
Lectures 4,5: Quantum Generation of

Gravitational Waves

1 The geometrical essence of inflation (and the
bouncing alternatives)

The quantity 1/|aH | is the “comoving Hubble radius,” i.e. the radius of
the “comoving Hubble sphere” or “comoving Hubble volume”. This
quantity grows during decelerated expansion (ȧ > 0, ä < 0, as in the ordinary
radiation or matter dominated epochs of the hot Big Bang model), but shrinks
during a period of accelerated expansion (ȧ > 0, ä > 0, as in inflation) or
a period of decelerated contraction (ȧ < 0, ä < 0, as in bouncing models
that include a contracting phase prior to the Big Bang). In both inflationary
and bouncing models, the idea is that, if the factor by which 1/|aH | initially
shrinks during the inflationary or contracting phase is greater than the factor by
which it subsequently grows during the ordinary decelerated (matter or radiation
dominated hot Big Bang) phase, then a number of cosmological puzzles and
observations may be explained in a unified way.

2 Single scalar field inflation

What dominated the energy density during the hypothetical inflationary era?
We don’t know, but for concreteness we will here consider the simplest and most
successful possibility: a single scalar field ϕ with potential V (ϕ), so that the
action is

S =

∫

d4x
√−g

[

R

16πGN
− 1

2
gµν∂µϕ∂νϕ − V (ϕ)

]

. (1)

It will be convenient to define the “slow-roll parameters”

ǫ = − Ḣ

H2
≈ 1

2
M2

pl

[

V ′(ϕ)

V (ϕ)

]2

(2a)

η = M2
pl

V ′′(ϕ)

V (ϕ)
(2b)

where Mpl is the so-called “reduced Planck mass” (8πGN = M−2
pl ). We will

assume that the potential V (ϕ) is such that the field can “roll” monotonically
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down its potential from a “slow-roll region” (with ǫ and η both ≪ 1), to a
local minimum at ϕ = ϕmin with vanishing potential V (ϕmin) = 0. This is
the framework for “single-field slow-roll inflation.” Note that the V (ϕ) =
(1/2)m2ϕ2 is an example of a potential satisfying these requirements: when
|ϕ| > mpl, we have ǫ ≪ 1 and η ≪ 1.

2.1 Homogeneous evolution; slow-roll approximation

A homogeneous scalar field ϕ has energy density ρ and pressure p given by

ρ =
1

2
ϕ̇2 + V (ϕ) (3a)

p =
1

2
ϕ̇2 − V (ϕ) (3b)

Substituting these results into the continuity equation ρ̇ = −3H(ρ+ p) leads to
the equation of motion

ϕ̈ + 3Hϕ̇ + V ′(ϕ) = 0. (4)

This is like the equation of motion for a particle experiencing two different forces:
a potential force (the V ′ term) and a friction force (the 3Hϕ̇ term). The field
starts in the slow-roll regime: it is strongly overdamped and quickly relaxes to
its “terminal velocity,” where its acceleration ϕ̈ is negligible in Eq. (4) and the
drag approximately balances the potential forcing

ϕ̇ ≈ −V ′(ϕ)/3H. (5)

This means that the condition ǫ ≪ 1 becomes ϕ̇2 ≪ V (ϕ), which implies w ≈ −1
and hence ä > 0. Eventually, when the field gets close enough to the minimum
so that V (ϕ) ≈ (1/2)m2ϕ2 + . . . and H < m, the field begins underdamped
oscillations ϕ(t) ∝ a−3/2cos(mt), and with energy density decaying as ρ ∝ a−3,
which implies w = 0 and hence ä < 0. So the field starts in its slow-roll regime,
gradually oozing down its potential as the universe accelerates; finally, close
enough to the minimum, the slow-roll conditions cease to hold and the ϕ begins
underdamped oscillations about its minimum, as the universe stops accelerating
and begins to decelerate.

2.2 Perturbations

In electromagnetism, the gauge field Aµ naively has 4 components, but closer
inspection reveals that it only describes two physical degrees of freedom (the
2 polarizations of an electromagnetic wave). Similarly, in pure gravity (with
no additional matter fields) if we consider small perturbation about Minkowski
space, gµν = ηµν +hµν , we have seen that, although the symmetric 4×4 matrix
hµν has 10 components, it only contains 10 − 4 − 4 = 2 independent physical
degrees of freedom. Now, when we add a single scalar field to the picture, we
have one additional degree of freedom. In the ADM language, we can write

ds2 = −N2dt2 + γij(dxi + N idt)(dxj + N jdt) (6)
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and choose a gauge in which

δϕ = 0, γij = a2(t)e2ζ(t,x)e2hij(t,x) (7)

where hij is in TT gauge δijhij = δij∂ihjk = 0), and then constraint equations
determine the rest of the metric, N(t, ~x) and N i(t,x). The 3 physical modes are
ζ (which, in this δϕ = 0 gauge, physically corresponds to the perturbation of the
Ricci 3-curvature of the spatial slices) and the two independent components of
a traceless transverse 3× 3 symmetric matrix hij (which physically corresponds
to the two polarizations of a gravitational wave). You will hear ζ referred to as
a “primordial scalar perturbation” or “primordial curvature perturbation;” it is
observed more-or-less directly by observing the fluctuation in the temperature of
the CMB between different points on the sky; it is the primordial perturbation
that is ultimately responsible for all of the density perturbations and structure
(e.g. galaxies, clusters, voids, stars, you, me,. . .) that we see in the universe
today. And you will hear the 2 independent components of hij referred to
as “primordial tensor perturbations;” they are primordial gravitational waves
predicted by inflation, but at a level difficult to observe; it is hoped that they will
be observed in the coming years through observations of the polarization pattern
of the CMB – if and when that happens, it could be the observational result
that clinches the case for inflation, and converts it from a possible explanation
to an overwhelmingly likely one.

2.3 Defining the spectra

I will compute the “scalar” (ζ) and “tensor” (hij) power spectra in parallel, since
the calculations are very similar. The starting point for all of our subsequent
calculation is the quadratic action obtained by expanding our original action
(1) up to quadratic order in the small perturbations ζ and hij . Even though the
calculation of this quadratic part should be straight forward, it gets messy if
you don’t do it right; Maldacena explains a good way to do this calculation (in
Section 2 of arXiv:astro-ph/0210603) and I simply quote the result in Eq. (9)
below. First we split ζ and hij into Fourier components as follows

ζ(η, ~x) =

∫

d3~k

(2π)3/2
ζ~k(η)ei~k~x (8a)

hij(η, ~x) =

∫

d3~k

(2π)3/2
ǫs
ij(

~k)hs
~k
(η)ei~k~x, (8b)

where we sum over polarizations s = ± in (8b), and the 3×3 polarization ten-
sors ǫ+ij and ǫ−ij are real (ǫ∗ij = ǫij), symmetric (ǫij = ǫji), traceless (ǫii =

0), transverse (ǫijk
j = 0), even-parity [ǫij(~k) = ǫij(−~k)] and “orthonormal”

[ǫs
ij(

~k)ǫs′

ij(
~k) = 4δss′

]. Of course, our final expression for the tensor spectrum
will not depend on the normalization of the polarization tensors ǫs

ij , but this
particular choice is convenient, because it canonically normalizes the scalar fields
h± (see below).
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At quadratic order, ζ and hij are governed by the actions

Sζ = −1

2

∫

dηd3~x
[

(Mplz)2ηµνζ,µζ,ν

]

(9a)

Sh = −1

8

∫

dηd3~x
[

(Mpla)2ηµνhij,µhij,ν

]

(9b)

= −1

2

∫

dηd3~x
[

(Mpla)2ηµνhs
,µhs

,ν

]

, (9c)

where ~x is a comoving coordinate, η is conformal time, ηµν is the Minkowski
metric (diagonal{−1, +1, +1, +1}), a prime ( ′ ) denotes d/dη, and we must sum
over s = ± in (9c). I have also defined the background function

z ≡
√

2ǫ a, (10)

along with the two dimensionless “scalar” fields

hs(η, ~x) =

∫

d3~k

(2π)3/2
hs

~k
(η)ei~k~x. (11)

The action (9a) describes a massless scalar field Mplζ, minimally coupled to
an unperturbed FRW background — but with z playing the role of the scale
factor. And the action (9b) for hij is equivalent to the action (9c) for 2 massless,
canonically-normalized scalar fields, Mplh+ and Mplh−, minimally coupled to
the usual unperturbed FRW background with scale factor a(η).

From the actions (9) we obtain the equations of motion

ζ′′ + 2(z′/z)ζ′ −∇2ζ = 0 (12a)

h′′
s + 2(a′/a)h′

s −∇2hs = 0 (12b)

and the conjugate momenta

πζ = ∂Lζ /∂ ζ′ = (Mplz)2ζ′ (13a)

πs = ∂Lh/∂ h′
s = (Mpla)2h′

s (13b)

Now promote the classical fields (ζ, πζ) to quantum fields (ζ̂ , π̂ζ) satisfying the
canonical commutation relations

[

ζ̂(η, ~x), π̂ζ(η, ~x ′)
]

= iδ(3)(~x − ~x ′) (14a)
[

ζ̂(η, ~x), ζ̂ (η, ~x ′)
]

=
[

π̂ζ(η, ~x), π̂ζ(η, ~x ′)
]

= 0. (14b)

And similarly, let the fields (hs, πs) → (ĥs, π̂s) satisfy the commutation relations

[

ĥs(η, ~x), π̂s′ (η, ~x ′)
]

= iδ3(~x − ~x ′)δss′ (15a)
[

ĥs(η, ~x), ĥs′(η, ~x ′)
]

=
[

π̂s(η, ~x), π̂s′ (η, ~x ′)
]

= 0. (15b)
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Since ζ̂ is a real (hermitean) field, its Fourier components satisfy ζ̂~k = ζ̂†
−~k

.

Similarly, since ĥs is hermitean [this follows from the hermiticity of ĥij and our

definition of ǫs
ij ], its fourier components satisfy ĥs

~k
= ĥs†

−~k
. Thus, we may write

ζ̂~k(η) = ζ
k
(η)a~k + ζ∗

k
(η)a†

−~k
(16a)

ĥs
~k
(η) = h

k
(η)as

~k
+ h∗

k
(η)as†

−~k
. (16b)

Here the ζ creation and annihilation operators (a†
~k

and a~k), and the hs creation

and annihilation operators (as†
~k

and as
~k
), satisfy the usual commutation relations

[

a~k, a†
~k′

]

= δ(3)(~k − ~k′) (17a)
[

a~k, a~k′

]

=
[

a†
~k
, a†

~k′

]

= 0 (17b)

[

as
~k
, as′†

~k′

]

= δ(3)(~k − ~k′)δss′

(18a)
[

as
~k
, as′

~k′

]

=
[

as†
~k

, as′†
~k′

]

= 0, (18b)

while the classical mode functions, {ζ
k
(τ), ζ∗

k
(τ)} and {h

k
(τ), h∗

k
(τ)}, are linearly-

independent solutions of the (fourier-transformed) equations of motion

ζ′′
k

+ 2(z′/z)ζ′
k

+ k2ζ
k

= 0 (19a)

h′′
k

+ 2(a′/a)h′
k

+ k2h
k

= 0. (19b)

Note that homogeneity allows us to choose mode functions that do not depend
on the direction of ~k (or on the polarization s), but only on the magnitude

k = |~k| and on η. Consistency of the 2 sets of commutation relations, (14) and
(17) in the scalar case, or (15) and (18) in the tensor case, fixes the normalization
of the mode-function Wronskians:

W (ζ
k
, ζ∗

k
) ≡ ζ

k
(η)ζ∗

k

′(η) − ζ∗
k

(η)ζ′
k
(η) =

i

(Mplz)2
(20a)

W (h
k
, h∗

k
) ≡ hk(η)h∗

k
′(η) − h∗

k(η)h′
k(η) =

i

(Mpla)2
. (20b)

To understand the behavior of Eqs. (19a, 19b), it is often helpful to switch to
new variables vk and µk:

ζk = v k/z (21a)

hk = µk/a (21b)

which obey equations of motion

v′′k + [k2 − (z′′/z)]v k = 0 (22a)

µ′′
k + [k2 − (a′′/a)]µk = 0. (22b)
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From here we see that, in the far past, when modes are inside the Hubble horizon
(k2 ≫ |z′′/z| or k2 ≫ |a′′/a|, respectively), the solution of Eqs. (19a,19b) is

ζ
k
(η) ≈ 1

(Mplz)
√

2k

[

A1(k)e−ikη + A2(k)e+ikη
]

(23a)

h
k
(η) ≈ 1

(Mpla)
√

2k

[

B1(k)e−ikη + B2(k)e+ikη
]

(23b)

where the Wronskian conditions (20a, 20b) require that the constants (A1, A2)
and (B1, B2) must satisfy

|A1|2 − |A2|2 = 1, (24a)

|B1|2 − |B2|2 = 1. (24b)

Different choices for (A1, A2) or for (B1, B2) generally define physically distinct
vacua. The standard choice is (A1 = 1, A2 = 0) and (B1 = 1,B2 = 0), so that
the mode functions ζ

k
and h

k
are “purely positive frequency.” Physically, this

corresponds to placing the scalar and tensor fluctuations in the natural vacuum
of a comoving observer in the far past:

ζ
k

→ 1

(Mplz)
√

2k
e−ikη , (25a)

h
k

→ 1

(Mpla)
√

2k
e−ikη. (25b)

So the ζ and hij power spectra are given by

Pζ(k, η) ≡ d〈0| ζ̂2 (η, ~x)|0〉
d ln k

=
k3

2π2
|ζ

k
|2 (26a)

Ph(k, η) ≡
d〈0|ĥ2

ij(η, ~x)|0〉
d ln k

= 8
k3

2π2
|h

k
|2, (26b)

where ζ
k
(η) and h

k
(η) are obtained by solving the equations of motion (19a,

19b), subject to the initial conditions (25a, 25b).
Now, in the slow-roll approximation, we can calculate extremely useful ap-

proximate formulae by the following argument. Focus on one particular Fourier
mode, of comoving wavelength λ = 2π/k = constant. Initially, λ/2π is smaller
than the comoving Hubble radius 1/aH ; but 1/aH is rapidly shrinking during
inflation, and at some moment η = ηexit during inflation it becomes smaller
than λ/2π; and then, after inflation, 1/aH re-expands until, at some moment
η = ηre−entry, it becomes larger than λ/2π. Cosmologists commonly describe
this situation (very confusingly) by saying that the corresponding mode was
initially “inside the Hubble horizon,” then “exited the Hubble horizon” at the
time ηexit during inflation; and finally “re-entered the Hubble horizon” at the
time ηre−entry during the radiation or matter era. Before horizon exit, the mode
functions ζk(τ) and h

k
(η) may be approximated by Eqs. (25a, 25b); and then

6



after horizon exit the friction terms in Eqs. (19a, 19b) take over and pin ζk(η)
and h

k
(η) to constant values – approximately their values at the moment η∗ of

horizon exit when the friction kicked in. So the power spectra (26a, 26b) also
become time-independent constants

Pζ(k) =

[

k

2π(Mplz)

]2

≈ 1

2ǫ

[

H

2πMpl

]2

(27a)

Ph(k) = 8

[

k

2π(Mpla)

]2

= 8

[

H

2πMpl

]2

(27b)

where all of the quantities on the right-hand-side of these equations are un-
derstood to be evaluated at the moment of horizon exit η = etaexit when
(λ/2π = 1/aH ⇒ k = aH). It is this η-independent (but k-dependent)
primordial power spectrum that we can measure directly by making a map of
the temperature and polarization of the CMB over the whole sky. According
to inflation, these measurements are giving us direct information about ǫ and
H as a function of time (and hence V (ϕ)) during this incredibly early and high
energy epoch, prior to the start of radiation domination. If inflation is correct,
this is probably the best glimpse of ultra-high-energy physics that we will get.

3 Relating the primordial and present-day grav-

itational wave spectra

From the equation of motion (19b) for hk, we see that “outside the horizon”
(where k2 is negligible), hk quickly damps to a constant value; and then, from
the equation of motion written in the form (22b), we see that after the mode
re-enters the horizon (where k2 ≫ |a′′/a|) it behaves like hk ∝ e−ikη/[a(η)].
Therefore, the value of hk today is simply its primordial constant value (when
it was outside the horizon), divided by the redshift (1+zk) since it re-entered the
horizon. And since the tensor spectrum Ph(k) is proportional to |hk|2 squared,
we roughly have

Ph(k, today) = Ph(k, primordial)/(1 + zk)2. (28)

Next note that, from the continuity equation ρ̇ = −3H(ρ+p), we see that when
the ratio w = p/ρ is a constant, ρ scales as ρ ∝ a−3(1+w). Then, from the
Friedmann equation in a flat FRW universe we have H ∝ ρ1/2 ∝ a−3(1+w)/2,
and hence a ∝ (1/aH)2/(1+3w) ⇒ (1 + zk) ∝ k2/(1+3wk). When talking about
a stochastic background today, it is convenient to convert the strain spectrum
Ph(k) to an energy spectrum

Ωgw(k, η) ≡ 1

ρcrit(η)

d〈0|ρgw(η)|0〉
d ln k

(29)

where we can obtain ρgw(τ) by first using the formula

Tαβ = −2
δL

δḡαβ
+ ḡαβL (30)
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to compute the gravitational wave stress-energy, and then using

ρgw = −T 0
0 =

1

64πGN

(h′
ij)

2 + (~∇hij)
2

a2
(31)

and averaging over multiple wavelengths to obtain

Ωgw(k, τ) =
1

12

k2Ph(k, τ)

a2(τ)H2(τ)
. (32)

Since the gravitational wave stress energy tensor Tµν is proportional to hij,µhij,ν ,
rather than hijhij , Ωgw(k) is bluer than Ph(k) by two powers of k. Putting it
all together, we find that

Ωgw(k, today) ∝ Ph(k, primordial)k2(3wk−1)/(3wk+1). (33)

As I will sketch on the board, this equation may be used to see why the cur-
rent CMB upper bound on the primordial tensor power spectrum implies an
upper bound Ωgw(k) . 10−15 for modes that re-entered the horizon during the
radiation-dominated era after standard single-field slow-roll inflation. This is
orders of magnitude too small to be detected by Pulsar Timing Arrays, LISA,
or LIGO, although a future satellite experiment like BBO or DECIGO (basi-
cally advanced versions of LISA, operating at slightly higher frequencies) migth
someday be able to achieve sensitivities of Ωgw ∼ 10−17 and thereby directly
detect the inflationary background.
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