}\right)$, and let $2 u(d)$ be the cardinality of the unit group \mathcal{O}_{d}^{*}.

Let d be a natural number and let \mathcal{O}_{d} be the ring of integers in $\mathbb{Q}(\sqrt{-d})$. let $h(d)$ be the cardinality of the $\operatorname{group} \operatorname{Pic}\left(\mathcal{O}_{d}\right)$, and let $2 u(d)$ be the cardinality of the unit group \mathcal{O}_{d}^{*}.

- The Legendre symbol $\left(\frac{-d}{p}\right)$ is defined by

$$
\left(\frac{-d}{p}\right):= \begin{cases}1, & \text { if } p \text { splits in } K \\ 0, & \text { if } p \text { ramifies in } K \\ -1, & \text { if } p \text { inert in } K .\end{cases}
$$

Let d be a natural number and let \mathcal{O}_{d} be the ring of integers in $\mathbb{Q}(\sqrt{-d})$. let $h(d)$ be the cardinality of the $\operatorname{group} \operatorname{Pic}\left(\mathcal{O}_{d}\right)$, and let $2 u(d)$ be the cardinality of the unit group \mathcal{O}_{d}^{*}.

- The Legendre symbol $\left(\frac{-d}{p}\right)$ is defined by

$$
\left(\frac{-d}{p}\right):= \begin{cases}1, & \text { if } p \text { splits in } K \\ 0, & \text { if } p \text { ramifies in } K \\ -1, & \text { if } p \text { inert in } K\end{cases}
$$

Let c be the conductor of \mathcal{O}_{d}.

Let d be a natural number and let \mathcal{O}_{d} be the ring of integers in $\mathbb{Q}(\sqrt{-d})$. let $h(d)$ be the cardinality of the $\operatorname{group} \operatorname{Pic}\left(\mathcal{O}_{d}\right)$, and let $2 u(d)$ be the cardinality of the unit group \mathcal{O}_{d}^{*}.

- The Legendre symbol $\left(\frac{-d}{p}\right)$ is defined by

$$
\left(\frac{-d}{p}\right):= \begin{cases}1, & \text { if } p \text { splits in } K \\ 0, & \text { if } p \text { ramifies in } K \\ -1, & \text { if } p \text { inert in } K\end{cases}
$$

Let c be the conductor of \mathcal{O}_{d}.

- The Eichler symbol $\left\{\frac{-d}{p}\right\}$ is defined by

$$
\left\{\frac{-d}{p}\right\}:= \begin{cases}1, & \text { if } p^{2} \mid c \\ \left(\frac{-d}{p}\right), & \text { if } p^{2} \nmid c .\end{cases}
$$

Waldspurger's formula

- Let D be a natural number and $-D$ be a fundamental discrimant. If $\left(\frac{-D}{p}\right) \operatorname{sgn}\left(W_{p}\right) \neq-1$ for every prime $p \mid N$, then the following Waldspurger's formula holds.

Waldspurger's formula

- Let D be a natural number and $-D$ be a fundamental discrimant. If $\left(\frac{-D}{p}\right) \operatorname{sgn}\left(W_{p}\right) \neq-1$ for every prime $p \mid N$, then the following Waldspurger's formula holds.

$$
\prod_{p \left\lvert\, \frac{N}{\operatorname{gcd}(N, D)}\right.}\left(1+\left(\frac{-D}{p}\right) \operatorname{sgn}\left(W_{p}\right)\right) L(f, 1) L\left(f \otimes \epsilon_{D}, 1\right)=\frac{2^{\omega(N)}(f, f) m_{D}^{2}}{\sqrt{D} \sum_{i=1}^{n} \frac{v_{i}^{2}}{w_{i}^{2}}},
$$

where $\omega(N)$ is the number of distinct primes that divide N.

Gross's formula

- Theorem (Gross)

If N is prime and $-D$ is a fundamental discriminant such that $\left(\frac{-D}{N}\right) \neq 1$, then the coefficients $\mathcal{G}(D)$ of the weight 3/2 Eisenstein series,

$$
\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\sum_{i=1}^{n} \frac{1}{2 w_{i}}+\sum_{d>0} \mathcal{G}(d) q^{d}
$$

are given by

$$
\mathcal{G}(D)=\frac{\left(1-\left(\frac{-D}{N}\right)\right)}{2} \frac{h(D)}{u(D)} .
$$

A Conjecture

- What can we say about the coefficients when the level N is squarefree?

A Conjecture

- What can we say about the coefficients when the level N is squarefree?

Quattrini presented the following conjecture on the coefficients of \mathcal{G}.

A Conjecture

- What can we say about the coefficients when the level N is squarefree?

Quattrini presented the following conjecture on the coefficients of \mathcal{G}.

- Conjecture (Quattrini)

Let B be a quaternion algebra ramified at exactly one finite prime p and let $N=p M$ be a square free integer. Let $\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\sum_{i=1}^{n} \frac{1}{2 w_{i}}+\sum_{d>0} \mathcal{G}(d) q^{d}$. Let $D \in \mathbb{N}$ be such that $-D$ is a fundamental discriminant and $\left(\frac{-D}{p}\right) \neq 1$, and $\left(\frac{-D}{q}\right) \neq-1$ for every prime $q \mid M$. If $s(D)$ is the number of primes that divide N and ramify in $\mathbb{Q}(\sqrt{-D})$, then

$$
\mathcal{G}(D)=\frac{2^{\omega(N)-s(D)-1} h(D)}{u(D)}
$$

Some Numerical Examples

$E=14 A 1=[1,0,1,4,-6]$ has conductor $N=14$ and a 3-torsion point.
$\operatorname{sgn}\left(W_{7}\right)=-1$ and $\operatorname{sgn}\left(W_{2}\right)=+1$.
We consider the quaternion algebra ramified at the prime 7 and ∞.
For $D \leq 1000$ such that $-D$ is a fundamental discriminant and $\left(\frac{-D}{7}\right) \neq 1$ and $\left(\frac{-D}{2}\right) \neq-1$, the coefficients of \mathcal{G} are given by

$$
\mathcal{G}(D)= \begin{cases}2 \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 7 \text { is inert and } 2 \text { splits in } \mathcal{O}_{D} \\ \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 7 \text { is inert and } 2 \text { ramified in } \mathcal{O}_{D} \\ \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 7 \text { is ramified and } 2 \text { splits in } \mathcal{O}_{D} \\ \frac{1}{2} h(D), & \text { if } 7 \text { and } 2 \text { ramify in } \mathcal{O}_{D} .\end{cases}
$$

Some Numerical Examples

$E=26 A 1=[1,0,1,-5,-8]$ has conductor $N=26$ and a 3-torsion point.
$\operatorname{sgn}\left(W_{13}\right)=-1$ and $\operatorname{sgn}\left(W_{2}\right)=+1$.
We consider the quaternion algebra ramified at the prime 13 and ∞.

For $D \leq 1000$ such that $-D$ is a fundamental discriminant and $\left(\frac{-D}{13}\right) \neq 1$ and $\left(\frac{-D}{2}\right) \neq-1$, we get

$$
\mathcal{G}(D)= \begin{cases}2 \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 13 \text { is inert and } 2 \text { splits in } \mathcal{O}_{D} \\ \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 13 \text { is inert and } 2 \text { ramified in } \mathcal{O}_{D} \\ \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 13 \text { is ramified and } 2 \text { splits in } \mathcal{O}_{D} \\ \frac{1}{2} \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 13 \text { and } 2 \text { ramify in } \mathcal{O}_{D}\end{cases}
$$

Some Numerical Examples

$E=30 A 11=[1,0,1,1,2]$ has a 2 and 3-torsion point.
$\operatorname{sgn}\left(W_{3}\right)=-1$ and $\operatorname{sgn}\left(W_{2}\right)=\operatorname{sgn}\left(W_{5}\right)=+1$.
We consider the quaternion algebra ramified at the prime 3 and ∞.
For $D \leq 1000$ such that $-D$ is a fundamental discriminant and $\left(\frac{-D}{3}\right) \neq 1,\left(\frac{-D}{2}\right) \neq-1,\left(\frac{-D}{5}\right) \neq-1$, we get

$$
\mathcal{G}(D)= \begin{cases}2^{2} \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if } 3 \text { is inert and } 2,5 \text { split in } \mathcal{O}_{D} \\ 2 \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if exactly one of the primes } 2,3,5 \text { ramifies in } \mathcal{O}_{D} \\ \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if exactly two of the primes ramify in } \mathcal{O}_{D} \\ \frac{1}{2} \frac{h(D)}{u\left(\mathcal{O}_{D}\right)}, & \text { if 2,3,5 all ramify in } \mathcal{O}_{D} .\end{cases}
$$

Main Theorem

Let B be a definite quaternion algebra ramified at $p_{1}, p_{2}, \ldots, p_{k}$ and at ∞. Let $N=p_{1} p_{2} \ldots p_{k} M$ be a square free integer. Denote by $\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\sum_{i=1}^{n} \frac{1}{2 w_{i}}+\sum_{d>0} \mathcal{G}(d) q^{d}$. Let $D \in \mathbb{N}$ such that $-D$ is a fundamental discriminant and $\left(\frac{-D}{p_{i}}\right) \neq 1$ for $i=1$ to k and $\left(\frac{-D}{q}\right) \neq-1$ for every prime $q \mid M$, then

$$
\mathcal{G}(D)=\frac{2^{\omega(N)-s(D)-1} h(D)}{u(D)}
$$

Main Theorem

Let B be a definite quaternion algebra ramified at $p_{1}, p_{2}, \ldots, p_{k}$ and at ∞. Let $N=p_{1} p_{2} \ldots p_{k} M$ be a square free integer. Denote by $\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\sum_{i=1}^{n} \frac{1}{2 w_{i}}+\sum_{d>0} \mathcal{G}(d) q^{d}$. Let $D \in \mathbb{N}$ such that $-D$ is a fundamental discriminant and $\left(\frac{-D}{p_{i}}\right) \neq 1$ for $i=1$ to k and $\left(\frac{-D}{q}\right) \neq-1$ for every prime $q \mid M$, then

$$
\mathcal{G}(D)=\frac{2^{\omega(N)-s(D)-1} h(D)}{u(D)}
$$

Corollary

Quattrini's Conjecture holds by letting $k=1$ in the above theorem.

Optimal embeddings

Let K be a quadratic field over \mathbb{Q} such that the primes $p_{1}, p_{2}, \ldots, p_{k}$ are either ramified or inert in K. Let ϕ be an embedding of K into B. The field K is totally imaginary as B is a definite quaternion algebra. Let \mathcal{O}_{d} be an order of K of discriminant d.

Optimal embeddings

Let K be a quadratic field over \mathbb{Q} such that the primes $p_{1}, p_{2}, \ldots, p_{k}$ are either ramified or inert in K. Let ϕ be an embedding of K into B. The field K is totally imaginary as B is a definite quaternion algebra. Let \mathcal{O}_{d} be an order of K of discriminant d.

Definition

We say that ϕ is an optimal embedding of the order \mathcal{O}_{d} into R_{i} if ϕ is an embedding of K into B such that $\phi\left(\mathcal{O}_{d}\right)=\phi(K) \cap R_{i}$.

Optimal embeddings

Let K be a quadratic field over \mathbb{Q} such that the primes $p_{1}, p_{2}, \ldots, p_{k}$ are either ramified or inert in K. Let ϕ be an embedding of K into B. The field K is totally imaginary as B is a definite quaternion algebra. Let \mathcal{O}_{d} be an order of K of discriminant d.

Definition

We say that ϕ is an optimal embedding of the order \mathcal{O}_{d} into R_{i} if ϕ is an embedding of K into B such that $\phi\left(\mathcal{O}_{d}\right)=\phi(K) \cap R_{i}$.

- Two optimal embeddings i_{1}, i_{2} are equivalent if they are conjugate to each other by an element in R_{i}^{*}. In other words, if there exists $x \in R_{i}^{*}$ such that $i_{1}(y)=x i_{2}(y) x^{-1}$ for all $y \in$ K.

Optimal embeddings

Proposition

Let $h\left(\mathcal{O}_{d}, R_{i}\right)$ be the number of equivalence classes of optimal embeddings of the order of discriminant d into R_{i}. Let $h(d)$ be the cardinality of the group $\operatorname{Pic}\left(\mathcal{O}_{d}\right)$. Then

$$
\sum_{i=1}^{n} h\left(\mathcal{O}_{d}, R_{i}\right)=h(d) \prod_{i=1}^{k}\left(1-\left\{\frac{-d}{p_{i}}\right\}\right) \prod_{q \mid M}\left(1+\left\{\frac{-d}{q}\right\}\right)
$$

Optimal embeddings

Proposition

Let $h\left(\mathcal{O}_{d}, R_{i}\right)$ be the number of equivalence classes of optimal embeddings of the order of discriminant d into R_{i}. Let $h(d)$ be the cardinality of the group $\operatorname{Pic}\left(\mathcal{O}_{d}\right)$. Then

$$
\sum_{i=1}^{n} h\left(\mathcal{O}_{d}, R_{i}\right)=h(d) \prod_{i=1}^{k}\left(1-\left\{\frac{-d}{p_{i}}\right\}\right) \prod_{q \mid M}\left(1+\left\{\frac{-d}{q}\right\}\right)
$$

Sketch of the proof. Let $\{\mathfrak{M}\}$ be a system of representatives of two-sided R_{i} ideals modulo two-sided R_{i} ideals of the form $R_{i} \xi$ where ξ is an \mathcal{O}_{d} ideal. Let $\{\mathfrak{B}\}$ be a system of representatives of the ideal classes in \mathcal{O}_{d}.

Optimal embeddings

Consider the set of all $(\mathfrak{M}, \mathfrak{B})$ such that

- (1) The norm of \mathfrak{M} is squarefree and if q is a prime divisor of the norm of \mathfrak{M}, then either $q=p_{i}$ (for some $i=1$ to k) with $\left\{\frac{-d}{p_{i}}\right\}=-1$ or q is a prime divisor of M with $\left\{\frac{-d}{q}\right\}=1$,

Optimal embeddings

Consider the set of all $(\mathfrak{M}, \mathfrak{B})$ such that

- (1) The norm of \mathfrak{M} is squarefree and if q is a prime divisor of the norm of \mathfrak{M}, then either $q=p_{i}$ (for some $i=1$ to k) with $\left\{\frac{-d}{p_{i}}\right\}=-1$ or q is a prime divisor of M with $\left\{\frac{-d}{q}\right\}=1$,
- (2) \mathfrak{B} is an integral ideal coprime to the conductor of \mathcal{O}_{d}.

Optimal embeddings

Consider the set of all $(\mathfrak{M}, \mathfrak{B})$ such that

- (1) The norm of \mathfrak{M} is squarefree and if q is a prime divisor of the norm of \mathfrak{M}, then either $q=p_{i}$ (for some $i=1$ to k) with $\left\{\frac{-d}{p_{i}}\right\}=-1$ or q is a prime divisor of M with $\left\{\frac{-d}{q}\right\}=1$,
- (2) \mathfrak{B} is an integral ideal coprime to the conductor of \mathcal{O}_{d}.

The number of pairs ($\mathfrak{M}, \mathfrak{B}$) satisfying the conditions (1) and (2) is equal to

$$
h(d) \prod_{i=1}^{k}\left(1-\left\{\frac{-d}{p_{i}}\right\}\right) \prod_{q \mid M}\left(1+\left\{\frac{-d}{q}\right\}\right) .
$$

Optimal embeddings

There is a one-to-one correspondence between the set of all pairs ($\mathfrak{M}, \mathfrak{B}$) satisfying (1) and (2) and equivalence classes of optimal embeddings of the order of discriminant d into R_{i}. Hence

$$
\sum_{i=1}^{n} h\left(\mathcal{O}_{d}, R_{i}\right)=h(d) \prod_{i=1}^{k}\left(1-\left\{\frac{-d}{p_{i}}\right\}\right) \prod_{q \mid M}\left(1+\left\{\frac{-d}{q}\right\}\right)
$$

Fourier coefficients of the modular forms g_{i}

Proposition

Let $g_{i}=\frac{1}{2}+\frac{1}{2} \sum_{d>0} a_{i}(d) q^{d}$. Then $a_{i}(d)$ is the number of elements $b \in R_{i}$ with $\operatorname{Tr}(b)=0, b \in \mathbb{Z}+2 R_{i}, \mathbb{N}(b)=d$. For $i=1$ to n, we have

$$
a_{i}(d)=w_{i} \sum_{-d=-D f^{2}} \frac{h\left(\mathcal{O}_{D}, R_{i}\right)}{u(D)}
$$

where $u(D)= \begin{cases}3, & \text { if }-D=-3 \\ 2, & \text { if }-D=-4 \\ 1 & \text { otherwise }\end{cases}$

Fourier coefficients of the modular forms g_{i}

Sketch of the proof.
Let S be the set of elements $b \in R_{i}$ with $\operatorname{Tr}(b)=0, b \in \mathbb{Z}+2 R_{i}$ and $\mathbb{N}(b)=d$.
For a positive integer D, if $g: \mathbb{Q}(\sqrt{-D}) \hookrightarrow B$ is an embedding of an order \mathcal{O}_{D} into R_{i}, then $b=g(\sqrt{-D})$ is an element in $\{x \in B \mid \operatorname{Tr}(x)=0\}$ and the norm of b is D. Since $\mathcal{O}_{D}=\mathbb{Z}+\mathbb{Z} \frac{(D+\sqrt{-D}))}{2}$, we have $b \in\left(\mathbb{Z}+2 R_{i}\right)$.

$$
\Rightarrow b \in S_{i}^{0}=\{x \in B \mid \operatorname{Tr}(x)=0\} \cap\left(\mathbb{Z}+2 R_{i}\right) .
$$

Fourier coefficients of the modular forms g_{i}

Conversely, if b is an element in S_{i}^{0} such that the norm of b is D, then $g(\sqrt{-D})=b$ gives rise to an embedding of the order $\mathcal{O}_{D}=\mathbb{Z}+\mathbb{Z} \frac{(D+\sqrt{-D})}{2}$ into R_{i}.

Fourier coefficients of the modular forms g_{i}

Conversely, if b is an element in S_{i}^{0} such that the norm of b is D, then $g(\sqrt{-D})=b$ gives rise to an embedding of the order $\mathcal{O}_{D}=\mathbb{Z}+\mathbb{Z} \frac{(D+\sqrt{-D})}{2}$ into R_{i}.

The embedding $g(\sqrt{-D})=b$ is optimal if and only if $b \notin m\left(\mathbb{Z}+2 R_{i}\right)$ for some $m>1$. Let $h^{*}\left(\mathcal{O}_{D}, R_{i}\right)$ be the number of optimal embeddings of \mathcal{O}_{D} into R_{i}.

Fourier coefficients of the modular forms g_{i}

Conversely, if b is an element in S_{i}^{0} such that the norm of b is D, then $g(\sqrt{-D})=b$ gives rise to an embedding of the order
$\mathcal{O}_{D}=\mathbb{Z}+\mathbb{Z} \frac{(D+\sqrt{-D})}{2}$ into R_{i}.

The embedding $g(\sqrt{-D})=b$ is optimal if and only if $b \notin m\left(\mathbb{Z}+2 R_{i}\right)$ for some $m>1$. Let $h^{*}\left(\mathcal{O}_{D}, R_{i}\right)$ be the number of optimal embeddings of \mathcal{O}_{D} into R_{i}.

Using the above connection we get

$$
\begin{gathered}
a_{i}(d)=\sharp S=\sum_{-d=-D f^{2}}\left\{b \in S, \frac{b}{f} \in S_{i}^{0}, \frac{b}{f} \notin m\left(\mathbb{Z}+2 R_{i}\right) \text { for } m>1\right\} . \\
=\sum_{-d=-D f^{2}} h^{*}\left(\mathcal{O}_{D}, R_{i}\right) .
\end{gathered}
$$

Fourier coefficients of the modular forms g_{i}

The group $\Gamma_{i}=R_{i}^{*} / \pm 1$ acts on S. The Γ_{i} orbits of S correspond to equivalence classes of optimal embeddings. Hence

$$
\sharp S / \Gamma_{i}=\sum_{-d=-D f^{2}} h\left(\mathcal{O}_{D}, R_{i}\right) .
$$

The order of the stabilizer of an element $b \in S$ is 1 unless the corresponding embedding extends to $\mathbb{Z}\left[\mu_{6}\right]$ or $\mathbb{Z}\left[\mu_{4}\right]$, when it is 3 or 2 respectively.

Fourier coefficients of the modular forms g_{i}

The group $\Gamma_{i}=R_{i}^{*} / \pm 1$ acts on S. The Γ_{i} orbits of S correspond to equivalence classes of optimal embeddings. Hence

$$
\sharp S / \Gamma_{i}=\sum_{-d=-D f^{2}} h\left(\mathcal{O}_{D}, R_{i}\right) .
$$

The order of the stabilizer of an element $b \in S$ is 1 unless the corresponding embedding extends to $\mathbb{Z}\left[\mu_{6}\right]$ or $\mathbb{Z}\left[\mu_{4}\right]$, when it is 3 or 2 respectively.

Thus we see that

$$
a_{i}(d)=\# \Gamma_{i} \sum_{-d=-D f^{2}} \frac{h\left(\mathcal{O}_{D}, R_{i}\right)}{u(D)}=w_{i} \sum_{-d=-D f^{2}} \frac{h\left(\mathcal{O}_{D}, R_{i}\right)}{u(D)}
$$

Proof of the Main Theorem

Proof

- Consider the weight $3 / 2$ Cohen-Eisenstein Series \mathcal{G},

$$
\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_{i}}+\sum_{d>0} \sum_{i=1}^{n} \frac{a_{i}(d)}{w_{i}} q^{d} .
$$

Proof of the Main Theorem

Proof

- Consider the weight $3 / 2$ Cohen-Eisenstein Series \mathcal{G},

$$
\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_{i}}+\sum_{d>0} \sum_{i=1}^{n} \frac{a_{i}(d)}{w_{i}} q^{d}
$$

We know that

$$
\sum_{i=1}^{n} \sum_{d>0} \frac{a_{i}(d)}{w_{i}} q^{d}=\frac{1}{2} \sum_{d>0} \sum_{-d=-D f^{2}}\left(\sum_{i=1}^{n} \frac{h\left(\mathcal{O}_{D}, R_{i}\right)}{u(D)}\right)
$$

Proof of the Main Theorem

Proof

- Consider the weight $3 / 2$ Cohen-Eisenstein Series \mathcal{G},

$$
\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_{i}}+\sum_{d>0} \sum_{i=1}^{n} \frac{a_{i}(d)}{w_{i}} q^{d}
$$

We know that

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{d>0} \frac{a_{i}(d)}{w_{i}} q^{d}=\frac{1}{2} \sum_{d>0} \sum_{-d=-D f^{2}}\left(\sum_{i=1}^{n} \frac{h\left(\mathcal{O}_{D}, R_{i}\right)}{u(D)}\right) . \\
\sum_{i=1}^{n} h\left(\mathcal{O}_{D}, R_{i}\right)=h(D) \prod_{i=1}^{k}\left(1-\left\{\frac{-D}{p_{i}}\right\}\right) \prod_{q \mid M}\left(1+\left\{\frac{-D}{q}\right\}\right) .
\end{gathered}
$$

Proof of the Main Theorem

Hence

$$
\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_{i}}+\sum_{d>0} \mathcal{G}(d) q^{d}
$$

where

$$
\mathcal{G}(d)=\frac{1}{2} \sum_{-d=-D f^{2}}\left[\frac{h(D)}{u(D)} \prod_{i=1}^{k}\left(1-\left\{\frac{-D}{p_{i}}\right\}\right) \prod_{q \mid M}\left(1+\left\{\frac{-D}{q}\right\}\right)\right] .
$$

Proof of the Main Theorem

Hence

$$
\mathcal{G}=\sum_{i=1}^{n} \frac{1}{w_{i}} g_{i}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{w_{i}}+\sum_{d>0} \mathcal{G}(d) q^{d}
$$

where

$$
\mathcal{G}(d)=\frac{1}{2} \sum_{-d=-D f^{2}}\left[\frac{h(D)}{u(D)} \prod_{i=1}^{k}\left(1-\left\{\frac{-D}{p_{i}}\right\}\right) \prod_{q \mid M}\left(1+\left\{\frac{-D}{q}\right\}\right)\right]
$$

- In particular, if $-D$ is the fundamental discriminant and $\left(\frac{-D}{p_{i}}\right) \neq 1$, for every $i=1$ to k, and $\left(\frac{-D}{q}\right) \neq-1$ for every prime $q \mid M$, then

$$
\mathcal{G}_{N}(D)=\frac{2^{\omega(N)-s(D)-1} h(D)}{u(D)}
$$

Application

We have an equation which relates L-function of f with the coefficients m_{D}^{2},
$\prod_{p \left\lvert\, \frac{N}{\operatorname{gcd}(N, D)}\right.}\left(1+\left(\frac{-D}{p}\right) \operatorname{sgn}\left(W_{p}\right)\right) L(f, 1) L\left(f \otimes \epsilon_{D}, 1\right)=\frac{2^{\omega(N)}(f, f) m_{D}^{2}}{\sqrt{D} \sum \frac{v_{i}^{2}}{w_{i}^{2}}}$.

Application

We have an equation which relates L-function of f with the coefficients m_{D}^{2},
$\prod_{p \left\lvert\, \frac{N}{\operatorname{gcd}(N, D)}\right.}\left(1+\left(\frac{-D}{p}\right) \operatorname{sgn}\left(W_{p}\right)\right) L(f, 1) L\left(f \otimes \epsilon_{D}, 1\right)=\frac{2^{\omega(N)}(f, f) m_{D}^{2}}{\sqrt{D} \sum \frac{v_{i}^{2}}{w_{i}^{2}}}$.
If E is the elliptic curve with conductor N associated with $f \in S_{2}\left(\Gamma_{0}(N)\right)$, then we have $L(E, 1)=L(f, 1)$ and the L-function $L\left(f \otimes \epsilon_{D}, 1\right)=L\left(E_{D}, 1\right)$, where E_{D} is the $-D$ quadratic twist of E associated with $f \otimes \epsilon_{D} \in S_{2}\left(\Gamma_{0}\left(N D^{2}\right)\right)$.

Order of the Tate-Shafarevich group

Assume that the rank of E is 0 .
The rank 0 case of Birch-Swinnerton Conjecture gives

$$
\frac{L\left(E_{D}, 1\right)}{\Omega_{D}}=\frac{\# \mathrm{Sh}_{D} \Pi c_{p, D}}{\left|\operatorname{Tor}\left(E_{D}\right)\right|^{2}}
$$

where $c_{p, D}$'s are the Tamagawa numbers and $\operatorname{Tor}\left(E_{D}\right)$ is the torsion subgroup of $E_{D}(\mathbb{Q}), \Omega_{D}$ is the real period of E_{D}.

Order of the Tate-Shafarevich group

Assume that the rank of E is 0 .
The rank 0 case of Birch-Swinnerton Conjecture gives

$$
\frac{L\left(E_{D}, 1\right)}{\Omega_{D}}=\frac{\# \operatorname{Sh}_{D} \prod c_{p, D}}{\left|\operatorname{Tor}\left(E_{D}\right)\right|^{2}}
$$

where $c_{p, D}$'s are the Tamagawa numbers and $\operatorname{Tor}\left(E_{D}\right)$ is the torsion subgroup of $E_{D}(\mathbb{Q}), \Omega_{D}$ is the real period of E_{D}.
Under the assumptions, $\left(\frac{-D}{p}\right) \operatorname{sgn}\left(W_{p}\right)=1$ for all $p \left\lvert\, \frac{N}{\operatorname{gcd}(N, D)}\right.$, and $\# \operatorname{Sh}_{D}=\frac{m_{D}^{2}}{2^{*}}$ for some integer $*$, cardinality of Sh_{D} is related to the class number.

Order of the Tate-Shafarevich group

Proposition

Let E be an elliptic curve of analytic rank zero and square-free conductor N. Let $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}=\left\{p \mid N\right.$ and sign of W_{p} is -1$\}$. Suppose k is odd.
Consider the family $\left\{E_{D}\right\}$ of negative quadratic twists of E satisfying the condition $\left(\frac{-D}{p_{i}}\right) \neq 1$ for $i=1$ to k and $\left(\frac{-D}{q}\right) \neq-1$ for every prime $q \mid M$, where $N=p_{1} p_{2} \ldots p_{k} . M$. Suppose E has a torsion point defined over \mathbb{Q}, of odd prime order I and that $\# \operatorname{Sh}_{D}=\frac{m_{D}^{2}}{2^{*}}$. Assume that $\lambda u \equiv v(\bmod I)$, for some $\lambda \in \mathbb{F}_{l}^{\times}$. Then, $\# \mathrm{Sh}_{D}$ is divisible by I, if and only if the class number $h(D)$ of $\mathbb{Q}(\sqrt{-D})$ is divisible by 1 .

Order of the Tate-Shafarevich group

Some examples of elliptic curves satisfying the hypotheses of the Proposition.

- From Cremona's tables, the strong Weil curves of rank zero and prime conductor with an odd torsion point, are listed by $E=11 A 1, E=19 A 1$ and $E=37 B 1$. The first one has a 5-torsion point. The other two curves have a 3-torsion point. For the (-D) quadratic twists of E, We also have $\# \operatorname{Sh}_{D}$ is m_{D}^{2}, upto a power of 2 .
- For the elliptic curves $17 A 1,67 A 1,73 A 1,89 B 1,109 A 1$, $139 A 1,307 A 1,307 B 1,307 C 1,307 D 1$ with $D \leq 10^{6}$ and for the elliptic curves $14 A 1,26 A 1,26 B 1$ with $D \leq 2000$, we have $\# \mathrm{Sh}_{D}$ is m_{D}^{2}, upto a power of 2 .

Order of the Tate-Shafarevich group

Proof.

- Consider $\lambda \mathcal{G}-\mathcal{H}=\sum_{i=1}^{n} \frac{\left(\lambda-v_{i}\right)}{w_{i}} g_{i}$.

Order of the Tate-Shafarevich group

Proof.

- Consider $\lambda \mathcal{G}-\mathcal{H}=\sum_{i=1}^{n} \frac{\left(\lambda-v_{i}\right)}{w_{i}} g_{i}$.
- If I is an odd prime number, dividing the order of the group of torsion points of the elliptic curve E, by Mazur's theorem, $I=3,5$ or 7 . We know that $w_{i} \mid 12$, the product $\prod_{i=1}^{n} w_{i}$ equals the exact denominator of $\frac{N-1}{12}$ and 3 divides the exact numerator of $\frac{N-1}{12}$. Hence $w_{i} \in \mathbb{F}_{I}^{\times}$for $I=3,5$ or 7 .

Order of the Tate-Shafarevich group

Proof.

- Consider $\lambda \mathcal{G}-\mathcal{H}=\sum_{i=1}^{n} \frac{\left(\lambda-v_{i}\right)}{w_{i}} g_{i}$.
- If I is an odd prime number, dividing the order of the group of torsion points of the elliptic curve E, by Mazur's theorem, $I=3,5$ or 7 . We know that $w_{i} \mid 12$, the product $\prod_{i=1}^{n} w_{i}$ equals the exact denominator of $\frac{N-1}{12}$ and 3 divides the exact numerator of $\frac{N-1}{12}$. Hence $w_{i} \in \mathbb{F}_{I}^{\times}$for $I=3,5$ or 7 .
- The congruence $\lambda u \equiv v(\bmod I)$, for some $\lambda \in \mathbb{F}_{l}^{\times}$gives a congruence $\lambda \mathcal{G} \equiv \mathcal{H}(\bmod I)$.
- We get the congruence on the coefficients, $\lambda \mathcal{G}(D) \equiv m_{D}^{2}$ $(\bmod I)$. Hence I divides $h(D)$ if and only if $\# \mathrm{Sh}_{D}$.

Bibliography

围 S．Bocherer，R．Schulze－Pillot，On a theorem of Waldspurger and on Eisenstein series of Klingen type，Math．Ann．，288，（1990）， 361－388．
固 M．Eichler，Zur Zahlentheorie der Quaternion－Algebren．J．Reine Angew．Math．， 195 （1955），127－151．

目 G．Frey，On the Selmer group of twists of elliptic curves with Q－rational torsion points，Canad．J．Math．，Vol 40，no．3，（1988） 649－665．
（in B．Gross，Heights and the special values of L－series，CMS conference Proceedings，Vol 7，（1987），115－187．

围 K．James，Elliptic curves satisfying the Birch and Swinnerton Dyer conjecture and mod 3 J．Number Theory．Vol 128 （2008） 2823－2835．

Bibliography

目 P．L．Quattrini，The effect of torsion on the distribution of Sh among quadratic twists of an elliptic curve，Journal of Number Theory，no．2，（2011），195－211．
國 K．Ono，Nonvanishing of quadratic twists of modular l－functions and applications to elliptic curves J．Reine Angew．Math．Vol 553 （2001），81－97．

雷 H．Shimizu，On Zeta Functions of Quaternion Algebras Ann．Math． Vol 81 no．1，（1965），166－193．

S．Wong，Elliptic curves and class number divisibility Int．Math． Res．Not．， 12 （1999），661－672．

Thank you

