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Cohen-Eisenstein series

Let N = p

1

p

2

...pkM be a squarefree integer.
Let B be a definite quaternion algebra ramified at primes
p

1

, p
2

, ..., pk and at 1.
Let O be an order of level N.
Let I

1

,I
2

,...,In be a set of left ideals representing the distinct ideal
classes of O, with I

1

= O and R

1

,R
2

,...,Rn be the respective right
orders of each ideal Ii .
For each Ri , let Li be the lattice Z+ 2Ri .
Denote the trace zero elements of Li by S

0

i .
For b 2 S

0

i , let N(b) be the norm of b. For each i = 1 to n, Define

gi =
1

2

X

b2S0

i

q

N(b), q = e

2⇡iz .



Cohen-Eisenstein series

I The modular forms gi are in the Kohnen’s plus-space [the
space of modular forms of weight 3/2 on �

0

(4N) whose
Fourier coe�cients am are 0 if �m ⌘ 2, 3 (mod 4).]

I The Cohen-Eisenstein series G is defined by G =
Pn

i=1

1

wi
gi .



Shimura Lift

I Let f 2 S

2

(N) be a normalized newform. It corresponds to a
one-dimensional eigenspace hv = (v

1

, v
2

, ..., vn)i, of the
Brandt matrices {Bp} in B , such that Bpv = apv , where ap is
the eigenvalue satisfying Tpf = apf , for all p.

Let wi be the order of the finite group R

⇤
i /± 1 for i = 1 to

n.Then

H =
nX

i=1

vi

wi
gi =

X

d

mdq
d

is the weight 3/2 modular form which corresponds to f via
the Shimura correspondence.



Shimura Lift

The modular form H =
Pn

i=1

vi
wi
gi =

P
d mdq

d is zero unless

sgn(Wp) =

(
�1, for p = pi , i = 1 to k

+1, for p | M.



Let d be a natural number and let Od be the ring of integers in
Q(

p
�d). let h(d) be the cardinality of the group Pic(Od), and let

2u(d) be the cardinality of the unit group O⇤
d .

I The Legendre symbol (�d
p ) is defined by

(
�d

p

) :=

8
><

>:

1, if p splits in K

0, if p ramifies in K

�1, if p inert in K .

Let c be the conductor of Od .

I The Eichler symbol {�d
p } is defined by

{�d

p

} :=

(
1, if p2 | c
(�d

p ), if p2 - c .
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Waldspurger’s formula

I Let D be a natural number and �D be a fundamental
discrimant. If (�D

p )sgn(Wp) 6= �1 for every prime p | N, then
the following Waldspurger’s formula holds.

Y

p| N
gcd(N,D)

(1+(
�D

p

)sgn(Wp))L(f , 1)L(f⌦✏D , 1) =
2!(N)(f , f )m2

Dp
D

Pn
i=1

v2

i
w2

i

,

where !(N) is the number of distinct primes that divide N.
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Gross’s formula

I Theorem (Gross)

If N is prime and �D is a fundamental discriminant such that

(�D
N ) 6= 1, then the coe�cients G(D) of the weight 3/2 Eisenstein

series,

G =
nX

i=1

1

wi
gi =

nX

i=1

1

2wi
+

X

d>0

G(d)qd ,

are given by

G(D) =
(1� (�D

N ))

2

h(D)

u(D)
.



A Conjecture

I What can we say about the coe�cients when the level N is
squarefree?

Quattrini presented the following conjecture on the coe�cients
of G.

I Conjecture (Quattrini)

Let B be a quaternion algebra ramified at exactly one finite prime

p and let N = pM be a square free integer. Let

G =
Pn

i=1

1

wi
gi =

Pn
i=1

1

2wi
+
P

d>0

G(d)qd . Let D 2 N be such

that �D is a fundamental discriminant and (�D
p ) 6= 1, and

(�D
q ) 6= �1 for every prime q | M. If s(D) is the number of primes

that divide N and ramify in Q(
p
�D), then

G(D) =
2!(N)�s(D)�1

h(D)

u(D)
.
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Some Numerical Examples

E = 14A1 = [1, 0, 1, 4,�6] has conductor N = 14 and a 3-torsion
point.

sgn(W
7

) = �1 and sgn(W
2

) = +1.

We consider the quaternion algebra ramified at the prime 7 and 1.

For D  1000 such that �D is a fundamental discriminant and
(�D

7

) 6= 1 and (�D
2

) 6= �1, the coe�cients of G are given by

G(D) =

8
>>>><

>>>>:

2 h(D)

u(OD)
, if 7 is inert and 2 splits in OD

h(D)

u(OD)
, if 7 is inert and 2 ramified in OD

h(D)

u(OD)
, if 7 is ramified and 2 splits in OD

1

2

h(D), if 7 and 2 ramify in OD .



Some Numerical Examples

E = 26A1 = [1, 0, 1,�5,�8] has conductor N = 26 and a
3-torsion point.

sgn(W
13

) = �1 and sgn(W
2

) = +1.

We consider the quaternion algebra ramified at the prime 13 and
1.

For D  1000 such that �D is a fundamental discriminant and
(�D
13

) 6= 1 and (�D
2

) 6= �1, we get

G(D) =

8
>>>><

>>>>:

2 h(D)

u(OD)
, if 13 is inert and 2 splits in OD

h(D)

u(OD)
, if 13 is inert and 2 ramified in OD

h(D)

u(OD)
, if 13 is ramified and 2 splits in OD

1

2

h(D)

u(OD)
, if 13 and 2 ramify in OD .



Some Numerical Examples

E = 30A11 = [1, 0, 1, 1, 2] has a 2 and 3-torsion point.

sgn(W
3

) = �1 and sgn(W
2

) = sgn(W
5

) = +1.

We consider the quaternion algebra ramified at the prime 3 and 1.

For D  1000 such that �D is a fundamental discriminant and
(�D

3

) 6= 1, (�D
2

) 6= �1, (�D
5

) 6= �1, we get

G(D) =

8
>>>><

>>>>:

22 h(D)

u(OD)
, if 3 is inert and 2,5 split in OD

2 h(D)

u(OD)
, if exactly one of the primes 2,3,5 ramifies in OD

h(D)

u(OD)
, if exactly two of the primes ramify in OD

1

2

h(D)

u(OD)
, if 2,3,5 all ramify in OD .



Main Theorem

Let B be a definite quaternion algebra ramified at p
1

, p
2

, ..., pk and
at 1. Let N = p

1

p

2

...pkM be a square free integer. Denote by
G =

Pn
i=1

1

wi
gi =

Pn
i=1

1

2wi
+

P
d>0

G(d)qd . Let D 2 N such that

�D is a fundamental discriminant and (�D
pi

) 6= 1 for i = 1 to k

and (�D
q ) 6= �1 for every prime q | M, then

G(D) =
2!(N)�s(D)�1

h(D)

u(D)
.

Corollary

Quattrini’s Conjecture holds by letting k = 1 in the above theorem.
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Optimal embeddings

Let K be a quadratic field over Q such that the primes p
1

, p
2

, ..., pk
are either ramified or inert in K . Let � be an embedding of K into
B . The field K is totally imaginary as B is a definite quaternion
algebra. Let Od be an order of K of discriminant d .

Definition
We say that � is an optimal embedding of the order Od into Ri if

� is an embedding of K into B such that �(Od) = �(K ) \ Ri .

I Two optimal embeddings i
1

, i
2

are equivalent if they are
conjugate to each other by an element in R

⇤
i . In other words,

if there exists x 2 R

⇤
i such that i

1

(y) = xi

2

(y)x�1 for all y 2
K .
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Optimal embeddings

Proposition

Let h(Od ,Ri ) be the number of equivalence classes of optimal

embeddings of the order of discriminant d into Ri . Let h(d) be the

cardinality of the group Pic(Od). Then

nX

i=1

h(Od ,Ri ) = h(d)
kY

i=1

(1� {�d

pi
})

Y

q|M
(1 + {�d

q

}).

Sketch of the proof. Let {M} be a system of representatives of
two-sided Ri ideals modulo two-sided Ri ideals of the form Ri⇠
where ⇠ is an Od ideal. Let {B} be a system of representatives of
the ideal classes in Od .
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Optimal embeddings

Consider the set of all (M,B) such that

I (1) The norm of M is squarefree and if q is a prime divisor of
the norm of M, then either q = pi (for some i = 1 to k) with
{�d

pi
} = �1 or q is a prime divisor of M with {�d

q } = 1,

I (2) B is an integral ideal coprime to the conductor of Od .

The number of pairs (M,B) satisfying the conditions (1) and (2)
is equal to

h(d)
kY

i=1

(1� {�d

pi
})

Y

q|M
(1 + {�d

q

}).
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Optimal embeddings

There is a one-to-one correspondence between the set of all pairs
(M,B) satisfying (1) and (2) and equivalence classes of optimal
embeddings of the order of discriminant d into Ri . Hence

nX

i=1

h(Od ,Ri ) = h(d)
kY

i=1

(1� {�d

pi
})

Y

q|M
(1 + {�d

q

}).



Fourier coe�cients of the modular forms g
i

Proposition

Let gi =
1

2

+ 1

2

P
d>0

ai (d)qd . Then ai (d) is the number of

elements b 2 Ri with Tr(b) = 0, b 2 Z+ 2Ri , N(b) = d . For i = 1
to n, we have

ai (d) = wi

X

�d=�Df 2

h(OD ,Ri )

u(D)
,

where u(D) =

8
><

>:

3, if �D = �3

2, if �D = �4

1 otherwise.



Fourier coe�cients of the modular forms g
i

Sketch of the proof.
Let S be the set of elements b 2 Ri with Tr(b) = 0, b 2 Z+ 2Ri

and N(b) = d .

For a positive integer D, if g : Q(
p
�D) ,! B is an embedding of

an order OD into Ri , then b = g(
p
�D) is an element in

{x 2 B |Tr(x) = 0} and the norm of b is D. Since

OD = Z+ Z (D+

p�D))

2

, we have b 2 (Z+ 2Ri ).

) b 2 S

0

i = {x 2 B |Tr(x) = 0} \ (Z+ 2Ri ).



Fourier coe�cients of the modular forms g
i

Conversely, if b is an element in S

0

i such that the norm of b is D ,
then g(

p
�D) = b gives rise to an embedding of the order

OD = Z+ Z (D+

p�D)

2

into Ri .

The embedding g(
p
�D) = b is optimal if and only if

b /2 m(Z+ 2Ri ) for some m > 1. Let h⇤(OD ,Ri ) be the number of
optimal embeddings of OD into Ri .

Using the above connection we get

ai (d) = ]S =
X

�d=�Df 2

{b 2 S ,
b

f

2 S

0

i ,
b

f

/2 m(Z+2Ri ) for m > 1}.

=
X

�d=�Df 2

h

⇤(OD ,Ri ).
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Fourier coe�cients of the modular forms g
i

The group �i = R

⇤
i /± 1 acts on S . The �i orbits of S correspond

to equivalence classes of optimal embeddings. Hence

] S/�i =
X

�d=�Df 2

h(OD ,Ri ).

The order of the stabilizer of an element b 2 S is 1 unless the
corresponding embedding extends to Z[µ

6

] or Z[µ
4

], when it is 3
or 2 respectively.

Thus we see that

ai (d) = #�i
X

�d=�Df 2

h(OD ,Ri )

u(D)
= wi

X

�d=�Df 2

h(OD ,Ri )

u(D)
.
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Proof of the Main Theorem

Proof

I Consider the weight 3/2 Cohen-Eisenstein Series G,

G =
nX

i=1

1

wi
gi =

1

2

nX

i=1

1

wi
+

X

d>0

nX

i=1

ai (d)

wi
q

d .

We know that

I
nX

i=1

X

d>0

ai (d)

wi
q

d =
1

2

X

d>0

X

�d=�Df 2

⇣ nX

i=1

h(OD ,Ri )

u(D)

⌘
.

I

nX

i=1

h(OD ,Ri ) = h(D)
kY

i=1

⇣
1� {�D

pi
}
⌘Y

q|M

⇣
1 + {�D

q

}
⌘
.
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Proof of the Main Theorem

Hence

G =
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1 + {�D

q

}
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I In particular, if �D is the fundamental discriminant and
(�D

pi
) 6= 1, for every i = 1 to k , and (�D

q ) 6= �1 for every
prime q | M, then

GN(D) =
2!(N)�s(D)�1

h(D)

u(D)
.
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Application

We have an equation which relates L-function of f with the
coe�cients m2

D ,

Y

p| N
gcd(N,D)

(1 + (
�D

p

)sgn(Wp))L(f , 1)L(f ⌦ ✏D , 1) =
2!(N)(f , f )m2

Dp
D

P v2

i
w2

i

.

If E is the elliptic curve with conductor N associated with
f 2 S

2

(�
0

(N)), then we have L(E , 1) = L(f , 1) and the L-function
L(f ⌦ ✏D , 1) = L(ED , 1), where ED is the �D quadratic twist of E
associated with f ⌦ ✏D 2 S

2

(�
0

(ND2)).
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Order of the Tate-Shafarevich group

Assume that the rank of E is 0.

The rank 0 case of Birch-Swinnerton Conjecture gives

L(ED , 1)

⌦D
=

#ShD
Q

cp,D

|Tor(ED)|2
,

where cp,D ’s are the Tamagawa numbers and Tor(ED) is the
torsion subgroup of ED(Q), ⌦D is the real period of ED .

Under the assumptions, (�D
p )sgn(Wp) = 1 for all p | N

gcd(N,D)

, and

#ShD =
m2

D
2

⇤ for some integer ⇤, cardinality of ShD is related to
the class number.
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Order of the Tate-Shafarevich group

Proposition

Let E be an elliptic curve of analytic rank zero and square-free

conductor N. Let {p
1

, p
2

, ..., pk} ={p | N and sign of Wp is �1}.
Suppose k is odd.

Consider the family {ED} of negative quadratic twists of E

satisfying the condition (�D
pi

) 6= 1 for i = 1 to k and (�D
q ) 6= �1

for every prime q | M, where N = p

1

p

2

...pk .M. Suppose E has a

torsion point defined over Q, of odd prime order l and that

#ShD =
m2

D
2

⇤ . Assume that �u ⌘ v (mod l), for some � 2 F⇥
l .

Then, #ShD is divisible by l , if and only if the class number h(D)
of Q(

p
�D) is divisible by l .



Order of the Tate-Shafarevich group

Some examples of elliptic curves satisfying the hypotheses of the
Proposition.

I From Cremona’s tables, the strong Weil curves of rank zero
and prime conductor with an odd torsion point, are listed by
E = 11A1, E = 19A1 and E = 37B1. The first one has a
5-torsion point. The other two curves have a 3-torsion point.
For the (-D) quadratic twists of E , We also have #ShD is
m

2

D , upto a power of 2.

I For the elliptic curves 17A1, 67A1, 73A1, 89B1, 109A1,
139A1, 307A1, 307B1, 307C1, 307D1 with D  106 and for
the elliptic curves 14A1, 26A1, 26B1 with D  2000, we have
#ShD is m2

D , upto a power of 2.



Order of the Tate-Shafarevich group

Proof.

I Consider �G �H =
Pn

i=1

(��vi )
wi

gi .

I If l is an odd prime number, dividing the order of the group of
torsion points of the elliptic curve E , by Mazur’s theorem,
l = 3, 5 or 7. We know that wi | 12, the product

Qn
i=1

wi

equals the exact denominator of N�1

12

and 3 divides the exact
numerator of N�1

12

. Hence wi 2 F⇥
l for l = 3, 5 or 7.

I The congruence �u ⌘ v (mod l), for some � 2 F⇥
l gives a

congruence �G ⌘ H (mod l).

I We get the congruence on the coe�cients, �G(D) ⌘ m

2

D
(mod l). Hence l divides h(D) if and only if #ShD .



Order of the Tate-Shafarevich group

Proof.

I Consider �G �H =
Pn

i=1

(��vi )
wi

gi .

I If l is an odd prime number, dividing the order of the group of
torsion points of the elliptic curve E , by Mazur’s theorem,
l = 3, 5 or 7. We know that wi | 12, the product

Qn
i=1

wi

equals the exact denominator of N�1

12

and 3 divides the exact
numerator of N�1

12

. Hence wi 2 F⇥
l for l = 3, 5 or 7.

I The congruence �u ⌘ v (mod l), for some � 2 F⇥
l gives a

congruence �G ⌘ H (mod l).

I We get the congruence on the coe�cients, �G(D) ⌘ m

2

D
(mod l). Hence l divides h(D) if and only if #ShD .



Order of the Tate-Shafarevich group

Proof.

I Consider �G �H =
Pn

i=1

(��vi )
wi

gi .

I If l is an odd prime number, dividing the order of the group of
torsion points of the elliptic curve E , by Mazur’s theorem,
l = 3, 5 or 7. We know that wi | 12, the product

Qn
i=1

wi

equals the exact denominator of N�1

12

and 3 divides the exact
numerator of N�1

12

. Hence wi 2 F⇥
l for l = 3, 5 or 7.

I The congruence �u ⌘ v (mod l), for some � 2 F⇥
l gives a

congruence �G ⌘ H (mod l).

I We get the congruence on the coe�cients, �G(D) ⌘ m

2

D
(mod l). Hence l divides h(D) if and only if #ShD .



Bibliography

S. Bocherer, R. Schulze-Pillot, On a theorem of Waldspurger and
on Eisenstein series of Klingen type, Math. Ann., 288, (1990),
361–388.

M. Eichler, Zur Zahlentheorie der Quaternion-Algebren. J. Reine
Angew. Math., 195 (1955), 127–151.

G. Frey, On the Selmer group of twists of elliptic curves with
Q-rational torsion points, Canad. J. Math., Vol 40, no. 3, (1988)
649–665.

B. Gross, Heights and the special values of L-series, CMS

conference Proceedings, Vol 7, (1987), 115–187.

K. James, Elliptic curves satisfying the Birch and Swinnerton Dyer
conjecture and mod 3 J. Number Theory. Vol 128 (2008)
2823–2835.



Bibliography

P.L. Quattrini, The e↵ect of torsion on the distribution of Sh
among quadratic twists of an elliptic curve, Journal of Number

Theory, no. 2, (2011), 195–211.

K. Ono, Nonvanishing of quadratic twists of modular l-functions
and applications to elliptic curves J. Reine Angew. Math. Vol 553
(2001), 81–97.

H. Shimizu, On Zeta Functions of Quaternion Algebras Ann. Math.

Vol 81 no. 1, (1965), 166–193.

S. Wong, Elliptic curves and class number divisibility Int. Math.

Res. Not., 12 (1999), 661–672.



Thank you


	Bibliography

