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Let F be a number field, OF its ring of integers. The problem of
computing the higher K-groups of a number field F, and of its
rings of integers OF, has a rich history (See [1], [4], [5] and [17]).
Quillen [17] proved that for all n > 0 the K-theory groups Kn(OF)
are finitely generated. There are various conjectures about their
torsion subgroups. One of them, due to Lichtenbaum, says:
Lichtenbaum Conjecture: For all n ≥ 2,

ζ∗F(1 − n) = ±
|K2n−2(OF)|
|K2n−1(OF)tors|

RB
n (F)

up to powers of 2, where RB
n (F) is the Borel regulator, ζ∗F(1 − n)

is the first non-vanishing coefficient in the Taylor-expansion of
zeta-function ζF(s) at s = 1 − n.
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For n = 1, there is an exact sequence as follows (See [18]):

0→ K2(OF)→ K2(F)
⊕τP
→ ⊕P finite(kP)∗ → 0.

The map ⊕τP is explicitly given by the so-called tame symbol:
For each prime ideal P of OF, the map

τP : K2(F)→ k∗
P

defined by

τP(a, b) = (−1)vP(a)vP(b)avP(b)b−vP(a)
modP,

where vP denotes theP-adic valuation. Therefore K2OF = ker(⊕τP),
and hence K2OF is also called the tame kernel.
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In the classical algebraic number theory, the study of the ideal
class group is one of the fundamental problems. The analog of
the class group in the realm of K2-functor is the tame kernel,
which is much more complicated than the class group. One of
the fundamental problems in this areas is the understanding of p-
rank of K2OF of number fields F. By the 2-rank K2OF formula due
to J. Tate, Browkin and Schinzel states that for F = Q(

√
d), d ∈

Z square-free, the subgroup of K2OF consisting of all elements
with order 2 can be generated {−1,m},m|d(m > 0 if d > 0) together
with {−1, u +

√
d} if d = u2 − 2w2 with u,w ∈ Z.
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Qin’s following theorem determines the 4-rank of K2OF.

Theorem 1.1[10] [11]

Let F = Q(
√

d), d ∈ Z square-free, S(d) = {±1,±2} if d > 0 or
{1, 2} if d < 0. Suppose that m|d (m > 0 if d > 0) and write
d = u2 − 2w2 with u,w ∈ Z (we take u > 0 if d > 0) if 2 ∈ NF. Then
{−1,m} ∈ K2O

2
F if and only if one can find an ε ∈ S(d) such that

(i) ( dm−1

p ) = ( εp ), for any odd prime p|m,
(ii) ( m

p ) = ( εp ), for any odd prime p|dm−1;
and {−1,m(u +

√
d)} ∈ K2O

2
F if and only if one can find a δ ∈ S(d)

such that
(iii) ( dm−1

p ) = ( δ(u+w)
p ), for any odd prime p|m,

(iv) ( m
p ) = ( δ(u+w)

p ),, for any odd prime p|dm−1.
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Indeed, Qin introduced sign matrices via Legendre symbols to
determine the 4-rank of K2OF where F is the quadratic extension
in Theorem 1.1 above, see [19], [20], [12]. In the case of relative
quadratic extension , the sign matrices defined via local Hilbert
symbols to compute the 4-rank of the tame kernel was the work
of Hurrelbrink and Kolster. In [14], [13], Qin determined the 8-
rank of K2OF completely.
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For any odd prime p, we shall consider the following short exact
sequence

0→ (µp ⊕ CL(OE[1/p]))G → K2OF/p→ ⊕p∈S′µp → 0,

where E = F(ζp), G = Gal(E/F) acts on µp ⊕ CL(OE[1/p]) by the
formula

(ζ ⊕ x)g = ζg ⊕ xg, for ζ ∈ µp, g ∈ G, x ∈ CL(OE[1/p]),

and S′ is the set of prime ideals of F which divide p and split
completely in E(See [7]). Based on appropriate reflection theo-
rems and on the above exact sequence , some authors proved
several results connecting the p-rank K2OF with the p-rank of
(CL(OK)), where K is an appropriate subfiled of F(ζp). In the
case of quadratic fields and cubic fields, p = 3, 5 the results are
explicit(See [2], [21], [16],[15]).
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Qin [15] proved a reflection theorem which for p=3 is Scholz
Reflection Theorem. He obtained some formulae for the pn-rank
of K2OF. With the help of this reflection theorem, he established
relations between the pn -divisibility of the order of K2OF and
the pn-divisibility of the class number of some algebraic number
fields.
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Let F/K be a Galois extension of a number field of degree n. We
studied the structure of the odd part of the tame kernel K2OF of
F by using the intermediate fields of F/K.

Theorem 1.2[22]
Let F/K be an abelian extension with Galois group G of order
n and p - n. Then (K2OF)p =

∑
(K2OE)p, where E runs over all

intermediate fields cyclic over K.

Proposition 1.3[22]

Let F = Q(
√

d1, · · ·,
√

dn), where d1, · · ·, dn are square-free in-
tegers and G = Gal(F/Q). If p is an odd prime, then (K2OF)p =⊕

(K2OE)p, where E runs over all quadratic subfields of F.
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Recall the well-known Birch-Tate conjecture:

#K2OF = w2(F)|ζF(−1)|

for every totally real number field F, where ζF is the Dedekind
zeta function of F, and w2(F) is the maximal order of the roots
of unity belonging to the compositum of all quadratic extensions
of F. The conjecture is known to be true when F is abelian over
Q and is known to be true in general up to a power of 2. By
Proposition 1.3, the order of the group K2OF can be computed
for a real multiquadratic field.
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Let E/F be a finite extension of number fields.The transfer trE/F

was defined which is a group homomorphism trE/F : K2(E) →
K2(F). Using some basic properties of the transfer mapping in
K-theory, we proved some relations among orders of odd parts
of tame kernels of some subfields of E/F. We denote by K2(E/F)
the kernel of the map trE/F : K2OE → K2OF.
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Proposition 1.3[22]
Let l be an odd prime number and E/F be a dihedral extension
with Galois group Dl, k its quadratic subfield fixed by < σ >, K
the fixed field of τ and K

′

the fixed field of στ. Then for every
odd prime p , l, we have

K2(E/k)(p) � K2(K/F)(p) × K2(K
′

/F)(p),

and

|K2(OE)||K2(OF)|2 =p |K2(OK)|2|K2(Ok)|.
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It is known that one has the analytic class number formula

ζ∗F(0) = −
R1(F)hF

w1(F)
,

where w1(F) is the number of roots of unity in F, hF is the class
number of F, R1(F) is the first regulator of F and ζ∗F(0) is the first
non-vanishing coefficient in the Taylor-expansion of the zeta-
function ζF(s) around s = 0.
There are conjectural analogues of the formula when 0 is re-
placed by negative integers.
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Motivic formulation of the Lichtenbaum Conjecture.
For any number field F and for any integer n ≥ 2,

ζ∗F(1 − n) = ±
RM

n (F)hn(F)
wn(F)

,

where hn(F) is the order of the motivic cohomology group
H2

M(OF,Z(n)), wn(F) is the order of the torsion subgroup of the
motivic cohomology group H1

M(OF,Z(n)) and RM
n (F) is the motivic

regulator of H1
M(OF,Z(n)).



logo

Contents Tame Kernels Higher class numbers in extensions of number fields

Higher class numbers in extensions of number
fields

We also note that for all n ≥ 2, the motivic groups H2
M(OF,Z(n))

are finite, H1
M(OF,Z(n)) are finitely generated Z-modules, and

dn = rkZ(H1
M(OF,Z(n))) =

{
r1 + r2, if n is odd,
r2, if n is even,

where r1 and r2 are respectively the numbers of real and com-
plex places of F.
The relationship between motivic cohomology, étale cohomology
and K-theory is described via Chern characters
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Lemma 2.1([8])
Let OF be the ring of integers in a number field F with r1 real
embeddings, and let n ≥ 2. Then for i = 1, 2,
(i) The Chern character

K2n−i(OF)→ Hi
M(OF,Z(n))

is an isomorphism if 2n − i ≡ 0, 1, 2, 7 (mod 8), injective with cok-
ernel � (Z/2Z)r1 if 2n − i ≡ 6 (mod 8), surjective with kernel
� (Z/2Z)r1 if 2n − i ≡ 3 (mod 8).



logo

Contents Tame Kernels Higher class numbers in extensions of number fields

Higher class numbers in extensions of number
fields

In the remaining cases (n ≡ 3 (mod 4)) there is an exact se-
quence

0→ K2n−2(OF)→ H2(OF,Z(n))→ (Z/2Z)r1 → K2n−1(OF)

→ H1(OF,Z(n))→ 0.

(ii) Hi
M(OF,Z(n)) ⊗ Zp � Hi

ét(OF[ 1
p ],Zp(n)), for all primes p.
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Let F be a finite Galois extension of a number field k with the
Galois group G. R. Brauer (in 1951) and S. Kuroda (in 1950)
proved independently some multiplicative relations between the
Dedekind zeta functions of some subfields of F. For every cyclic
subgroup H of G,

cG(H) :=
1

(G : H)

∑
H∗cyclic H⊆H∗⊆G

µ((H∗ : H)),

where µ is the Möbius function. Then

ζk(s) =
∏

H cyclic H⊆G

ζFH (s)cG(H),

where FH is the subfield of F fixed by H.
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Let l be a prime number and D the dihedral group of order 2l. Let
F/Q be a complex Galois extension with Galois group G, where
G = V4 or D. When n is even, we gave the Brauer-Kuroda formu-
lae for higher class numbers by an index of the first Motivic co-
homology groups using the Brauer-Kuroda relations about zeta-
functions and the Motivic formulation of the Lichtenbaum Con-
jecture.
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Theorem 2.1 [24]
Let F be a complex biquadratic extension of Q with quadratic
subfields F0, F1 and F2, where F0 is real. Then for n > 1 we have

hn(F)hn(Q)2∏2
i=0 hn(Fi)

= 1 or 2 or
1
2
.
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Theorem 2.2 [24]
Let F be a complex Galois extension of Q with the dihedral Ga-
lois group Dl. Let k be the unique quadratic subfield of F and K
(resp. K

′

) the subfield of F fixed by < σ > (resp. by < τ2σ >).
Then if l = 3, we have

hn(F)hn(Q)2

hn(k)hn(K)2 =
1
3

or 1 or 3 or 9.
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Corollary [24]

Let K = Q( 3√m) and F = K(ζ3), where m is a cubefree integers
not equal 1 and −1, ζ3 is a primitive cube root of unity. Then

|K2(OF)| =
1

12
|K2(OK)|2 or

1
4
|K2(OK)|2 or

3
4
|K2(OK)|2 or

9
4
|K2(OK)|2.
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Sci. École Norm. Sup. 7(1977), 613-636.
2. J. Browkin, On the p-rank of the tame kernel of algebraic
number fields, J. Reine Angew. Math., 432(1992), 135-149.
3. J. Browkin, Tame kernels of cubic cyclic fields, Math. Comp.
74(2005), 967–999.
4. J. Coates, On K2 and some classical conjectures in alge-
braic number theory, Ann. of Math. 95(1972), 99-116.
5. H. Garland, A finiteness theorem for K2 of a number field,
Ann. of Math. 94(1971), 534-548.
6. B. Kahn, Descente galoisienne et K2 des corps de nombres,
K-theory 7(1993), 55-100.
7. F. Keune, On the Structure of the K2 of the Ring of Integers
in a Number Field, K-Theory 2(1989),625-645.
8. M. Kolster, K-theory and arithmetic, Contemporary develop-
ments in algebraic K-theory, M. Karoubi, A.O. Kuku, C. Pedrini,
ICTP Lecture Notes, 15, 2003, 191-258.
9. J. Milnor, Introduction to Algebraic K-Theory, Annals of
Math. Studies 72, Princeton University Press, Princeton, 1971.



logo

Contents Tame Kernels Higher class numbers in extensions of number fields

10. H.R. Qin, The 2-Sylow subgroups of the tame kernel of
imaginary quadratic fields, Acta Arith. 69(1995), 153-169.
11. H.R. Qin, The 4-rank of K2OF for real quadratic fields, Acta
Arith. 72(1995), 323-333.
12. H.R. Qin, The structure of the tame kernels of quadratic
number fields (I), Acta Arith. 113(2004), 203-240.
13. H.R. Qin, The 2-Sylow subgroup of K2OF for number fields
F, J., Algebra 28(2005), 494-519.
14. H.R. Qin, Tame kernels and Tate kernels of quadratic num-
ber fields, J. Reine Angew. Math. 530(2001), 105-144.
15 H.R. Qin, Reflection theorems and the p-Sylow subgroup
of K2OF for a number field F, J. Pure Appl. Algebra, 214(2010),
1181-1192.
16. H.R. Qin, H.Y. Zhou, The 3-Sylow subgroup of the tame
kernel of real number fields, J. Pure and Applied Algebra
209(2007), 245-253.
17. D. Quillen, Finite generation of the groups Ki of rings of
algebraic integers, Lecture Notes in Math. 341, Springer Verlag,
1973, 179-198.



logo

Contents Tame Kernels Higher class numbers in extensions of number fields
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Thank you!
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